HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED

(A Joint Venture of Government of Haryana and Ministry of Railways)

BID DOCUMENT For

TPC-01: Third Party Consultancy for checking of Detailed Design and Drawings of Twin NATM and Cut & Cover Tunnels from Km 24.850 to Km 29.580 including associated structures and Third Party Consultant's association during construction of NATM and Cut & Cover Tunnels for Haryana Orbital Rail Corridor (HORC) Project in the State of Haryana.

Bid No : HORC/HRIDC/TPC-01/2023

Contract title: Third Party Consultancy for checking of Detailed Design of NATM and Cut &

Cover Tunnels and associated structures for Haryana Orbital Rail Corridor

(HORC).

Project : Haryana Orbital Rail Corridor Project

Employer: Haryana Orbital Rail Corporation Limited (HORCL)

Country : INDIA

Issued on : 23.11.2023

Table of Contents

S. No.	CONTENTS
1.	Section 1- Instructions to Consultants (ITC)
2.	Section 2-Bid Data Sheet (BDS)
3.	Section 3- Evaluation and Qualification Criteria (EQC)
4.	Section 4-Bidding Forms (BDF)
5.	Section 5- Employer's Requirements (Scope of Services)
6.	Section 6- Bid Drawings and Documents
7.	Section 7- General Conditions of Contract (GCC)
8.	Section 8- Special Conditions of Contract (SCC)
9.	Section 9- Contract Forms (COF)

Section 1 Instructions to Consultants (ITC)

Table of Contents

Section	on 1: Instructions to Consultants (ITC)	. 5
A.	General	. 5
1.	Introduction and Scope of Bid	. 5
2.	Source of Funds	. 6
3.	Corrupt Practices	. 6
4.	Eligible Consultants	. 6
5.	Eligible Software and Services	. 8
B. Co	ntents of Bidding Document	. 9
6.	Sections of Bidding Document	. 9
7.	Clarification of Bidding Document, Site Visit, Pre-Bid Meeting	. 9
8	Amendment of Bidding Document	10
C.	Preparation of Bids	10
9	Cost of Bidding	10
10	Language of Bid	11
11	Documents Comprising the Bid	11
12	Letter of Bid and Price Schedules	11
13	Alternative Bids	11
14	Bid Prices	12
15	Currencies of Bid and Payment	12
16	Documents Comprising the Technical Bid	12
17	Documents Establishing the Qualifications of the Consultant	12
18	Period of Validity of Bids	12
19	Bid Security	13
20	Format and Signing of Bid	13
D. Sul	bmission and Opening of Bids	14
21	Sealing and Marking of Bids	14
22	Deadline for Submission of Bids	14
23	Late Bids	15
24	Withdrawal, Substitution, and Modification of Bids	15
25	Technical Bid Opening	15
E.	Evaluation and Comparison of Bids	16
26	Confidentiality	16
27	Clarification of Bids	16
28	Deviations, Reservations, and Omissions	16
29	Determination of Responsiveness	16

30	Nonconformities, Errors, and Omissions	17
31	Financial Bid Opening.	17
32	Correction of Arithmetical Errors	18
33	Conversion to Single Currency	18
34	Purchase Preference	18
35	Evaluation of Financial Bids	19
36	Comparison of Bids	19
37	Employer's Right to Accept Any Bid, and to Reject Any or All Bids	19
F.	Award of Contract	19
38	Award Criteria	19
39	Letter of Acceptance (LOA)	19
40	Signing of Contract	19
41	Performance Security	20
42	Procurement related Complaint	20
43	Jurisdiction of Court	20

Section 1: Instructions to Consultants (ITC)

A. General

1. Introduction and Scope of Bid

- 1.1. Haryana Rail Infrastructure Development Corporation Limited (HRIDC), invites National Competitive Bids (NCB) on behalf of Haryana Orbital Rail Corridor Limited (HORCL) hereinafter called "the Employer" to provide the services of "Third Party Consultancy for Detailed Design and Drawings of Twin NATM and Cut & Cover Tunnels from Km 24.850 to Km 29.580 including associated structures and Third Party Consultant's association during construction of NATM and Cut & Cover Tunnels for HORC project in the State of Haryana". The detailed Scope of the Services are specified in Section 5: Employer's Requirements (Scope of Services) of this Bidding Document. Consultants must meet the Eligibility Criteria Specified in ITC Clause 4 and Section 3, EQC.
- 1.2. The Bid number is as specified in **BDS**.
- 1.3. Haryana Rail Infrastructure Development Corporation LTD (HRIDC) having its office at Plot No. 143, 5th Floor, RailTel Tower, Sector-44, Gurugram, Haryana-122003 has been appointed as the implementing agency of the HORC project by HORCL.
- 1.4. M/s RITES-SMEC Pty consortium have been appointed as the General Consultant (GC) for the HORC project.
- 1.5. Rail Vikas Nigam Limited (RVNL) have been appointed as the Contractor for the execution of the Works of twin NATM and Cut & Cover tunnels on EPC basis. The Time for Completion of the Works Contract by RVNL is 1460 days.
- 1.6. Throughout these Bidding Documents:
 - a) the term "in writing" means communicated in written form (e.g., by mail, e-mail, fax, including, if specified in the **BDS**, distributed or received through electronic-procurement system used by the Employer) with proof of receipt.
 - b) except where the context requires otherwise, words indicating the singular also include the plural and words indicating the plural also include the singular.
 - c) "day" means calendar day.
 - d) "The word "tender" is synonymous with "bid" or "proposal", the word tenderer with "bidder" or "proposer" or "Consultant", the words "tender documents" with "bidding documents" and "request for bids documents" with "request for proposal documents", as applicable."

2. Source of Funds

2.1 Unless otherwise specified in the BDS, the required funds will be provided by HORCL.

3. Corrupt Practices

- 3.1 The Employer requires that Consultants observe the highest standard of ethics during the procurement and execution of such contracts. In pursuance of this policy, the Employer
 - a) defines, for the purposes of this provision, the terms set forth below as follows:
 - "coercive practice" means impairing or harming, or threatening to impair or harm, directly or indirectly, any party or the property of the party to influence improperly the actions of a party;
 - (ii) "collusive practice" means an arrangement between two or more parties designed to achieve an improper purpose, including to influence improperly the actions of another party;
 - (iii) "corrupt practice" means the offering, giving, receiving or soliciting, directly or indirectly, of anything of value to influence improperly the actions of another party;
 - (iv) "fraudulent practice" means any act or omission, including a misrepresentation, that knowingly or recklessly misleads, or attempts to mislead, a party to obtain a financial or other benefit or to avoid an obligation.
 - (v) "theft" means the misappropriation of property belonging to another party
 - b) will reject a bid for award if it determines that the Consultant recommended for award has, directly or through an agent, engaged in corrupt, fraudulent, collusive, or coercive practices in competing for the Contract; and
 - c) will sanction a party or its successor, including declaring ineligible, either indefinitely or for a stated period of time, to participate in Employer's activities, if it at any time determines that the firm has, directly or through an agent, engaged in corrupt, fraudulent, collusive, or coercive practices in competing for, or in executing a contract of the Employer.

4. Eligible Consultants

- 4.1
- a) Only firms that are Registered or Incorporated in India are eligible to take part in the above Bid.
- b) The Consultant may be an Individual or a Partnership Firm or a Company registered under the relevant applicable laws.
- c) In case of Foreign Company, it should be registered in India under relevant legislation or company shall have required approval / permissions from RBI/FEMA for carrying out business in India. The proof of registration/approval/permission should be enclosed.

4.2 Joint Venture (JV)/Consortium

Joint Venture/Consortium is NOT permitted to take Part in the above Bid.

- 4.3 A Consultant shall not have conflict of interest. All Consultants found to have a conflict of interest shall be disqualified. A Consultant may be considered to be in conflict of interest with one or more parties (i.e. Consultants participating in the Bid, the General Consultant (GC), HRIDC, HORCL and RVNL) in this bidding process, if, including but not limited to:
 - a) they have controlling shareholders in common; or
 - b) they receive or have received any direct or indirect subsidy from any of them; or
 - c) they have the same legal representative for purposes of this bid; or
 - d) they have a relationship with each other, directly or through common third parties, that puts them in a position to have access to information about or influence on the Bid of another Consultant, or
 - e) a consultant participates in more than one bid in this bidding process. Participation by a Consultant in more than one Bid shall result in the disqualification of all Bids in which the party is involved; or
 - f) It should be noted that the 'Consultant' shall not combine itself with those of a Construction contractor and designer of construction Contractor and shall furnish an undertaking to the effect that the 'Third Party Consultant' agrees to limit its role to that of a consultant and to disassociate itself, its associates/affiliates from work in any other capacity (including Biding relating to any goods or services for any part of the work) on this work other than that of consultant; or
 - g) If, in connection with the performance of the consulting services, any Consultant intends to borrow, hire temporarily, personnel from other consultants, the Consultant must include in their bid all relevant information about such personnel. In such case, the Bid will be acceptable only if those consultants disassociate themselves from this work (including Bidding relating to any goods or services for any other part of this work) other than that of consultant.

4.4 The Consultant shall be disqualified if:

- a) The Consultant or any of its constituents has been blacklisted/ banned business dealings by any Government Department, Government Agency or public sector undertaking at any time, except in cases where such blacklisting/banning has been withdrawn by Competent Authority or ceased on the deadline for submission of the bid, for which satisfactory evidence is to be produced.
- Any previous contract of the Consultant or any of its constituents had been terminated/rescinded for Consultant's failure by Haryana Rail Infrastructure Development Corporation Limited (HRIDC) during the period of last 2 years before the deadline for submission of bid;
 - Provided, however, there is no stay order or declaration by any Court against such termination or rescission of the Contract by the Haryana Rail Infrastructure Development

Corporation Limited.

- c) The Consultant or any of its constituents has suffered bankruptcy/insolvency or it is in the process of winding-up or there is a case of insolvency pending before any Court on the deadline of submission of bid.
- d) The Consultant is found ineligible by the Employer in accordance with ITC 3.
- e) The Consultant or its constituent has been found by HRIDC to be poor performer in any earlier contract.
- f) The Consultant or any of its constituent has been issued a show cause notice for poor performance/banning/blacklisting of business or order for suspension of business by Competent Authority of HRIDC. However, if the Consultant is exonerated of the default before completion of the technical evaluation of bids, his bid will be considered for evaluation.
- g) The Consultant or any of its constituents have changed their name or created a new business entity as covered by the definition of "Allied Firm" * consequent to having been banned business dealings or suspended business dealings.
 - *Allied Firm: All concerns which come within the sphere of effective influence of the banned/suspended firms shall be treated as allied firms. In determining this, the following factors may be taken into consideration:
 - (i) Whether the management is common;
 - (ii) Whether majority interest in the management is held by the Partners or Directors of the banned/suspended firm;
 - (iii) Whether substantial or majority shares are owned by the banned/suspended firm and by virtue of this, it has a controlling voice; and
 - (iv) The Consultant or its constituents is having more than 10 litigations cases in the last 05 years prior to deadline for submission of bids.

The Consultant shall submit an affidavit stating that they are not liable to be disqualified as per this sub clause using the **Form: PS-1** given in Section 4. Non submission of an affidavit by the Consultant shall result in summary rejection of his bid

5. Eligible Software and Services

Design calculations done to check the Contractor's design shall be submitted by the Third Party Consultant in MS-Excel for cross checking/verification by the Engineer. Input files of design software (licensed version) used shall also be submitted to the Engineer. The Consultant shall make latest licensed software available to the Engineer for facilitating design checking for the duration of the Contract.

B. Contents of Bidding Document

6. Sections of Bidding Document

6.1 The Bidding Document consists of following Sections indicated below and should be read in conjunction with any Addenda/Corrigenda issued in accordance with ITC 8.

Section 1: Instructions to Consultants (ITC)

Section 2: Bid Data Sheet (BDS)

Section 3: Evaluation and Qualification Criteria (EQC)

Section 4: Bidding Forms (BDF)

Section 5: Employer's Requirements (Scope of Services)

Section 6: Bid Drawings and Documents

Section 7: General Conditions of Contract (GCC)

Section 8: Special Conditions of Contract (SCC)

Section 9: Contract Forms (COF)

- 6.2 The Invitation for Bids (IFB) issued by the Employer shall be part of the Bidding Document.
- 6.3 The Employer is not responsible for the completeness of the Bidding Document and their Addenda/Corrigenda, if they were not obtained directly from the source stated by the Employer in the BDS.
- 6.4 The Consultant is expected to examine all instructions, forms, terms, and specifications in the Bidding Document. Failure to furnish all information or documentation required by the Bidding Document may result in the rejection of the Bid.

7. Clarification of Bidding Document, Site Visit, Pre-Bid Meeting

- 7.1 While all efforts have been made to avoid errors in the drafting of the Bidding Document, the Consultant is advised to check the same and seek clarifications within the period stated in **BDS**. No claim on account of any errors detected in the Bidding Document shall be entertained. A prospective Consultant requiring any clarification of the Bidding Document shall contact the Employer in writing at the Employer's address indicated in the **BDS**. The Employer will respond in writing to any request for clarification, provided that such request is received within schedule period sated in **BDS**. Should the Employer deem it necessary to amend the Bidding Document as a result of a request for clarification, it shall do so following the procedure under ITC 8 and ITC 22.2.
- 7.2 The Consultant is advised to visit and examine the site of Works and its surroundings and

obtain for itself, on its own responsibility, all information that may be necessary for preparing the Bid and entering into a contract for consultancy services. The costs of visiting the Site shall be at the Consultant's own expense. No Site Visit will be arranged by the Employer.

- 7.3 The Consultant and any of its personnel or agents will be granted permission by the Employer to enter upon its premises and lands for the purpose of such visit, but only upon the express condition that the Consultant, its personnel, and agents will release and indemnify the Employer and its personnel and agents from and against all liability in respect thereof, and will be responsible for death or personal injury, loss of or damage to property, and any other loss, damage, costs, and expenses incurred as a result of the inspection.
- 7.4 The Consultant's designated representative is invited to attend a pre-bid meeting, if provided for in the **BDS**.
- 7.5 The Consultant is requested to submit any queries in writing, to reach the Employer as specified in **BDS**.
- 7.6 Minutes of the Pre-Bid Meeting, including the text of the queries raised, without identifying the source, and the responses given, together with any responses prepared after the meeting, will be uploaded on HRIDC website www.hridc.co.in. Any modification to the Bidding Document, that may become necessary as a result of the Pre-Bid Meeting, shall be made by the Employer exclusively through the issue of an addendum/Corrigendum pursuant to ITC 8.
- 7.7 Non-attendance at the Pre-Bid Meeting will not be a cause for disqualification of a consultant.

8 Amendment of Bidding Document

- 8.1 At any time prior to the deadline for submission of bids, the Employer may amend the Bidding Document by issuing addenda/Corrigenda.
- 8.2 Any addendum/Corrigendum issued shall be part of the Bidding Document and shall be communicated in writing as specified in the **BDS**. The onus is on the Consultants to see the addenda/Corrigenda.
- 8.3 To give prospective Consultants reasonable time in which to take an addendum/Corrigendum into account in preparing their bids, the Employer may, at its discretion, extend the deadline for the submission of bids, pursuant to ITC 22.2

C. Preparation of Bids

9 Cost of Bidding

9.1 The Consultant shall bear all costs associated with the preparation and submission of its Bid and the Employer shall not be responsible or liable for those costs, regardless of the conduct or outcome of the bidding process.

10 Language of Bid

10.1 The Bid, as well as all correspondence and documents relating bid exchanged by the Consultant and the Employer, shall be written in English language. Supporting documents and printed literature that are part of the Bid and provided in another language provided should be accompanied by an accurate translation of the relevant passages in English in which case, for purposes of interpretation of the Bid, such translation shall govern.

11 Documents Comprising the Bid

11.1 The Bid shall comprise two parts submitted simultaneously, one called the Technical Bid containing the documents listed in ITC 11.4 and the other the Financial Bid containing the documents listed in ITC 11.5.

The Consultant is not required to sign and submit entire Bid document issued by the Employer (i.e. Section 1, Section 2, Section 3, Section 4, Section 5, Section 6, Section 7, Section 8 and Section 9) with any Addenda/Corrigenda issued in accordance with ITC 8 in its submission on eProcurement portal. The master copy of Bid Document published on Procurement portal shall be available with HRIDC which shall be final and binding. The Consultant shall submit their Bid as mentioned in ITC 21.

- 11.2 Technical Bid shall be opened at the address, date and time specified in ITC Sub-Clause 25.1 for the Bids accompanied by an enforceable and compliant Bid security as per ITC Clause 19. The Technical Bid shall only be evaluated by the Employer. No amendments or changes to the Technical Bid are permitted after submission of Bids. The Financial Bid shall be evaluated in accordance with ITC 35.
- 11.3 Deleted.
- 11.4 The Consultant shall submit all the documents in its Technical Bid as per the Checklist (Form CL) given in Section 4: Bidding Forms.
- 11.5 The Consultant shall submit all the documents in its Financial Bid as per the Checklist (Form CL) given in Section 4: Bidding Forms.

12 Letter of Bid and Price Schedules

- 12.1 The Consultant shall submit the Letter of Technical Bid using the appropriate forms furnished in Section 4: Bidding Forms. These forms must be completed without any alterations to their format, text and no substitutes shall be accepted. All blank spaces shall be filled with the information requested.
- 12.2 The Consultant shall submit, as part of the Financial Bid, the Letter of Financial Bid, the Schedules including the completed Price Schedules uploaded on eProcurement portal.

13 Alternative Bids

13.1 Unless otherwise indicated in the BDS, alternative bids shall not be accepted.

13.2 When alternative times for completion are explicitly invited, a statement to that effect will be included in the **BDS**, as will the method of evaluating different periods for completion

14 Bid Prices

- 14.1 The prices shall quoted by the Consultant in the Financial Bid only.
- 14.2 In the Price Schedule, Consultant shall quote lumpsum price in Indian Rupees (INR) only.
- 14.3 The price to be quoted in the Financial Bid shall be the total price of the Bid.
- 14.4 All duties, taxes [including Goods and Service Taxes (GST)] and other levies payable by the Consultant under the Contract, or for any other cause, as on the Base Date (i.e. 28 days prior to the deadline for submission of bids) shall be included in the total Bid Price submitted by the Consultant.

15 Currencies of Bid and Payment

15.1 The currency of the Bid and the payment currency shall be INR only. The Consultant shall quote the entire lumpsum price in Indian Rupees (INR) only.

16 Documents Comprising the Technical Bid

- 16.1 The Consultant shall furnish a commitment in Letter of Technical Bid for deployment of Key Personnel as stipulated in Section 5: Employer's Requirements.
- 16.2 Documents stipulated in ITC 11.4

17 Documents Establishing the Qualifications of the Consultant

- 17.1 To establish Consultant eligibility in accordance with ITC 4, Tenderers shall complete the Letter of Technical Bid and Form PS-1.
- 17.2 To establish its qualifications to perform the Contract, the Consultant shall provide the information requested in the corresponding information sheets included in Section 4, Bidding Forms.

18 Period of Validity of Bids

- 18.1 Bids shall remain valid for a period of **90 days** after the bid submission deadline date prescribed by the Employer. A bid valid for a shorter period shall be rejected by the employer as non-responsive.
- 18.2 In exceptional circumstances, prior to the expiration of the Bid validity period, the Employer may request Consultants to extend the period of validity of their bids. The request and the responses shall be made in writing. A Consultant may refuse the request without forfeiting its Bid security. A Consultant granting the request shall not be required or permitted to modify its Bid.

19 Bid Security

- 19.1 Unless otherwise specified in the BDS, the Consultant shall furnish as part of its bid, a Bid Security in the amount of Indian Rupees as specified in the BDS. (No interest shall be payable by the Employer on the Bid Security Amount).
- 19.2 The Bid Security amount shall be paid as specified in the **BDS**.
- 19.3 Any bid not accompanied by an enforceable and compliant Bid Security shall be considered as non-responsive.
- 19.4 The Bid Security of unsuccessful Consultants shall be returned as promptly as possible upon the successful Consultant's furnishing of the Performance Security pursuant to ITC 41.
- 19.5 The Bid Security of the successful Consultant shall be returned as promptly as possible once the successful Consultant has signed the Contract and furnished the required Performance Security pursuant to ITC 41.
- 19.6 The Bid Security may be forfeited:
 - a) If a Consultant withdraws its Bid during the period of Bid validity specified by the Consultant on the Letter of Bids, except as provided in ITC 18.2 or
 - b) If a Consultant misrepresents or omits the facts in order to influence the procurement process;
 - c) If the successful Consultant fails to:
 - (i) sign the Contract in accordance with ITC 40;
 - (ii) furnish a Performance Security in accordance with ITC 41;
 - (iii) accept the correction of its Bid Price pursuant to ITC 32.

20 Format and Signing of Bid

- 20.1 The Technical Bid (comprising of documents specified in ITC 11.4) and Financial Bid (comprising of documents specified in ITC 11.5) shall be submitted in accordance with the requirements of the Bid Documents as mentioned in ITC 21.1.
- 20.2 The Bid Document shall be signed by a person duly authorized to sign on behalf of the Consultant. This authorization shall consist of a written confirmation as specified below using Form ELI-1.2 given in Section 4, Bidding Forms. The name and position held by each person signing the authorization must be typed or printed below the signature. All pages of the Bid, except for un-amended printed literature, shall be signed or initialed by the person signing the Bid.

The written confirmation of authorization (POA) to sign on behalf of the Consultant shall

consist of:

- a) In case of Private/Public Companies or Limited Liability Partnership (LLP) firms, a Power of Attorney from the Director of the Company who has been authorized by the Board of Directors through resolution to sign on behalf of the Company. Copy of Board Resolution shall also be submitted.
- b) In case of Proprietory Consultant, Notary certified copy of Proprietorship Affidavit.
- c) In case of Partnership firms, Power of Attorney duly signed by all the Partners and Notary certified copy of the Partnership Deed.
- d) In case of Limited Liability Partnership (LLP) firms, a Power of Attorney issued by the LLP in favour of the individual to sign the Bid on behalf of the LLP and create liability against the LLP.
- 20.3 Any interlineations, erasures, or overwriting shall be valid only if they are signed or initialed by the person signing the Bid.
- 20.4 If during technical evaluation stage, POA submitted by the Consultant is not found in the correct format, Employer will send written (Courier/email with PDF attachment) request to the Authorized Representative for rectification of POA in accordance with format prescribed in Section 4, Bidding Forms, specifying the deadline for receipt of POA in correct form. If a Consultant does not provide the Power of Attorney in correct form within the stated date and time set in the Employer's request for correction of POA, its Bid is liable to be rejected.

D. Submission and Opening of Bids

21 Sealing and Marking of Bids

- 21.1 The Consultant shall upload their Bids online as specified in the **BDS**.
- 21.2 Bids sent telegraphically or through any other means of transmission except as mentioned above shall be treated as invalid and shall stand rejected.
- 21.3 Deleted.

22 Deadline for Submission of Bids

- 22.1 The Bid submission is through the eProcurement portal only as specified in ITC 21.1.
 - The Consultant shall submit its Bid before expiry of the date and time for Bid submission indicated in the **BDS**.
- 22.2 The Employer may, at its discretion, extend the deadline for the submission of Bids by amending the Bidding Document in accordance with ITC 8, in which case all rights and obligations of the Employer and Consultants previously subject to the deadline shall thereafter be subject to the deadline as extended.

23 Late Bids

23.1 Submission of Bids shall be closed on eProcurement portal on the date & time of submission as prescribed in ITC 22.1 after which no Bid can be uploaded.

24 Withdrawal, Substitution, and Modification of Bids

- 24.1 The Bidder may modify, substitute or withdraw its e-Bid after submission prior to the deadline for submission of Bids. For modification of e-Bid, Bidder has to detach its old Bid from eProcurement portal and upload/ resubmit digitally signed modified Bid. For withdrawal of a bid, Bidder has to click on withdrawal icon at eProcurement portal and can withdraw its e-Bid. Before withdrawal of a bid, it may specifically be noted that after withdrawal of a bid for any reason, Bidder cannot re-submit its e-Bid again.
- 24.2 No Bid may be withdrawn, substituted, or modified in the interval between the deadline for submission of Bids and the expiration of the period of Bid validity period specified on the Letter of Bid or any extension thereof.

25 Technical Bid Opening

25.1 The Employer shall conduct the electronic opening of Bids on e-Procurement portal on the date, time and place as specified in the **BDS**.

The opening of the Bids and subsequent details can be viewed by the Consultant by logging on the e-Procurement portal. Alternatively, any Consultant who wish to attend the Bid opening can be present during the opening. The Consultant's Representatives who are present shall be requested to mark their attendance on the format available with the Employer.

- 25.2 "FINANCIAL BID" submitted online on eProcurement portal shall remain unopened in the eProcurement portal until the date and time of opening of Financial Bid. The date and time of the opening of the Financial Part will be notified to all the Consultants on eProcurement portal whose Bid is found to be substantially responsive and qualified in technical evaluation as specified in ITC 29.
- 25.3 At the time of opening of the Technical Bid, the following shall be read out and recorded:
 - a) the name of the Consultant;
 - b) the presence or absence of a Bid Security; and
 - c) any other details as the Employer may consider appropriate.
- 25.4 The Employer shall prepare a record of the opening of Technical Bid that shall include, as a minimum, the name of the Consultant, the presence or absence of Bid.
- 25.5 At the Bid opening the Employer shall neither discuss the merits of any Bid nor reject any

Bid.

E. Evaluation and Comparison of Bids

26 Confidentiality

- 26.1 Information relating to the examination, evaluation & comparison, qualification of Bids and recommendation of contract award, shall not be disclosed to Consultants or any other persons not officially concerned with such process until information on Contract award is communicated to all Consultants.
- 26.2 Any attempt by a Consultant to influence the Employer in the examination, evaluation & comparison and qualification of the Bids or Contract award decisions may result in the rejection of its Bid.
- 26.3 Notwithstanding ITC Sub-Clause 26.2, from the time of opening the Bid to the time of Contract award, if any Consultant wishes to contact the Employer on any matter related to the bidding process, it should do so in writing.

27 Clarification of Bids

- 27.1 To assist in the examination, evaluation & comparison and qualification of the Bids, the Employer may, at its discretion, ask any Consultant for a clarification of its Bid. Any clarification submitted by a Consultant that is not in response to a request by the Employer shall not be considered. The Employer's request for clarification and the response shall be in writing. No change in the prices or substance of the Bid shall be sought, offered, or permitted, except to confirm the correction of arithmetic errors discovered by the Employer in the evaluation of the Financial Bid, in accordance with ITC 32.
- 27.2 If a Consultant does not provide clarifications of its Bid by the date and time set in the Employer's request for clarification, their Bid shall be evaluated as per the available information in the submitted Bid.

28 Deviations, Reservations, and Omissions

- 28.1 During the evaluation of bids, the following definitions apply:
 - a) "Deviation" is a departure from the requirements specified in the Bidding Document;
 - b) "Reservation" is the setting of limiting conditions or withholding from complete acceptance of the requirements specified in the Bidding Document; and
 - c) "Omission" is the failure to submit part or all of the information or documentation required in the Bidding Document.

29 Determination of Responsiveness

29.1 The Employer's determination of a Bid's responsiveness is to be based on the contents of the Bid itself, as defined in ITC 11.

29.2 A substantially responsive bid is one that meets the requirements of the Bidding Document without material deviation, reservation, or omission.

A material deviation, reservation, or omission is one that,

- a) if accepted, would:
 - (i) affect in any substantial way the scope, quality, or performance of the Services specified in the Contract; or
 - (ii) limit in any substantial way, inconsistent with the Bidding Document, the Employer's rights or the Consultant's obligations under the proposed Contract; or
- b) if rectified, would unfairly affect the competitive position of other Consultants presenting substantially responsive bids.
- 29.3 The Employer shall examine the technical aspects of the Bid submitted in accordance with ITC 11, ITC 16 and ITC 17 in particular, to confirm that all requirements of Bid Document have been met without any material deviation or reservation or omission.
- 29.4 If a bid is not substantially responsive to the requirements of the Bidding Document, it shall be rejected by the Employer and may not subsequently be made responsive by correction of the material deviation, reservation, or omission.

30 Nonconformities, Errors, and Omissions

- 30.1 Provided that a bid is substantially responsive, the Employer may waive any nonconformities in the bid that do not constitute a material deviation, reservation or omission.
- 30.2 Provided that a bid is substantially responsive, the Employer may request that the Consultant submit the necessary information or documentation, within a reasonable period of time, to rectify nonmaterial nonconformities in the bid related to documentation requirements. Requesting information or documentation on such nonconformities shall not be related to any aspect of the price of the Bid. Failure of the Consultant to comply with the request may result in the rejection of its Bid.

31 Financial Bid Opening.

- 31.1 Following the completion of the evaluation of the Technical Bids of the Consultants, the Employer shall notify in writing those Consultants whose Technical Bids were considered non-responsive to the requirements of Bid Document or failed to meet the Qualification Criteria, advising them of the following information:
 - (a) the grounds on which Technical Bid of Consultant failed to meet the requirements of the Bid Document; and
 - (b) their "FINANCIAL BID" shall remain unopened on the eProcurement portal; and
 - (c) notify them of the date, time and location of the public opening of "FINANCIAL BID"

- 31.2 The Employer shall, simultaneously, notify in writing those Consultants whose Technical Bids have been evaluated as substantially responsive to the Bid Document and met all Qualifying Criteria, advising them of the following information:
 - (a) their technical Bid has been evaluated as substantially responsive to the requirement of Bid Document and met the Qualification Criteria;
 - (c) their "FINANCIAL BID" on eProcurement portal will be opened at the public opening of the Financial Bids; and
 - (d) notify them of the date, time and location of the public opening of the envelopes marked "FINANCIAL BID".
- 31.3 The "FINANCIAL BID" of Consultants who met the Qualification Criteria and whose Bids were evaluated as substantially responsive, will be opened on eProcurement portal. The Employer shall read out the names of each Consultants, and the total Tender prices, including any discounts and any other details as the Employer may consider appropriate.
- 31.4 The Employer shall neither discuss with Consultant's Representative present, if any, the merits of any Bid nor reject any "FINANCIAL Bid"
- 31.5 The Employer shall prepare a record of the Financial Bid opening that shall include, as a minimum:
 - (a) the name of the Consultant whose Financial Bid was opened; and
 - (b) the Bid price;

A copy of the record (i.e. summary of rates quoted) can be viewed by all Consultant's on eProcurement portal after opening of the Financial Bid.

32 Correction of Arithmetical Errors

- 32.1 Provided that the Bid is substantially responsive, the Employer shall correct arithmetical errors in the Financial Bid on the following basis:
 - a) if there is a discrepancy between words and figures, the amount in words shall prevail, unless the amount expressed in words is related to an arithmetic error, in which case the amount in figures shall prevail subject to (a) and (b) above.
- 32.2 If the Consultant that submitted the lowest evaluated bid does not accept the correction of errors, its bid shall be disqualified and its Bid Security shall be forfeited.

33 Conversion to Single Currency

33.1 For evaluation and comparison purposes the currency of the Bid Price shall be **Indian** Rupees (INR) only .

34 Purchase Preference

- 34.1 Purchase Preference shall not apply.
- 34.2 Domestic Preference shall not apply.

35 Evaluation of Financial Bids

- 35.1 The Employer shall evaluate Financial Bid of each Bid for which the Technical Bids have been determined to be substantially responsive.
- 35.2 To evaluate the Financial Bid, the Employer shall consider the following:
 - a) the Bid price;
 - b) price adjustment for correction of arithmetic errors inaccordance with ITC 32.1;
- 35.3 Price adjustment provisions of the Conditions of Contract, applied over the period of execution of the Contract, shall not be taken into account in bid evaluation.

36 Comparison of Bids

36.1 The Employer shall compare all substantially responsive bids to determine the lowest evaluated bid, in accordance with ITC 32, ITC 33, ITC 34 and ITC 35.

37 Employer's Right to Accept Any Bid, and to Reject Any or All Bids

37.1 The Employer reserves the right to accept or reject any bid, and to annul the bidding process and reject all bids at any time prior to contract award, without thereby incurring any liability to Consultants. In case of annulment, Bid Securities, shall be returned to the Consultants as per HORC policies.

F. Award of Contract

38 Award Criteria

38.1 The Employer shall award the Contract to the Successful Consultant. The successful Consultant is the Consultant whose Bid is determined to be substantially responsive to the Bidding document and the lowest evaluated bid.

39 Letter of Acceptance (LOA)

- 39.1 Prior to the expiration of the period of Bid validity, the Employer shall notify the successful Consultant, in writing, that its Bid has been accepted through "Letter of Acceptance" (LOA). "Letter of Acceptance" shall specify the sum that the Employer will pay the Consultant in consideration of the of the Services (hereinafter and in the Conditions of Contract and Contract Forms called "the Contract Price") and the requirement for the Consultant to remedy any defects therein as prescribed by the Contract.
- 39.2 Until a formal contract is prepared and executed, the "Letter of Acceptance" shall constitute a binding Contract.

40 Signing of Contract

40.1 Promptly after notification, the Employer shall send the successful Consultant the Contract Agreement.

40.2 The Parties shall sign a Contract Agreement within 35 days after the Consultant is issued the Letter of Acceptance and submission of Performance Security in accordance with the Bidding Document read with the Contract, unless the Conditions of Contract establish otherwise.

41 Performance Security

- 41.1 Within twenty-eight (28) days of the issue of Letter of Acceptance from the Employer, the successful Consultant shall furnish:
 - (a) The Performance Security in accordance with Sub-Clause 3.2 of Conditions of Contract, using for that purpose the Performance Security Form included in Section 9: Contract Forms, or another form acceptable to the Employer.
 - (b) Failure of the successful Consultant to submit the above-mentioned Performance Security or to sign the Contract Agreement shall constitute sufficient grounds for the annulment of the award and forfeiture of the Bid Security.

42 Procurement related Complaint

The procedures for making a Procurement related Complaint is specified below:

The procedures for making a Procurement related Complaint are as specified in the BDS.

43 Jurisdiction of Court

Jurisdiction of Court in case of dispute or differences arising on account of this Bid: Any suit or application, arising out of any dispute or differences on account of this Bid shall be filed in court at Gurugram, Haryana.

Section 2 Bid Data Sheet (BDS)

Section 2: Bid Data Sheet

This section consists of provisions that are specific to each procurement and supplement the information or requirements included in Section:1-Instructions to Consultants.

A. Introduction

ITC 1.2	Bid No: HORC/HRIDC/TPC-01/2023, dated: 23.11.2023	
ITC 1.6(a)	Electronic – Procurement System	
	The Employer shall use the following electronic-procurement system to manage this Tendering process:	
	eProcurement portal of Govt. of Haryana (https://etenders.hry.nic.in)	

B. Bidding Documents

ITC 6.3	Replace ITC 6.3 with the following:			
	The complete Bid Document can be viewed/ downloaded by the Tenderer from eProcurement portal of Govt. of Haryana https://etenders.hry.nic.in . The Employer is not responsible for the completeness of the Tender Document and their addenda/Corrigenda, if they were not obtained directly from eProcurement portal of Govt. of Haryana https://etenders.hry.nic.in .			
ITC 7.1	For Clarification of Bid purposes only, the Employer's address is:			
	Attention: Sh. Rajiv Ranjan Kumar			
	Designation: Chief Project Manager/West			
	Street address: Haryana Rail Infrastructure Development Corporation Limited (HRIDC), Plot no.143, Railtel Tower, Sector-44			
	Floor: 5th floor			
	City: Gurugram			
	ZIP code : 122003			
	Country: India			
	Telephone: +91 9310812157			
	E-mail: horc.etendering@gmail.com			
	Last date for seeking clarifications from the Employer shall be as specified in ITC 7.5.			
ITC 7.4	Replace the entire Sub-Clause 7.4 with the following:			
	There shall be no Pre-Tender Meeting.			

ITC 7.5

The Consultant is requested to submit any queries in writing, to reach the Employer not later than **30.11.2023 by 1800 hrs IST**. No further queries shall be entertained by the employer beyond the period mentioned above.

The prospective Consultants shall send their queries through email along with an editable soft copy (MS Word) of the queries raised by them on the email id (i.e. horc.etendering@gmail.com). The Consultant should use the following format for any Pre-Tender queries:

The Consultants should use the following format for any Bid queries:

Query	Reference to Bid	Brief Description of	Query Raised
No.	Document	Clause/ Para No.	
	(Clause/ Para No.		
	& Page No.)		
1.	,		
2.			
3.			
4.			
5.			
etc.			

ITC 7.6

Replace ITC 7.6 with the following:

Replies to Pre-Bid Queries including the text of the questions raised, without identifying the source, and the responses given, together with any responses prepared after the meeting, will be uploaded on will be uploaded on HRIDC website www.hridc.co.in. Any modification to the Bid Document that may in the sole discretion of the Employer become necessary as a result of the replies to Pre Bid queries shall be made by the Employer exclusively through the use of an Addendum/Corrigendum pursuant to ITC 8.

ITC 8.2

Any addendum/Corrigendum issued shall be part of the Bid Document and shall be uploaded on eProcurement portal, https://etenders.hry.nic.in.

C. Preparation of Bids

ITC 11.1	Add the following to ITC 11.1:		
	The Consultant shall submit their Bid online on eProcurement portal (https://etenders.hry.nic.in) as mentioned in para ITC 21.		
ITC 19.1	The Consultant shall furnish a Bid Security for an amount of INR 2,25,000.00 (Indian Rupees Two lakhs and Twenty Five Thousand Only).		
ITC 19.2	The amount for Bid Security will only be paid online by eligible Consultants on eProcurement Portal of Government of Haryana (https://etenders.hry.nic.in) in favour of Haryana Rail Infrastructure		

Development Corporation Limited using the electronic payment gateway service.

D. Submission and Opening of Bids

Replace ITC 20.1 with the following:

The Technical Bid (comprising of documents specified in ITC 11.4) and Financial Bid (comprising of documents specified in ITC 11.5) shall be submitted online on eProcurement portal of Government of Haryana (https://etenders.hry.nic.in) only in accordance with the requirements of the Bid Documents.

ITC 21 Replace ITC 21 with the following:

- 21.1 Consultants shall upload their Bid submission online on eProcurement portal (i.e. https://etenders.hry.nic.in) within the stipulated date and time as mentioned in ITC 22.1. The Consultants shall ensure that they retain a copy of the receipt/ acknowledgement of their Bid submission which is generated by the system upon successful submission of Bid online.
- 21.2 Bids sent telegraphically or through any other means of transmission except as mentioned above shall be treated as invalid and shall stand rejected.
- 21.3 No details about Financial Bid shall be submitted/ disclosed directly or indirectly in the Technical Bid failing which the Employer has the right to reject the Bid.

21.4 Instructions for Online Bid Submission

The Consultants are required to submit soft copies of their Bids electronically on the eProcurement portal of Government of Haryana i.e., https://etenders.hry.nic.in, using valid Digital Signature Certificates. The instructions given below are meant to assist the Consultants in registering on the eProcurement Portal, prepare their Bids in accordance with the requirements and submitting their Bids online on the eProcurement Portal.

Registration:

- i) Consultants are required to enroll on the above-mentioned eProcurement portal by clicking on the link "Online Bidder Enrollment" on the Portal which is free of charge.
- ii) As part of the enrolment process, the Consultants will be required to choose a unique username and assign a password for their accounts.
- iii) Consultants are advised to register their valid email address and mobile numbers as part of the registration process. These would be used for any communication from the eProcurement Portal.

A. Obtaining a Digital Certificate:

i. The Bids submitted online should be encrypted and signed electronically with a Digital Certificate to establish the identity of the Consultant online. These Digital Certificates are issued by an

Approved Certifying Authority, by the Controller of Certifying Authorities, Government of India.

- ii. A Digital Certificate is issued upon receipt of mandatory identity (i.e. Applicant's PAN Card) and Address proofs and verification form duly attested by the Bank Manager / Postmaster / Gazetted Officer. Only upon the receipt of the required documents, a digital certificate can be issued. For more details please visit the website https://etenders.hry.nic.in
- iii. The Consultants may obtain Class-II or III digital signature certificate from any Certifying Authority or Sub-certifying Authority authorized by the Controller of Certifying Authorities or may obtain information, application format and documents required for the issue of digital certificate.
- iv. The Consultant must ensure that he/she comply by the online available important guidelines at the portal https://etenders.hry.nic.in for Digital Signature Certificate (DSC) including the e-Token carrying DSCs.

For any queries related to e-tendering process (registration, online e-bid submission/withdrawal, uploading of documents), Consultant may contact the below representative of NIC:

Mr. Anuj Mahajan

E - mail: amahajan@nic.in, eprocnichry@yahoo.com **Help Desk:** 0120-4001002, 0120-4200462, 0120-4001005, 0120-6277787, 0172-2700275.

v. Bid for a particular bid must be submitted online using the digital certificate (Encryption & Signing), which is used to encrypt and sign the data during the stage of Bid preparation. In case, during the process of a particular Bid, the user loses his digital certificate (due to virus attack, hardware problem, operating system or any other problem) he will not be able to submit the Bid online.

Hence, the users are advised to keep a backup of the certificate and also keep the copies at safe place under proper security (for its use in case of emergencies).

vi. In case of online Bidding, if the digital certificate issued to the authorized user of a firm is used for signing and submitting a Bid, it will be considered equivalent to a no-objection certificate/power of attorney/lawful authorization to that User only for accessing eProcurement portal for online Bid submission on the portal. The firm has to authorize a specific individual through an authorization certificate signed by all partners to use the digital certificate as per Indian Information Technology Act 2000. Unless the certificates are revoked, it will be assumed to represent adequate authority of the user to Bid on behalf of the firm in the department bids as per Information Technology Act 2000. The digital signature of this authorized user will be binding on the firm.

- vii. In case of any change in the authorization, it shall be the responsibility of management/ partners of the firm to inform the certifying authority about the change and to obtain the digital signatures of the new person/ user on behalf of the firm/ company. The procedure for application of a digital certificate however will remain the same for the new user.
- viii. The same procedure holds true for the authorized users in a private/Public limited company. In this case, the authorization certificate will have to be signed by the directors of the company.

B. Purchase of Bid Document - Online

Bid Document can be downloaded free of cost from the eProcurement portal https://etenders.hry.nic.in. However, Consultants are required to pay INR 10,000.00 including GST as cost of Bid Document online on eProcurement portal prior to submission of their Bid.

C. Pre-requisites for online Bidding:

In order to operate on the electronic Bid management system, a user's machine is required to be set up. A help file on system setup/Prerequisite can be obtained from National Informatics Center or downloaded from the home page of the website - https://etenders.hry.nic.in the link for downloading required java applet & DC setup are also available on the Home page of the eProcurement Portal.

D. Online Viewing of Invitation for Bids (IFB):

The Consultants can view the IFB and the time schedule (Key Dates) through the single portal eProcurement system on the Home Page at https://etenders.hrv.nic.in

E. Downloading of Bid Documents:

The detailed Bid Document can be downloaded free of cost from the eProcurement portal https://etenders.hry.nic.in from 23.11.2023 (17:00 Hrs. IST.)

F. Key Dates:

The Consultants are strictly advised to follow dates and times as indicated in the online Invitation for Bids. The date and time shall be binding on all Consultants. All online activities are time tracked and the system enforces time locks that ensure that no activity or transaction can take place outside the start and end dates and the time of the stage as defined in the online Invitation for Bids.

G. Online Payment of E-Service Fee & Tender Security:

The online payment for E-Service Fee and Tender Security in INR shall

be made using the secure electronic payment gateway by Consultants online directly through Debit Cards & Internet Banking accounts.

The secure electronic payments gateway is an online interface between Contractors and Debit card/online payment authorization networks.

For online payments guidelines, please refer to the Home page under tab "Guidelines for hassle free Bid Submission" of the eProcurement Portal of Government of Haryana, https://etenders.hry.nic.in

H. Preparation & Submission of online Applications/Bids:

- a) Tender shall mandatorily be submitted online following the instruction appearing on the screen.
- b) Scan copy of Documents to be submitted/uploaded for Technical Part under online PQQ/ Technical Envelope:

All documents shall be prepared and scanned in file formats PDF /JPEG/MS WORD format such that file size does not exceed 10 MB) and uploaded during the online submission of PQQ or Technical Envelope.

c) FINANCIAL Bid (MS-Excel File for quoting price and Pdf file for Letter of Financial Bid, Preamble, Price Schedule) shall be submitted mandatorily online under Commercial Envelope and original not to be submitted manually.

NOTES:

- (A) Consultants participating in online Bids shall check the validity of his/her Digital Signature Certificate before participating in the online Bids at the portal https://etenders.hry.nic.in.
- (B) For help manual, please refer to the 'Home Page' of the eProcurement website at https://etenders.hry.nic.in.

ITC 22.1

The start date for Bid submission is:

Date: 12.12.2023 Time: 1100 hrs IST

The deadline for Bid submission is:

Date: 19.12.2023 Time: 1500 hrs IST

ITC 24.1

Replace ITC 24.1 with the following:

The Consultant may modify, substitute or withdraw its e-Bid after submission prior to the deadline for submission of Bids. For modification

	of e-Bid, Consultant has to detach its old Bid from eProcurement portal (https://etenders.hry.nic.in) and upload/ resubmit digitally signed modified tender. For withdrawal of Bid, Consultant has to click on withdrawal icon at eProcurement portal and can withdraw its e-Bid. Before withdrawal of a Bid, it may specifically be noted that after withdrawal of a Bid for any reason, Consultant cannot re-submit e-Bid again.
ITC 25.1	Haryana Rail Infrastructure Development Corporation Limited (HRIDC), Plot No.143, RailTel Tower, Sector-44. Floor/ Room Number: 5 th floor City: Gurugram Zip code: 122003 Country: INDIA Date: 19.12.2023 Time: 1530 hrs. IST

F. Award of Contract				
ITC 42	ITC 42 Consultant may make a Complaint in writing, to:			
	For the attention: Sh. Rajiv Ranjan Kumar			
	Title/position: Chief Project Manager/West			
	Employer: Haryana Orbital Rail Corporation Limited (HORCL)			
	Email address: horc.etendering@gmail.com			

Section 3

Evaluation & Qualification Criteria (EQC)

Section 3 – EQC Page 1 of 7

Contents

1.	General Provisions	3
1.1	Evaluation Sequence	3
1.2	Clarification of Bids	3
1.3	Bidding Forms	3
2. Stag	e 1: Evaluation of Administrative Requirements	4
3. Stag	e 2: Evaluation of Qualification Requirements	5
3.1	Qualifications Criteria	5
4. Stag	e 3: Financial Evaluation	7
A.	Evaluation of Compliance and Responsiveness	7
В.	Detailed Financial Evaluation	7
C	Award of Contract	7

SECTION 3

EVALUATION AND QUALIFICATION CRITERIA (EQC)

1. General Provisions

1.1 Evaluation Sequence

- (a) Bids will be evaluated through the following three stages:
 - (i) Stage 1: Evaluation of Administrative Requirements
 - (ii) Stage 2: Evaluation of Qualification Requirements
 - (iii) Stage 3: Financial Evaluation

1.2 Clarification of Bids

The Employer may request clarification of any Bid in accordance with the provisions of the Bid Documents (Part 1, Section-I: Instructions to Consultant, Clause 27).

1.3 Bidding Forms

- (a) Consultants should note that the information required to be inserted into the Bidding Forms shall be comprehensive and detailed. The technical information shall be furnished in line with the requirements of the Bid Documents.
- (b) All Forms contained in the Bid Documents must be fully and properly completed and all the forms must be returned, as they will be reviewed exactly as submitted and errors or omissions may count against the Consultant.
- (c) Any Consultant who is found to have intentionally submitted false or inaccurate statements/information shall be disqualified from the Biding process.

1.4 Joint venture/Consortium

Joint venture/Consortium is **not permitted** to participate in this Bid.

Section 3 – EQC Page 3 of 7

2. Stage 1: Evaluation of Administrative Requirements

- (a) The Stage 1 Evaluation will consist of checking the Bids to confirm whether they are substantially responsive to the administrative requirements of the Biding Documents.
- (b) The following items will be checked:
 - (i) Whether the Technical Bid submission is in accordance with ITC 11.4
 - (ii) Whether the Power of Attorney (POA) for the Authorized signatory is in the correct form [Ref. ITC 20.3 and ITC 20.4]. If during technical evaluation stage, POA submitted by the Consultant is not found in the correct format, Employer will send written (Courier/email with PDF attachment) request to the Authorized Representative for rectification of POA in accordance with format prescribed in Section 4, Bidding Forms, specifying the deadline for receipt of Power of Attorney in correct form. If a consultant does not provide the Power of Attorney in correct form within the stated date and time set in the Employer's request for correction of Power of Attorney, its Bid is liable to be rejected.

Section 3 – EQC Page 4 of 7

3. Stage 2: Evaluation of Qualification Requirements

3.1 Eligibility

No.	Subject	Requirement	Documents Submission Requirements
3.1.1	Nationality	Nationality in accordance with ITC Sub-Clause 4.1	Form ELI-1.1
3.1.2	Conflict of Interest	No Conflict of interest in accordance with ITC Sub-Clause 4.3	Letter of Technical Bid
3.1.3	Disqualification of Bidder	Not Disqualified under Clause 4.4 of ITC.	Form PS-1

3.2 Financial Situation and Performance

No.	Subject	Requirement	Documents Submission Requirements
3.2.1	Historical Financial Performance	The Consultant must demonstrate the current soundness of the Consultant's financial position and indicate its prospective long-term profitability.	Form FIN – 1
		a) Minimum Average Net Worth (Total Assets -Total Liabilities) during the last three (03) financial years 2020-21, 2021-22 and 2022-23 shall be positive , and	
		b) Net Worth (Total Assets - Total Liabilities) during the last financial year 2022-23 shall be positive .	
3.2.2	Average Annual Consultancy Turnover	Minimum average annual Consultancy turnover must be INR 56 lacs calculated as total certified payments received for contracts in progress or completed within the last three financial years i.e. (2020-21, 2021-22 and 2022-23).	Form FIN – 2

Section 3 – EQC Page **5** of **7**

3.3 Specific Consultancy Experience

No.	Subject	Requirement	Documents Submission requirements
3.3.1	Specific Consultancy Experience	The Consultant must have successfully/substantially completed any of the following during last 10 (ten) years ending last day of month previous to the one in which Bid is invited:	Form EXP - 1
		(i) One "Similar work" costing not less than the amount equal to INR 85.00 lacs .	
		The above work must involve design/proof checking of minimum 1.0 km length of tunnel by New Austrian Tunnelling Method (NATM) or 1 (one) building by NATM.	
		OR	
		(ii) Two "Similar works" each costing not less than the amount equal to INR 56.00 lacs .	
		Both the above works combined together must involve design/proof checking of minimum 1.0 km length of tunnel by New Austrian Tunnelling Method (NATM) or 1 (one) building by NATM.	
		Where,	
		 (a) 'Similar Work' means "Design/Proof checking of tunnel/building by New Austrian Tunnelling Method (NATM)" in Rail/Road projects. 	
		(b) 'Substantial completion' shall be based on 80% or more of the original value of works completed under the contract.	

Notes:

1. Exchange Rate for Qualification Criteria

Wherever a Form in Section 4, Bidding Forms, requires a Consultant to state a monetary amount, Consultant shall indicate the INR equivalent as indicated in the respective form using the rate of exchange determined as follows:

- (i) For Consultancy turnover or financial data required for each year Exchange rate prevailing on the last day of the respective financial year.
- (ii) Value of single contract Exchange rate prevailing on the date of the Contract Award i.e. the date of issue of Letter of Acceptance.

Section 3 – EQC Page 6 of 7

(ii) Exchange rates shall be taken from reference rate published by the Reserve Bank of India (RBI) on its website https://www.rbi.org.in. In case the exchange rate of particular currency on given date is not available on RBI web site, it will be as per the web site https://www.fbil.org.in of Financial Benchmark India Private Limited (FBIL). Any error in determining the exchange rates may be corrected by the Employer. In the case, where a Consultant is required to convert a monetary amount from a currency other than those currencies for which the RBI/FBIL reference rate is not published, the INR equivalent shall be worked out using the rate of exchange as published by the central bank of the country issuing the said currency. In case the exchange rate of that currency is not directly available in INR on the website of the central bank of the country issuing the said currency then the currency will be first converted to USD as per that web site and then converted from USD to INR as Per RBI or FBIL reference rates.

4. Stage 3: Financial Evaluation

The activities in this Stage 3 will be in two (2) parts.

A. Evaluation of Compliance and Responsiveness

- (a) Under this Stage the following items will be checked:
 - (i) Whether the Letter of Financial Bid is compliant (i.e. does not include any alteration to the basic terms and does not constitute an alternative offer).
 - (ii) Whether all Forms and Price Schedules (words and figures) have not been altered and are correctly completed and signed.

B. Detailed Financial Evaluation

After passing the above requirements, the Bid will then proceed for Financial Part evaluation in accordance with ITC 35.

C. Award of Contract

Consultant with the lowest Bid price from above shall move to next stage as per ITC "F. Award of Contract".

Section 3 – EQC Page 7 of 7

Section 4 Bidding Forms (BDF)

Table of Contents

Letter of Technical Bid	3
FORM: PS- 1	5
Format for affidavit to be submitted by Consultant along with the Bid	5
Form ELI – 1.1:	8
Consultant's Information Form	8
Form: ELI - 1.2	9
Format for Power of Attorney for Authorised Signatory of Consultant	9
Form FIN-1	11
Financial Situation and Performance.	11
Form FIN-2	13
Average Annual Consultancy Turnover	13
Form EXP-1	15
Specific Consultancy Experience	15
Bid Security	17
FORM CL	18
Checklist of submission of Documents/Forms online, duly filled	18
Letter of Financial Bid	20
PREAMBLE	22
1 Price Schedule:	24

Letter of Technical Bid

		Date	e:						
Bid	No.:	HOR	C/HR	IDC/	TP	C-0	1/2	02	3

To:

Chief Project Manager/West,
Haryana Rail Infrastructure Development Corporation Limited (HRIDC),
Plot no.143, 5th floor, RailTel Tower, Sector-44
Gurugram – 122003

Tel: +91 9310812157

We, the undersigned, declare that:

We have examined and have no reservations to the Bidding Document, including Addenda/Corrigenda issued inaccordance with Instructions to Consultants (ITC) 8;

- (a) We offer to provide the services in conformity with the Bidding Document;
- (b) Our Bid shall be valid for a period of **90 days** after the date fixed for the bid submission deadline in accordance with the Bidding Document, and it shall remain binding upon us and may be accepted at any time before the expiration of that period;
- (c) If our bid is accepted, we commit to submit a Performance Security in accordance with the Bidding Document;
- (d) If our bid is accepted, we commit to deploy Consultant's Representative, Key Personnel and other personnel consistent with the requirements stipulated Section 5: Employer's Requirements of Bidding Document;
- (e) We, including any subcontractors or suppliers for any part of the Contract, do not have any conflict of interest in accordance with ITC 4.3;
- (f) We are not participating, as a Consultant, in more than one bid in this bidding process in accordance with ITC 4.3.;
- (g) We declare that we are not liable to be disqualified in accordance with ITC 4.4, and we are enclosing the affidavit for the same as per the FORM PS-1 given in Section 4: Bidding Forms.
- (h) We understand that this bid, together with your written acceptance thereof included in your notification of award (Letter of Acceptance), shall constitute a binding contract between us, until a formal contract is prepared and executed; and
- (i) We have not made any deviations from the requirement of the Bidding Document and we have also not made any tampering or changes in the Bidding Document on which the bid is being submitted and if any tampering or changes are detected at any stage, we understand the bid will invite summary rejection and forfeiture of Bid Security/the contract will be liable to be terminated along with forfeiture of Performance Security, even if LOA has been issued.

- (j) We declare and certify that we have not made any misleading or false representation in the forms, statements and attachments in proof of the qualification requirements.
- (k) We declare that the information and documents submitted along with the Bid by us are correct and we are fully responsible for the correctness of the information and documents, submitted by us.
- (I) [Select the appropriate option and delete whichever is not applicable]

[We declare and certify that financial data as per the balance sheets for last three financial years including that for the latest concluded financial year are being submitted]

OR

[We declare and certify that balance sheet for the latest concluded financial year has not been finalized till date and that is why we are furnishing financial data for last three financial years ignoring the latest concluded financial year.]

- (m) We agree to limit our role to that of a Consultant and to disassociate ourselves, our associates/affiliates from work in any other capacity (including Bidding relating to any goods or services for any part of the Works) on this work other than that of Consultant.
- (n) We understand that you are not bound to accept the Bid with lowest Bid price or any other bid that you may receive.
- (o) We certify that we are not associated with the Contractor of C-4 Package as Detailed Design Consultant (DDC) or in any other way.
- (p) We declare that in case the Third Party Consultancy is awarded to us, we will not associate in the DDC or in any other capacity with Contractor of C-4 Package.

Name of the Consultant:
Name of the person duly authorized to sign the Bid on the behalf of the Consultant: In the capacity of
Signature of the person named above
Date Signed
Company stamp:

FORM: PS-1

Format for affidavit to be submitted by Consultant along with the Bid (Ref. Sub-Clause: ITC 4.4)

(To be executed in presence of Public Notary on non-judicial stamp paper of INR 100. The stamp paper has to be in the name of the Consultant)**

I (Name and designation) **...... appointed as the attorney/authorized signatory of the Consultant (including its constituents), M/s._(hereinafter called the Consultant) for the purpose of the Bid for "TPC-01: Third Party Consultancy for checking of Detailed Design and Drawings of Twin NATM and Cut & Cover Tunnels from Km 24.850 to Km 29.580 including associated structures and Third Party Consultant's association during construction of NATM and Cut & Cover Tunnels for Haryana Orbital Rail Corridor (HORC) Project in the State of Haryana" as per the Bid No.: HORC/HRIDC/TPC-01/2023 of HRIDC, do hereby solemnly affirm and state on behalf of the Consultant including its constituents as under:

- *1. That the Consultant or any of its constituents has not been Blacklisted/ banned for business dealings for all Government Departments or by Ministry of Railways or by HRIDC at any time and / or no such blacklisting is in force as on the deadline for submission of bids.
- *2. That none of the previous contracts of the Consultant or any of its constituents had been terminated/rescinded for Consultant's failure by HRIDC during the period of last 2 years before the deadline for submission of bids.
 - 3. That the Consultant or any of its constituents is neither Bankrupt/Insolvent nor is in the process of winding-up nor such a case is pending before any Court on the deadline of submission of the bid.
- 4. That the name of the Consultant or any of its constituents is not on the list of "Poor Performer" of HRIDC as on the deadline for submission of bid.
- 5. We declare that the Consultants or any of its constituents have not either changed their name or created a new business entity as covered by the definition of "Allied Firm" defined under ITC 4.4, consequent to having been banned business dealings for specified period which is not over or suspended business dealings or having been declared as poor performer.
- 6. We declare and certify that we have not made any misleading or false

representation in the forms, statements and attachments in proof of the qualification requirements.

- 7. We declare that the information and documents submitted along with the Bid by us are correct and we are fully responsible for the correctness of the information and documents, submitted by us.
- 8. We understand that in case we cease to fulfil the requirements of qualifying and eligibility criteria at any time after opening of bids and till finalization of bids, it will be our bounden duty to inform the Employer of our changed status immediately and in case of our failure to do so, our bid shall be rejected and Bid Security shall be forfeited. We shall also be liable for banning of business dealings upto a period of five years.
- 9. We understand that if the contents of the affidavit are found to be false at any stage during bid evaluation, it will lead to rejection of our bid and forfeiture of the Bid Security. Further, we [insert name of the Consultant]** and all our constituents understand that we shall be liable for banning of business dealings upto a period of five years.
- 10. We also understand that if the contents of the affidavit are found to be false at any time after the award of the contract it will lead to termination of the contract, forfeiture of Bid Security and/or Performance Security and banning of business dealings for a period of upto five years.

Verification:				
Verified on	day of	at	that	the
contents of the above ment	ioned affidavit is true and c	orrect and	d nothing material	has
been concealed there from.				

SEAL AND SIGNATURE OF THE CONSULTANT

Attestation before Magistrate/Public Notary.

^{*}Modify the contents wherever necessary, in terms of sub-clause 4.4 ITC.

^{**} The contents in Italics are only for guidance purpose and details as appropriate, are to be filled in suitably by Consultant.

Consultant's Qualification

To establish its qualifications to perform the Contract, the Consultant shall provide the information requested in the corresponding Information Sheets included hereunder.

Form ELI – 1.1:

Consultant's Information Form (Ref. Sub-Clause: ITC 4.1)

Ric	Date:	
Page	d No. and title: of	pages
Consultant's name		
Consultant's actual or intended country of registration: [indicate country of Constitution]		
Consultant's actual or intended year of incorporation:		
Consultant's legal address [in country of registration]:		
Consultant's legal address for Communication:	_	
Consultant's authorized representative information		
Name:	_	
Address:	_	
Telephone/Fax numbers:	_	
Mobile number:	<u> </u>	
E-mail address:	_	
1. Attached are copies of original documents of		
 Articles of Incorporation (or equivalent documents documents of registration of the legal entity named 	above, in accordance v	with ITC 4.1.
2. Authorization to represent the firm named in above	, in accordance with l	ITC 20.2.
SIGNATII	RE OF AUTHORIZE	D SIGNATORY

ON BEHALF OF CONSULTANT

Company stamp:

Form: ELI - 1.2

Format for Power of Attorney for Authorised Signatory of Consultant

(Ref. Sub-Clause: ITC 20.2)

POWER OF ATTORNEY*

(To be executed on non-judicial stamp paper of the appropriate value in accordance with relevant stamp Act. The stamp paper to be in the name of the company who is issuing the Power of Attorney)

Know all men by these presents, we (name and address of the registered
office) do hereby constitute, appoint and authorise Mr/Ms (name and
residential address) who is presently employed with us and holding the position of
as our attorney, to do in our name and on our behalf, all such acts,
deeds and things necessary in connection with or incidental to our Bid for "TPC-01: Third
Party Consultancy for checking of Detailed Design and Drawings of Twin NATM and Cut &
Cover Tunnels from Km 24.850 to Km 29.580 including associated structures and Third
Party Consultant's association during construction of NATM and Cut & Cover Tunnels for
· · ·
Haryana Orbital Rail Corridor (HORC) Project in the State of Haryana", including signing
and submission of all documents and providing information/ responses to Haryana Rail
Infrastructure Development Corporation Ltd (HRIDC), representing us in all matters before
HRIDC, and generally dealing with HRIDC in all matters in connection with our Bid for the
said project.
We hereby agree to ratify all acts, deeds and things lawfully done by our said attorney
pursuant to this Power of Attorney and that all acts, deeds and things done by our aforesaid
attorney shall and shall always be deemed to have been done by us.
atterney onan and onan awaye be deemed to have been dene by de.
(Signature)
(Name, Title and address) of the Person Accepting the POA .
(
(Signature)
(Signature)
(Name, Title and address) of the Person issuing the POA

Notes:

- i. The Consultant should submit the notarised Power of Attorney.
- ii. The mode of execution of the Power of Attorney should be in accordance with the procedure, if any, laid down by the applicable law and the charter documents of the executant(s) and when it is so required the same should be under common seal affixed in accordance with the required procedure.
- iii. The Consultant should submit following additional document in support of the POA as case to case basis:

- a) Notary certified copy of Proprietorship Affidavit in case of Proprietary Consultant.
- b) Notary certified copy of Partnership Deed in case of Partnership Firms.
- c) Board Resolution in case of a Public/Private limited company/LLP.
- d) Incorporation Certificate and Memorandum & Article of Association in case of a Public/Private limited company.
- e) Incorporation Certificate and Limited Liability Membership Agreement in case of Limited Liability Membership firms.

Form FIN-1 Financial Situation and Performance

[Ref. ITC Sub-Clause 17.2 & EQC Sub-Clause 3.2.1] [The following table shall be filled in for the Consultant]

Consultant's Name: _			
Page	of	pages	
			(All amounts in Lacs)

	Historic information for Financial Years, (Amount in INR)			
Type of Financial information	Year 1:	Year 2:	Year 3:	
	2020-21	2021-22	2022-23	
	Statement of Financial F Sheet)	Position (Information	from Balance	
Total Assets (TA)				
Total Liabilities (TL)				
Total Equity/Net Worth (NW) = TA-TL				

Notes:

Bid No.: HORC/HRIDC/TPC-01/2023

- (i) In case, the Financial Year is the same as the Calendar Year, the turnover for the year 2020, 2021 and 2022 shall be furnished.
- (ii) The Consultant is not required to submit any document as documentary evidence along with the Tender Documents. All information furnished in this Form shall be certified by a Chartered Accountant/Company Auditor/Statutory Auditor.
- (iii) The Form duly certified by a Chartered Accountant/Company Auditor/Statutory Auditor shall also be signed by Consultant's Authorized representative.
- (iv) The above documents shall reflect the financial situation of the legal entity or entities comprising the Consultant and not the Consultant's parent companies, subsidiaries, or affiliates.
- (v) In the event that the audited accounts for the latest concluded Financial Year are not available, the Consultant shall furnish information pertaining to the last three financial years after ignoring the latest concluded financial year. In case, the Consultant submits audited financial information for the last four or more years, only the figures for the latest three years shall be considered for evaluation.

- (vi) In case audited balance sheet of the last financial year is not available with the Consultant, he will declare the same vide item (I) prescribed in the Letter of Technical Bid.
- (vii) If the value of Net Worth is not submitted for any of the last three years, the Tender shall be considered nonresponsive and shall be summarily rejected.

Consultant's Authorized Represent	tative
	Signature:
	Date:
	Company stamp:
Chartered Accountant/Company A	uditor/Statutory Auditor
Certified that the information furnished entity.	d above is correct as per the audited balance sheets of the
	Signature:
	Name:
	Position:
	Date:
	Company:
	Company stamp:
	Membership No:
	Address:
	Contact No:

Email ID:

Form FIN-2

Average Annual Consultancy Turnover

[Ref. ITC Sub-Clause 17.2 & EQC Sub-Clause 3.2.2] [The following table shall be filled in for the Consultant]

Consultant's Name:			
Page	of	pages	
			(All amounts in Lacs)

Annual Turnover Data for the Last Three (03) Financial Years (Consultancy Only)			
Year	Amount Currency	*Exchange Rate	INR Equivalent
2020-21	[insert amount and indicate currency]		
2021-22			
2022-23			
Average Annual Consultancy Turnover			

Notes:

Bid No : HORC/HRIDC/TPC-01/2023

- (i) In case, the Financial Year is the same as the Calendar Year, the turnover for the year 2020, 2021 and 2022 shall be furnished.
- (ii) The Average Annual Consultancy Turnover shall be calculated by adding the turnover amount of last three financial years divided by three.
- (iii) The Consultant is not required to submit any document as documentary evidence along with the Tender Documents. All information furnished in this Form shall be certified by a Chartered Accountant/Company Auditor/Statutory Auditor.
- (iv) The Form duly certified by a Chartered Accountant/Company Auditor/Statutory Auditor shall also be signed by Consultant's Authorized representative.
- (v) The above documents shall reflect the financial situation of the legal entity or entities comprising the Consultant and not the Consultant's parent companies, subsidiaries, or affiliates.
- (vi) In the event that the audited accounts for the latest concluded Financial Year are not available, the Consultant shall furnish information pertaining to the last three financial years after ignoring the latest concluded financial year. In case, the Consultant submits audited financial information for the last four or more years, only the figures for the latest three years shall be considered for evaluation.

- (vii) In case audited balance sheet of the last financial year is not available with the Consultant, he will declare the same vide item (I) prescribed in the Letter of Technical Bid.
- (viii) If the value of Annual Consultancy Turnover is not submitted for any of the last three years prescribed in Financial Data, the Bid shall be evaluated by considering "NIL" Turnover for that year(s).

Consultant's Authorized Representative	
	Signature:
	Date:

Chartered Accountant/Company Auditor/Statutory Auditor

Certified that the information furnished above is correct as per the audited balance sheets of the entity.

Signature:
Name:
Position:
Date:
Company:
Company stamp:
Membership No:
Address:
Contact No:

Company stamp:

Form EXP-1

Specific Consultancy Experience

[Ref. ITC Sub-Clause 17.2 and EQC Sub-Clause 3.3.1] [The following table shall be filled in for the Consultant]

Consultant's Name: Page of pages Similar Contract No. Information Contract Identification Award date Completion date Role in Contract as Design Consultant OR Proof Checking [insert the role in Contract] Consultant Total Contract Amount [insert Contract amount(s) INR [insert *exchange rate and total and currency(ies)] Contract amount in INR equivalent] If member in a JV, specify [insert [insert INR [insert exchange rate(i) and participation in total Contract amount of participation in INR Percentage | amount(s) participation and currency) of equivalent] amount participation] **Employer's Name** Address: Mobile: Telephone/fax number: E-mail: Description of the similarity in accordance with Sub-Clause 4.5.1

checked by NATM

of Section 1:

2. Length

1. Amount (in INR)

of

NATM

designed/proof checked (Km)

3. No. of Buildings designed/proof

tunnel

Bid No.: HORC/HRIDC/TPC-01/2023

Consultant's Authorized Representative

Signature:	
Date:	
Company stamp:	

Notes:

- (i) Value of completed work done by a Consultant in an earlier JV shall be reckoned only to the extent of the Consultant's share in that JV for purpose of satisfying their experience criteria mentioned in Sub-Clause 3.3.1 of Section 3, EQC.
- (ii) The Consultant shall submit copy of Completion Certificate issued by the Employer / Concessionaire as documentary proof clearly indicating the similarity of the work as per Sub-Clause 3.3.1 of Section 3, EQC, actual completion cost, actual completion date. Bids submitted without this documentary proof shall not be evaluated.

Bid Security

The amount for Bid Security will only be paid online by eligible Tenderers on eProcurement Portal of Government of Haryana (https://etenders.hry.nic.in).

FORM CL

Checklist of submission of Documents/Forms online, duly filled (Reference to ITC 11.4 & 11.5)

Bid No: HORC/HRIDC/TPC-01/2023

Name of Work: A. TECHNICAL BID

S.	Requirement of Bid Document	Ref. Clause	Consulta	Consultant's Name:		
No.		of Bid Document	Whether submitted (Yes/No/NA)	Ref. Pg. No. in the Technical Bid		
1.	Letter of Technical Bid	ITC 11.4 and Section 4				
2.	Technical Bid signed by authorized representative of Consultant	ITC 20.2				
3.	Bid Security/Online Bid Security payment Receipt (copy of online payment receipt on ePortal)	ITC 19.1				
4.	Cost of Bid Document (copy of online payment receipt on ePortal)					
5.	Form PS-1: Affidavit to be submitted by Consultant	ITC 4.4 and Section 4				
6.	Form ELI – 1.1: Consultant's Information Form	ITC 4.1 and Section 4				
7.	Form ELI-1.2: Power of Attorney (POA) for submitting Bid	ITC 20.2 and Section 4				
8.	Board Resolution in case of a Public/Private limited company/LLP	ITC 20.2 and Form ELI 1.2				
9.	Incorporation Certificate and Memorandum and Articles of Association (MOA & AOA) (in case of Private/Public Limited Company)	Note (iii) (d) of Form ELI 1.2				
10.	Incorporation Certificate and Limited Liability Membership Agreement in case of Limited Liability Membership firms.	Note (iii) (e) of Form ELI 1.2				
11.	Notarised Copy of Proprietorship Affidavit (in case the Consultant is Proprietorship Consultant)	Note (iii) (a) of Form ELI 1.2				
12.	Notarised copy of Partnership Deed (in case the Consultant is Partnership Firm)	Note (iii) (b) of Form ELI 1.2				
13.	Form FIN-1: Financial Situation and Performance	ITC 17.2 and EQC 3.2.1				

S.	Requirement of Bid Document	Ref. Clause	Consultant's Name:		
No.		of Bid Document	Whether submitted (Yes/No/NA)	Ref. Pg. No. in the Technical Bid	
14.	Form FIN-2: Average Annual	ITC 17.2 and			
	Consultancy Turnover	EQC 3.2.2			
15.	Form EXP-1: Specific Consultancy	ITC 17.2 and			
	Experience	EQC 3.3.1			

Notes:

- (i) The check list is indicative and not exhaustive. The Consultant must go through the complete Bid documents and submit the required document accordingly.
- (ii) If any of the above form or criteria is not applicable to the Consultant, then they can simply indicate N.A. against the relevant column

B. FINANCIAL BID

The Financial Bid is provided in the Bid Document. The lumpsum price shall be quoted at the prescribed place in the Price Schedule (MS-Excel Sheet) provided with the Bid Document. These prices should include all costs associated with the contract including GST. The lumpsum price shall not be offered/quoted elsewhere in the Technical Bid submission/Bid submission. The Consultant shall download the MS-EXCEL file and after quoting their Contract Price, upload the completed MS-EXCEL file along with duly signed PDF documents of Financial Bid mentioned in (a) below on eProcurement portal. The quoted Contract Price shall not be offered/quoted elsewhere in the Technical Bid submission/ Tender submission. These prices shall include all costs associated with the contract including GST. The Consultant shall complete the Financial Bid in accordance with the instructions given in the Financial Bid.

- a) Following duly signed documents are required to be submitted by the Consultant in their Financial Bid:
 - (i) Letter of Financial Bid,
 - (ii) Preamble.
 - (iii) Cost Centres for lump sum cost of services under Price Schedule.
 - (iv) Stage of payments for Cost Centres and
 - (v) Price Schedule with quoted lumpsum Price (MS-Excel File)

I hereby confirm that:

(i) I have checked the above list with our submittal. I am also aware that if our Bid is not containing the above documents, the Employer has the right to reject our Bid.

	Bid.
(i) All the pages of Bid submission are properly signed, indexed and numbered.
Seal:	
Date:	
(Signatur	e of Authorized Representative of the Consultant)

Letter of Financial Bid

Γ	Date:
Bid No.: HORC/H	RIDC/TPC-01/2023.

To:

Chief Project Manager/West,
Haryana Rail Infrastructure Development Corporation Limited (HRIDC),
Plot no.143, 5th floor,
Railtel Tower, Sector-44
Gurugram – 122003

Tel: +91 9310812157

We, the undersigned, declare that:

- (i) We have examined and have no reservations to the Bidding Document, including Addenda/Corrigenda issued in accordance with Instructions to Consultants (ITC) 8.
- (ii) We offer to provide the Services in conformity with the Bidding Document.
- (iii) Our bid shall be valid for a period of **90 days** after the date fixed for the bid submission deadline in accordance with the Bidding Documents, and it shall remain binding upon us and may be accepted at any time before the expiration of that period.

(iv)	The	total	price	of our	Bid is INF	₹	

- (v) We understand that this bid, together with your written acceptance Letter of Acceptance (LOA) thereof included in your notification of award, shall constitute a binding contract between us, until a formal contract is prepared and executed; and
- (vi) We have not made any deviations from the requirement of the bidding document and we have also not made any tampering or changes in the bidding documents on which the bid is being submitted and if any tampering or changes are detected at any stage, we understand the bid will invite summary rejection and forfeiture of Bid Security/the contract will

be liable to be terminated along with forfeiture of performance security, even if LOA has been issued.

(vii) We understand that you are not bound to accept the bid with lowest bid price or any other bid that you may receive.

Name of the Consultant:
Name of the person duly authorized to sign the Bid on the behalf of the Consultant:
In the capacity of
Signature of the person named above
Date Signed

PREAMBLE

1. The Price Schedule shall be read in conjunction with the Instructions to Consultants, Conditions of Contract, Employer's Requirements (Scope of Work, Design Basis Report, Specifications and Drawings), Addendum/Corrigendum and any other document forming part of Bid Document.

- 2. The Contract is to be carried out on a fixed lumpsum price basis in which payment to the Consultant will be made in accordance with payment stages unless otherwise specified in the Contract.
- 3. The Schedules and Schedules of stage payments may not generally give a full description of the designs to be checked under each item. Consultant shall be deemed to have read the Employer's Requirements and the other sections of the Bidding Document and reviewed the Drawings to ascertain the full scope of the work included in each item prior to filling the rates and prices.
- 4. The rates and prices quoted in the Price Schedule shall include all costs associated with the assignment. These normally cover all checking of design and drawings, remuneration for staff (foreign and local, in the field and at headquarters), accommodation (per diem, housing), include all checking of design, Consultant's equipment, transportation, mobilization, demobilization of equipment, machinery, tools & plants, labour, supervision, materials; and equipment (vehicles, office equipment, furniture and supplies), printing of documents, surveys, remedy of any defects during the Defects Notification Period etc., Consultant's profit, all taxes including GST, insurance, royalties, duties, cess, octroi, other levies and other charges together with all general risks, liabilities and obligations set out or implied in the Contract
- The Consultant will be free to avail input tax credits under GST as per the prevailing rules and input tax credit shall be deemed to have been considered in the Quoted Price in the Price Schedules.
- 6. The Consultant should quote lumpsum price in Indian Rupees (INR) only.
- 7. The whole cost of complying with the provisions of the Contract shall be included in the items provided in the Price Schedule, and where related items is not part of Schedule but can be identified commonly as a part of professional grade work of a comparative nature, the cost shall be deemed to be included in the lumpsum price entered against the Schedules.
- 8. To the extent acceptable to the Employer for the purpose of making payments or partial payments, valuing variations or evaluating claims, or for such other purposes as the Employer may reasonably require, the Consultant may provide the Employer with a breakdown of any composite or lump sum items included in the Schedules.

- 9. The Employer shall make interim payments to the Consultant in accordance with the provisions of the General Conditions of Contract and as certified by the Engineer on the proportionate basis of the progress achieved for the items of works/stages of the works vis-à-vis the total scope of the work in each item.
- 10. Format for the Consultant's application for payment shall be agreed between the Engineer and the Consultant.
- 11. The Consultant shall prepare his application for payment in the agreed format in four hard copies and one soft copy. All hard copies shall bear the original signatures of the Consultant's Representative and be submitted to the Engineer.
- 12. If these are found in order, then the Engineer shall forward two certified copies of the application along with certified supplementary details to the Employer, with his recommendation for payment.
- 13. Fee against 'Part-A' of scope of Services i.e. "Third Party checking of Detailed Design and drawings of Twin NATM and Cut & Cover Tunnels from km 24.850 to km 29.580 including associated structures" shall be paid on the completion of sub cost-centre.
- 14. Consultant's association during execution of works i.e. 'Part-B' of scope of work shall be paid quarterly on pro rata basis. First quarter shall start after the completion of design period (Part-A) or 6 month from the date of issue of LOA whichever comes earlier.
- 15. The price quoted shall be adjusted only as per Clause 19 of Section 7, GCC during the period of completion of the work.

Signature of the Consultant

Company Stamp

1 Price Schedule:

1.1. Breakup of lump sum cost of services under various cost centres shall be as follows:

Cost Centre		Weightage percentage (%) of the quoted lump sum cost, LS*	No. of Milestones	Total cost of each Cost Centre
1	2	3	4	5
Р	Third Party Checking	70	9	P= 0.70xLS*
С	Consultant's Association during construction	30	Payment to be made as per Sub- Clause 1.1.2	P= 0.30xLS*

LS*: Total lumpsum cost of Services.

The percentage figures as filled in column (3) by the Employer for the approximation of the contract price for completion of the services corresponding to various cost centers are fixed and payment will be released for different cost centers as per above percentage breakup of contract price.

1.1.1. Stage of payment i.e. Milestone of Cost centre 'P' Third Party Checking

<u>Weightages of Various Milestones for Payment under Cost centre, P- Third Party Checking</u>

Milesto ne	Item of Work	Description of Milestone	Weightage (X)
1	2	3	4
P1	Third Party checking of design & drawings of Cut & Cover Tunnel submitted by the C-4 Contractor	Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	13
P2	Third Party checking of design & drawings of NATM Tunnel (Soil) submitted by the C-4 Contractor	Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	20
Р3	Third Party checking of design & drawings of NATM Tunnel (Rock) submitted by the C-4 Contractor	Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	15
P4	Third Party checking of design & drawings of permanent ventilation shafts and other associated structures submitted by the C-4 Contractor	Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	10
P5	Third Party checking of design & drawings of construction cum utility shaft and other associated structures including cross passages submitted by the C-4 Contractor	11	10
P6	Third Party checking of design & drawings of cross passages along the length including fire stop doors submitted by the C-4 Contractor	Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	10
P7	Third Party checking of design & drawings of Portal P-2 including	Third Party checking and approval of final design & Good	7

Milesto ne	Item of Work	Description of Milestone			
1	2	3	4		
	drainage arrangement submitted for Construction (GFC) drawings by the C-4 Contractor submitted by the C-4 Contractor				
P8	Third Party checking of design & drawings of Portal P-1 including slope stability of rock, boulder fall and protection arrangements submitted by the C-4 Contractor	Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	8		
drawings of drainage arrangement approval of fin near portal P-1 and its integration for Construction		Third Party checking and approval of final design & Good for Construction (GFC) drawings submitted by the C-4 Contractor	7		
Total Weightages of Sub Cost Centre "P1" to "P9"					

Note:

1. The value of each Milestone will be 70% of total lump sum accepted cost of services for Schedule 'A' (LS) multiplied by X.

For example, the value of Milestone P1 will be =0.7xLSxX=0.7x LSx0.13.

3. Payment will be made on completion of each Milestones as per weightage defined.

1.1.2. Payment for cost centre 'C' (Consultant Association during Construction)

Consultant's association during execution of works (Part-B of Completion Period) shall be paid quarterly on pro rata basis.

If additional visits beyond 48 visits are required as per instructions of the Engineer/Employer, each visit shall be paid @ half the lumpsum quoted price of the Consultant multiplied by 0.3 and divided by 48 (i.e., 0.5 x Lump sum Quoted Price x 0.3/48).

Sample Price Schedule for Quoting lumpsum rates (Please refer MS-Excel Sheet for quoting Lumpsum Price)

Tender Inviting Authority: Haryana Rail Infrastructure Development Corporation Ltd

Name of Work: Third Party Consultancy for checking of Detailed Design and Drawings of Twin NATM and Cut & Cover Tunnels from Km 24.850 to Km 29.580 including associated structures and Third Party Consultant's association during construction of NATM and Cut & Cover Tunnels for Haryana Orbital Rail Corridor (HORC) Project in the State of Haryana.

Contract No: HORC/HRIDC/TPC-01/2023 Name of the Bidder/ Bidding Firm / Company PRICE SCHEDULE (This BOQ template must not be modified/replaced by the bidder and the same should be uploaded after filling the the bidder is liable to be rejected for this tender. Bidders are all SAMPLE Price Schedule NUMBER TEXT# NUMBER # TEXT # AL AMOUNT Item Description TOTAL AMOUNT No. With Taxes n Words Rs. 54 55 1.01 Third Party Consultancy for checking of Detailed Design 0.00 INR Zero Only and Drawings of Twin NATM and Cut & Cover Tunne from Km 24.850 to Km 29.580 including associate structures and Third Party Consultant's asso construction of NATM and Cut & Cover Haryana Orbital Rail Corridor (HOP of Haryana Total in Figures 0.00 INR Zero Only Quoted Rate in Words INR Zero Only

*Consultant is only required to fill the information in the boxes highlighted with cyan colour in Price Schedule (Excel sheet)

Section 5

Employer's Requirements (Scope of Services)

Contents

1.	PROJECT PROFILE AND BACKGROUND	. 3
2.	OBJECTIVE OF SERVICES	. 3
3.	SCOPE OF SERVICES	. 4
PA	RT-A:	. 4
3.1	THIRD PART CONSULTANCY FOR VERIFICATION OF DETAILED DESIGN & DRAWINGS	. 4
3.2	TASKS TO BE PERFORMED	. 5
PA	RT-B:	. 6
4.	CONSULTANT'S ASSOCIATION DURING EXECUTION	. 6
5.	DURATION OF WORK	. 6
6.	CONSULTANT'S REPRESENTATIVE AND KEY PERSONNEL	. 7

Section 5: Employer's Requirements

1. Project Profile and Background

The state of Haryana is strategically located bordering the National capital of Delhi. NCT, Delhi shares three fourth of its border with Haryana alone and remaining with Uttar Pradesh. The development of the Haryana region, bordering Delhi is very important for balanced growth of NCR as it acts as buffer zone against rampant migration and other support infrastructure. At present on account of growth of Metro network in Delhi & NCR, there is radial movement of commuters to and from, Delhi being in centre. This "Hub and Spoke" traffic planning has resulted in rapid growth of Noida, Greater Noida, Faridabad and Gurugram. However, for hub and spoke concept to sustain it is necessary to link the ends of spoke by ring connectivity. There will be natural demand for commuter movement within these towns like Gurugram, Faridabad, Ballabhgarh, Palwal, Sohna, Manesar etc. Peripheral roads have been commissioned recently, linking these towns around Delhi but Rail link provides economical, sustainable, eco-friendly, and bulk freight transport option. The peripheral Rail link will also help in growth of other cities within the same distance from Delhi like Sonipat, Panipat, and Rohtak. This will also help in easing the pressure on the transport network of Delhi as some of the commuter traffic moving on the radials will get shifted to HORC. Western DFC originating from Dadri station passes through Asaoti Station on Delhi- Mathura route, providing connectivity to Haryana Orbital Rail Corridor (HORC).

Apart from passenger traffic, a substantial amount of freight traffic, which is entering the Delhi area of rail network but is not meant to be consumed in Delhi, will also get diverted via this corridor. Apart from this, there are major goods sheds in the heart of Delhi causing endless avoidable traffic jams. The goods sheds in west Delhi are Azadpur, Shakurbasti, Dayabasti, Sabzi Mandi which are located on prime commercial land and are black spots of the urban planning. Previously moving out commercial activity to other states had interstate taxation issues but now with GST in place, there is no reason for not shifting these activities to the peripheral region. In any case, if freight traffic movement through Delhi is restricted, then these goods sheds or alternatives will be serviced via the proposed HORC.

Haryana Orbital Rail Corridor (HORC) from Palwal to Sonipat Via Sohna, Manesar, Kharkhoda and Harsana Kalan is to be constructed as an Electrified (2X25 kV AC-50Hz) double line track, capable of operating at a maximum train speed of 160 kmph.

2. Objective of Services

HORC project crosses Aravalli Range between Sohna and Dhulawat stations through a tunnel, to be constructed in C-4 Package from Ch.24850 m to Ch.29580 m. The tunnelling is required to be done in rock as well as in soil. It involves tunnelling by NATM method and Cut & Cover method. Two separate tunnels are to be constructed - **one for the UP Line and one for Down Line.** The tunnel is to be provided with Ballastless track (BLT). NATM work is proposed to be carried out from fourteen faces as shown in Bid drawings. The tunnel has got four permanent ventilation shafts and one construction cum utility shaft.

The objective of the services is to ensure safe design of the tunnel, shafts and other related structures fulfilling all the functional requirements and proper commissioning of the works by the EPC tunnel Contractor (including without limitation, the design, installation, and removal of the Temporary Works) with minimum life cycle cost and maintenance. In full recognition of these objectives, and with full acceptance of the obligations, liabilities and risks which may be involved, the Third Party Checking Consultant shall undertake the checking of design of the Works.

The Services to be provided under this contract is of Third Party checking of the detailed design and drawing of tunnel and other associated structures submitted by the EPC tunnel Contractor and association of the Third Party Checking consultant during construction of civil works of tunnel.

Preliminary site information as available with the Employer are given in Section 6, Bid Drawings and Documents for only general appreciation of the Works. All site data and other information considered in the design of the work, shall be provided by EPC tunnel Contractor.

The Third Party Consultant shall ensure that the Permanent Works are designed and constructed to the highest standards available using proven up-to-date good Engineering practices. The construction procedures established by the Contractor shall be reviewed by the Third Party Consultant and Quality Assurance and Quality Control plan shall be approved by the Third Party Consultant.

3. Scope of Services

The scope of the Services is divided in two parts: -

- Part-A: Third Party Consultancy for verification of Detailed design and drawings (including construction methodology) of Tunnel and other associated structures
- > Part-B: Third Party Consultant's association during execution of the Works

Part-A:

- 3.1 Third Part Consultancy for verification of Detailed Design & drawings (including construction methodology) of Twin Tunnel and associated structures involves the following, but not limited to:
- 3.1.1 Third Part Consultancy for design & drawings of Cut & Cover Tunnels from Ch. 28480 m to Ch. 29580 m including drainage arrangements for catering to surface run off from open cutting of about 1340 m length as shown in Bid drawings.
- 3.1.2 Third Part Consultancy for design & drawing of NATM twin Tunnels from Ch. 24850 m to Ch. 28480 for UP line and Ch. 24853 m to Ch. 28480 m for DN line in all types of strata (rock and soil) including drainage arrangements for catering to surface run off from open cutting as shown in Bid drawings.
- 3.1.3 Third Part Consultancy for design & drawing of four (02x02) Nos. of permanent ventilation shafts and other associated structures including roofing system and stairs as specified in Bid drawings.
- 3.1.4 Third Part Consultancy for design & drawing of one (01) No. construction cum utility shaft and other associated structures including roofing system and stairs area. Cross passage between two tunnels at the location of construction cum utility shaft as shown in Bid drawings.
- 3.1.5 Third Part Consultancy for design & drawing of cross passages between the two tubes along the length including fire stop doors at both ends as shown in the Tender drawings.
- 3.1.6 Third Part Consultancy for design & drawing of Portal P-2 for both UP & DN lines including drainage

arrangement at the interface of Portal P2 and Cut & Cover tunnel for catering to surface runoff from the cutting.

- 3.1.7 Third Part Consultancy for design & drawing of Portal P-1 for both UP & DN lines including slope stability of rock, boulder fall and protection arrangements.
- 3.1.8 Third Part Consultancy for design & drawing of drainage system at Palwal end approach of Portal P-1 for both UP & DN lines for disposal of storm water coming out of the tunnel and from adjoining open area and integrating the drainage system with the drainage scheme of DFC.
- 3.1.9 Third Part Consultancy for the design and drawings of the construction methodology of all the above structures and temporary structures.

The construction methodology shall include all safety precautions during construction and shall be adequate to ensure safety of DFC viaduct and its safety during construction (especially during blasting operations and rock cutting) near proposed Portal P-1.

3.2 TASKS TO BE PERFORMED

The broad tasks/activities to be performed by the Third Part Consultancy for Consultant in the Contract are as follows:

3.2.1 Study/Review of the data like topographical survey, lithological survey, Geotechnical data, GIR and Design Basis Note

- (i) EPC tunnel Contractor shall conduct detailed Geotechnical & Geological investigations and prepare Geotechnical interpretative report (GIR). Third Part Consultant shall review the reports of various investigations conducted by EPC tunnel Contractor and shall ensure that required investigations have been conducted in sufficient details and parameters used in the designs are reasonably selected.
- (ii) Third Party Consultant shall review the design basis note, design quality assurance plan & any other technical documents submitted by the EPC tunnel Contractor.

3.2.2 Approval of Preliminary Design and drawings

Drawings of tunnel and other structures shall be prepared by the EPC tunnel Contractor based on preliminary design and feasible – construction methodology and submitted to the Third Party Consultant along with the preliminary design calculations and drawings. This needs to be reviewed and finally approved by the Third Party Consultant. The Third Party Consultant shall attend any meeting/presentation/joint site visit with the Engineer/the Contractor's designer, as per the requirement. Any meeting or site visit will be deemed to be inclusive in the Scope of Work and nothing extra shall be paid on this account.

3.2.3 Detailed Design and Drawings

The Third Party Consultant shall review the detail design and drawings submitted by the Contractor's designer and convey his comments for incorporating in the final design and Good for Construction drawings. However, the Third Party Consultant shall also carry out independent Design checks of the tunnel and other structures. A copy of all correspondence/clarifications between Third Party Consultant and design consultant of EPC tunnel contractor shall be marked to the Engineer and the Employer for information.

Design calculations done to check the Contractor's design shall be submitted by the Third Party Consultant in MS-Excel for cross checking/verification by the Engineer. Input files of design software (licensed version) used shall also be submitted to the Engineer. The Consultant shall make latest licensed software available to the Engineer for facilitating design checking for the duration of the Contract.

All the designs and drawings shall be approved by the Third Party Consultant within three weeks after submission of design documents by the EPC Contractor.

It is anticipated that approval of all the major design works, submitted by the EPC Contractor, including investigation for tunnel works shall be completed within six months duration. However, any design or drawing submitted by the EPC Contractor after six months duration shall also be approved within three weeks of its submission.

Part-B:

4. Consultant's Association During Execution

The Consultant shall be associated during construction with the Engineer and shall offer support/guidance on Detailed Designs & Drawings during execution of the Works. The Consultant shall provide necessary design support and technical assistance during the construction stages for successful and timely completion of the works.

In cases of change in site conditions, site constraints or the Employer's /stakeholder's requirements during execution, the Contractor's designer will provide amended/revised/modified designs and drawings. The Consultant shall visit site as per the requirement & approve the modified design & drawings.

The Consultant can extend/provide these services from their home office. However, the Consultant (Team leader and Key Personnel as per requirement) will be required to visit project area minimum once in a month (i.e., 48 times in the period of 4 years) as decided by Engineer/Employer. For each visit designer(s) may have to spend more than one day as per the requirement at the site and as directed by the Engineer. The actual date of visit may be decided by the Engineer/Employer as per the site requirements in consultation with the Consultant. The cost of visits shall be in-built in the lump sum rate quoted by the Consultant. Any additional unavoidable site visit, if required, will be paid as per Sub-Clause 1.1.2 of the Price Schedule, Section 2.

5. Duration of work

Total Consultancy assignment duration of this project shall be 48 months from the Effective Date. The Contract for Package C-4 has already been awarded. Out of 48 months, first 6 months (approx) will be the design phase. However, the Third Party Consultant shall also be associated during the construction phase for support during construction.

In case the project completion is extended beyond a period of 48 months and if association of the Third Party Consultant is considered necessary, payment will be made for each additional month beyond 48 months, as per pro rata basis based on the rate quoted for 48 months.

6. Consultant's Representative and Key Personnel

6.1 The Consultant shall deploy suitably qualified Consultant's Representative and suitably qualified Key Personnel as described in the table below.

Table-1: Consultant's Representative and Key Personnel

S.	Designation	Qualification	Experience
No.			
1.	Consultant's Representative /Team Leader	Graduate in Civil Engineering	Graduate degree in Civil Engineering having experience not less than 10 years and would have handled minimum 02 projects involving design/proof checking of tunnel by NATM as Team Leader.
2.	Tunnel Design Expert (NATM)	Graduate in Civil Engineering	Graduate degree in Civil Engineering with total experience of 08 years and minimum 4 years of relevant experience in design/proof checking of tunnel or underground metro stations by NATM.
3.	Tunnel Design Expert (Cut & Cover)	Graduate in Civil Engineering	Graduate degree in Civil Engineering with total experience of 08 years and minimum 4 years of relevant experience in design/proof checking of Cut & Cover tunnel or Cut & Cover metro stations.
4.	Geologist	Master's degree in Geology	Minimum total experience of 08 years out of which minimum 04 years in tunnel projects.
5.	Geotechnical Engineer	Graduate in Civil Engineering	Minimum total experience of 08 years out of which minimum 04 years in infrastructure projects

- **6.2** Before deployment of Consultant's Representative and the Key Personnel, the Engineer's approval shall be obtained by the Consultant. The Consultant shall require the Engineer's consent to substitute or replace the Consultant's Representative (reference Conditions of Contract Clause 8, 9 and 10 and notes below).
- **6.3** Relaxation in qualifications/Experience can be given by the Engineer in exceptional cases where candidates have got high level of professional competency. The decision of the Engineer in such cases shall be final and binding.

6.4 The performance of Key Personnel deployed will be monitored by the Engineer during the Contract period. In case the performance of any of the Consultant's Personnel is not satisfactory, the Consultant shall replace them with good personnel immediately as per directions of the Engineer.

- 6.5 Notwithstanding the above, the substitution of Key Personnel during Contract execution may be considered only based on the Consultant's written request and due to circumstances outside the reasonable control of the Consultant, including but not limited to death or medical incapacity. In such case, the Consultant shall forthwith provide as a replacement, a person of equivalent or better qualifications and experience, meet eligibility requirements.
- **6.6** The associated non-key personnel, if required any, shall be considered by the consultants in their estimation.
- 6.7 The above Key Personnel shall be required for full duration during checking of the design of the tunnel and other related structures. During the construction stage, the Third Party Consultants are required to provide necessary support and to visit site along with experts (if needed as per site requirement) every month or as per requirement whichever is less. However, maximum site visits shall be limited to 14 in a year.

Section 6 Bid Drawings and Documents

A-Bid Drawings

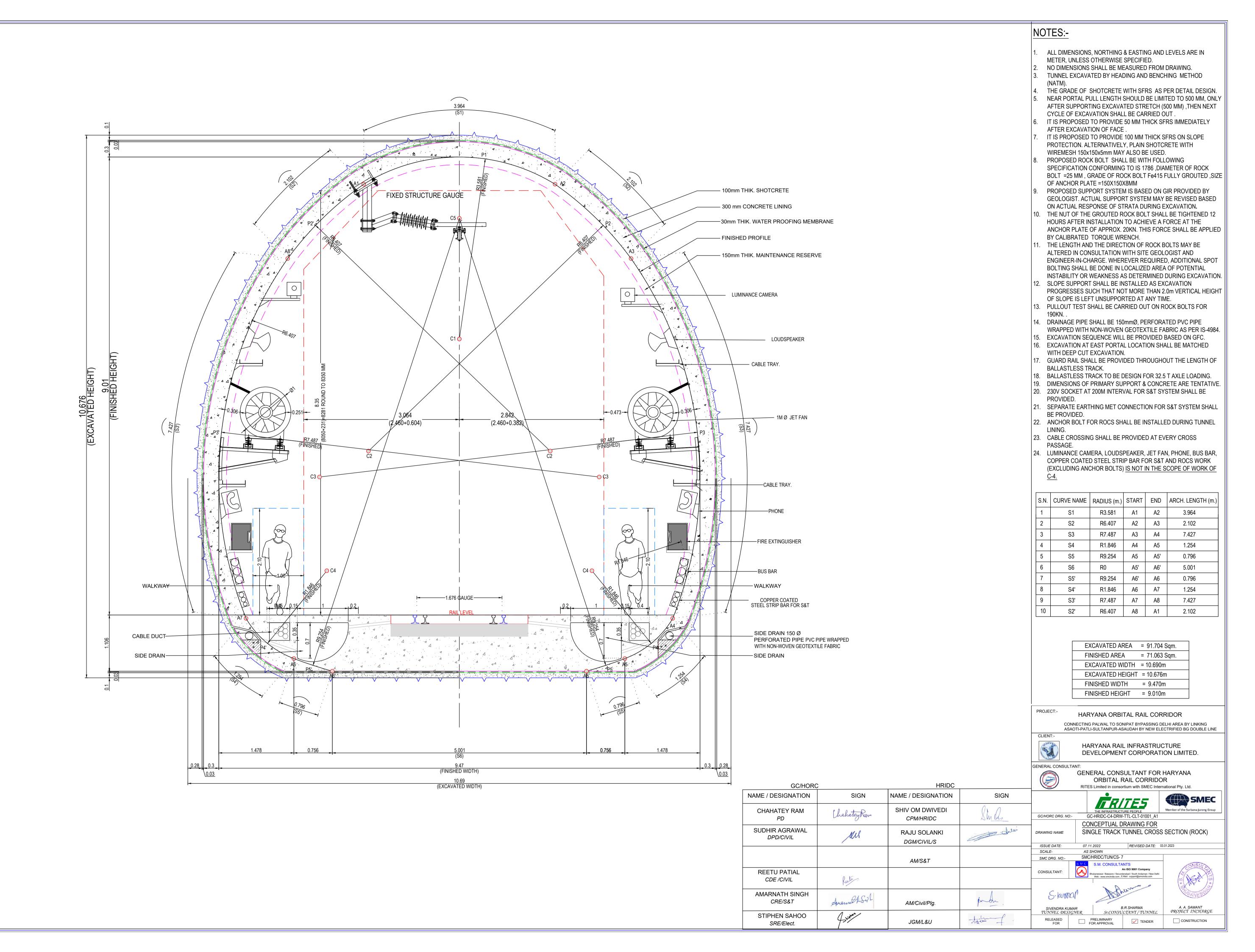
B-Documents

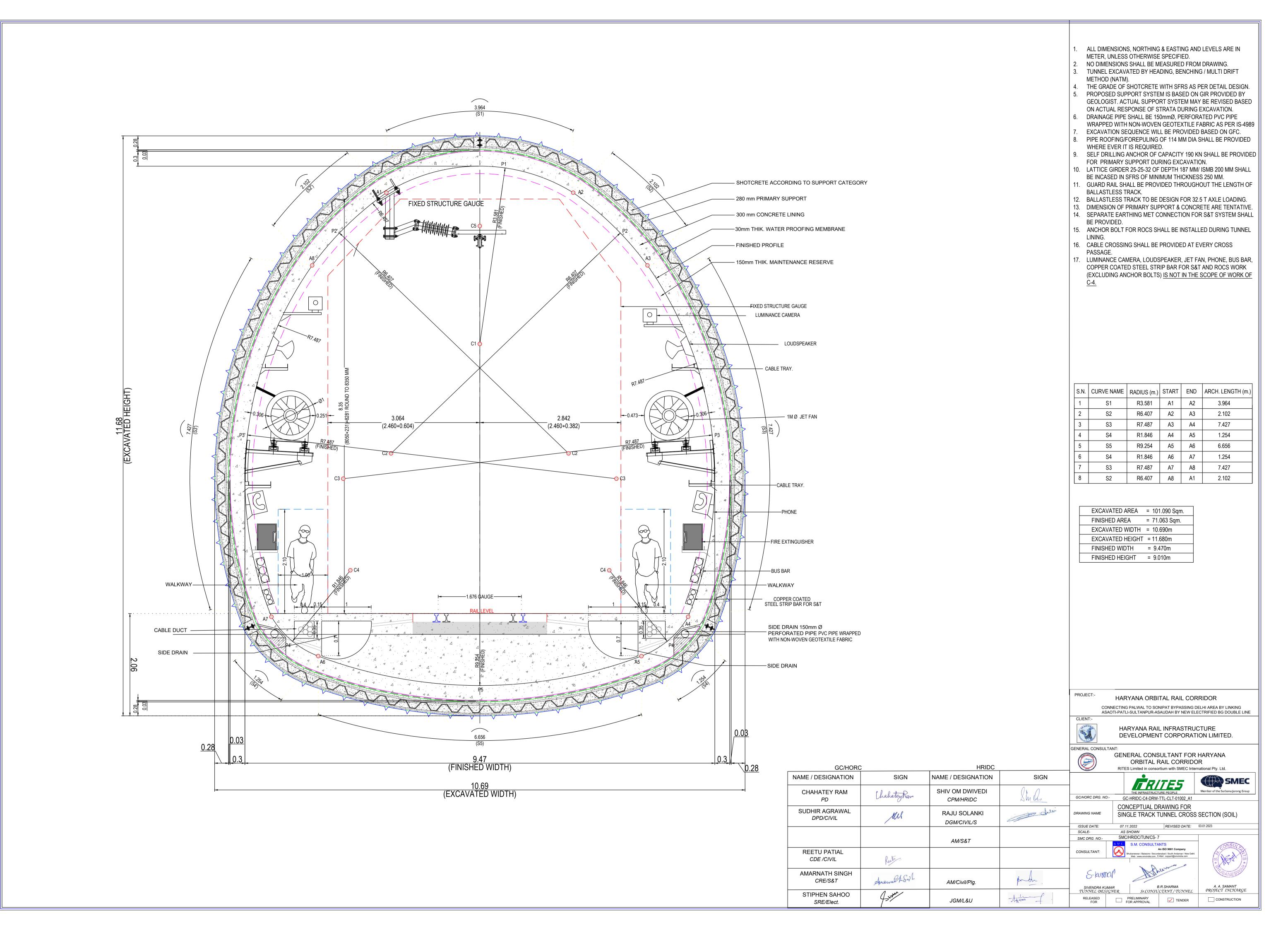
Section 6 A: Bid Drawings

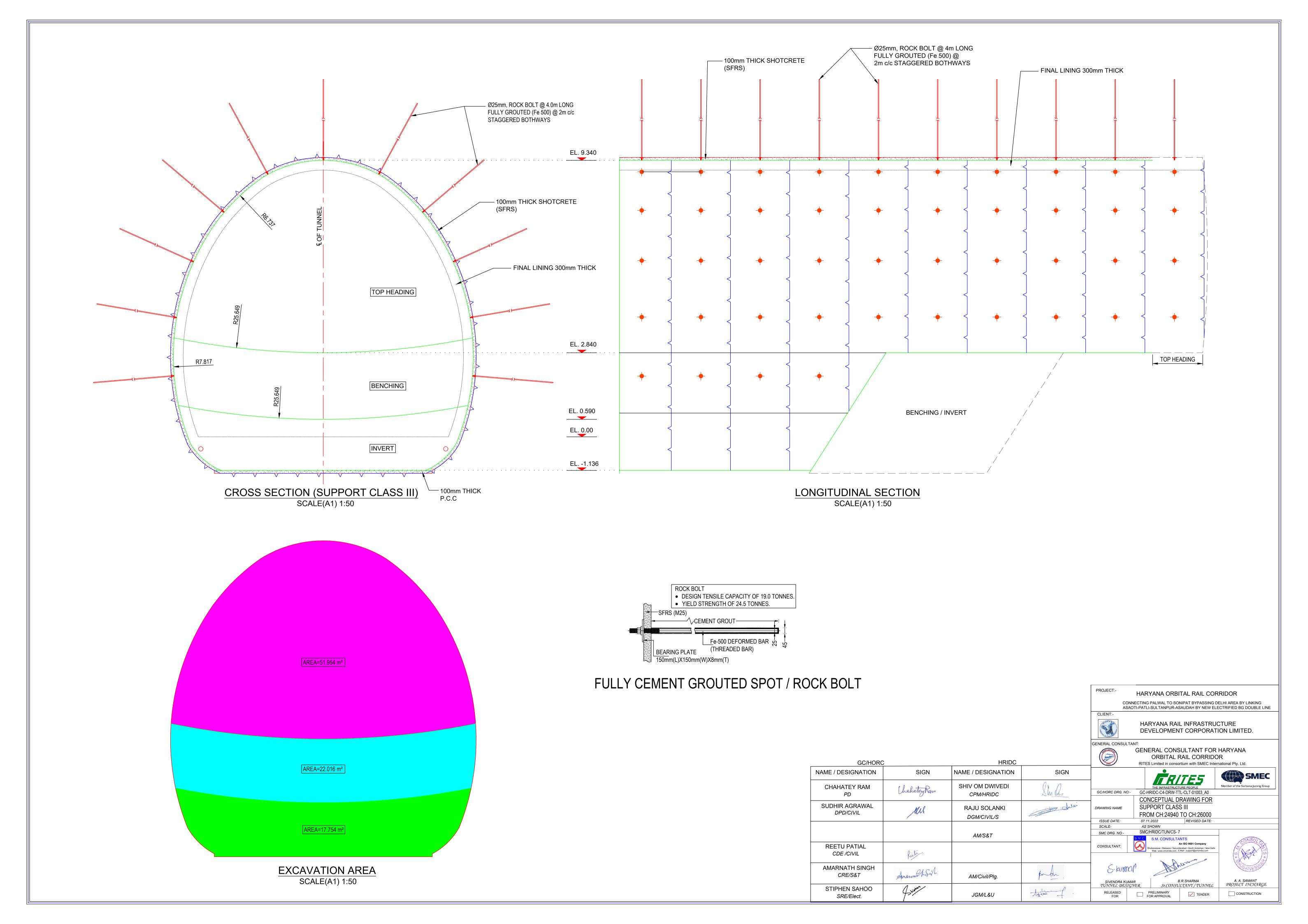
List of Drawings

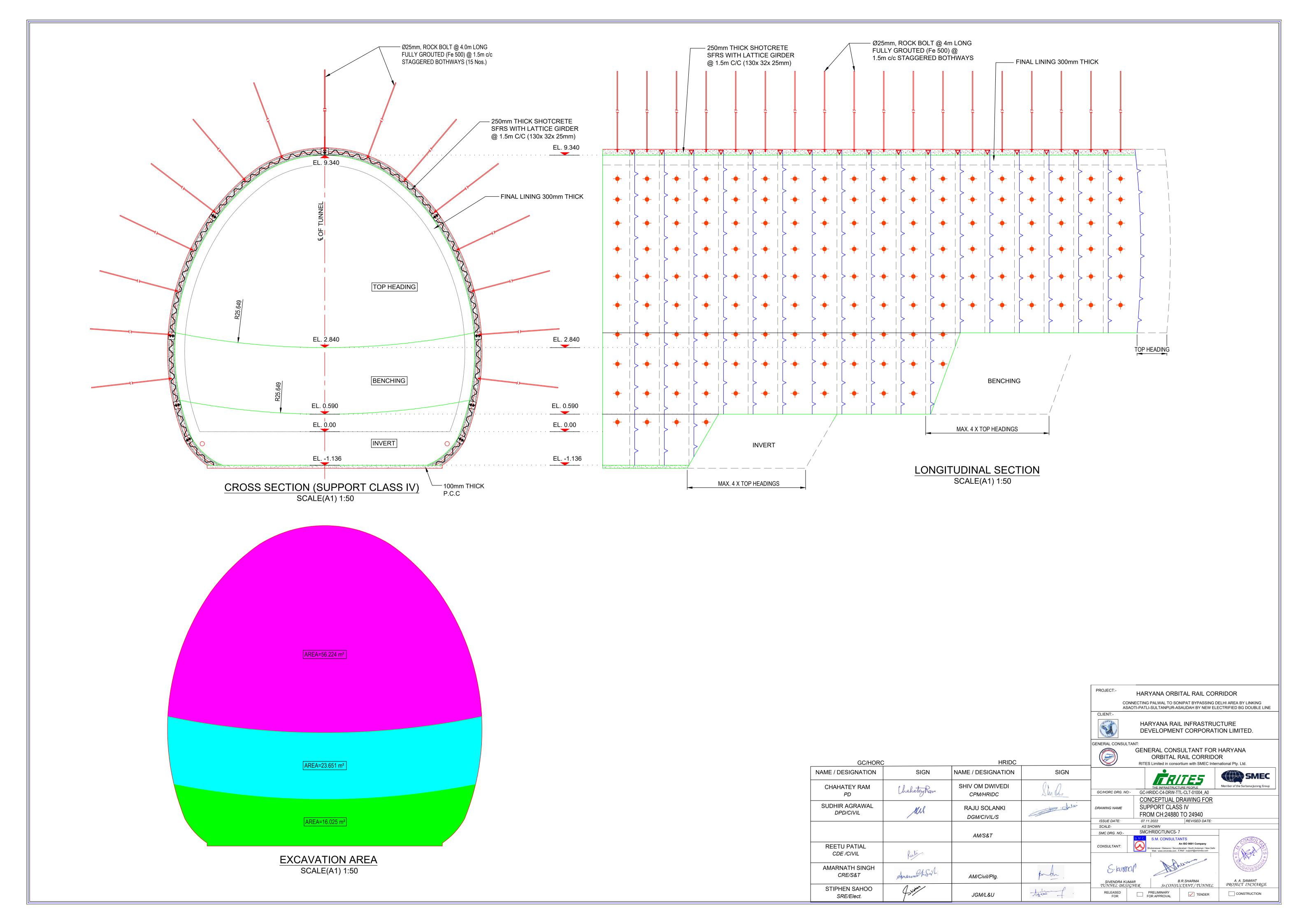
S. No	TITLE	DRAWING NO.
1 AI	IGNMENT PLAN & L-SECTION:	
1.	Conceptual plan and longitudinal section from chainage 24.0KM to chainage 30.0KM (tunnel)	GC-HRIDC-ALL-DRW-ALN-P&P-24-30KM_A1
	NNEL	
1.	Conceptual drawing for Single track tunnel cross section (Rock)	GC-HRIDC-C4-DRW-TTL-CLT-01001_A1
2.	Conceptual drawing for Single track tunnel cross section (Soil)	GC-HRIDC-C4-DRW-TTL-CLT-01002_A1
3.	Conceptual drawing for Support class III from CH: 24940 to CH: 26000	GC-HRIDC-C4-DRW-TTL-CLT-01003_A0
4.	Conceptual drawing for Support class IV from CH: 24880 to CH: 24940	GC-HRIDC-C4-DRW-TTL-CLT-01004_A0
5.	Conceptual drawing for Support class VI (i) from CH: 26000 to CH: 28420	GC-HRIDC-C4-DRW-TTL-CLT-01005_A0
6.	Conceptual drawing for Support class VI(ii) from CH: 28420 to CH: 28480	GC-HRIDC-C4-DRW-TTL-CLT-01006_A0
7.	Conceptual drawing for Tunnel typical detail of lattice girder	GC-HRIDC-C4-DRW-TTL-CLT-01007_A0
8.	Conceptual drawing for Cut & cover section of tunnel	GC-HRIDC-C4-DRW-TTL-CLT-01008_A1
9.	Conceptual drawing for Cross passage junction with main tunnel	GC-HRIDC-C4-DRW-TTL-CLT-01009_A1
10.	Conceptual drawing for Permanent Ventilation shaft junction with main	GC-HRIDC-C4-DRW-TTL-CLT-01010_A2 (Sheet 1 of 3)
	tunnel	GC-HRIDC-C4-DRW-TTL-CLT-01010_A2 (Sheet 2 of 3)
		GC-HRIDC-C4-DRW-TTL-CLT-01010_A2 (Sheet 3 of 3)
11.	Conceptual drawing for Construction cum utility shaft	GC-HRIDC-C4-DRW-TTL-CLT-01011_A2
12.	Conceptual drawing for Portal-1 & Abutment A2 of Proposed HORC Viaduct	GC-HRIDC-C4-DRW-TTL-CLT-01012_A0
13.	Conceptual drawing for Portal-2 & open cutting area with 100m ballastless track	GC-HRIDC-C4-DRW-TTL-CLT-01013_A1
3 M	SCELLANEOUS DRAWINGS (CONC	EPTUAL PLANS)
1.	Schematic diagram of HORC tunnel	GC-HRIDC-C4-SK-TUNNEL-001_A1

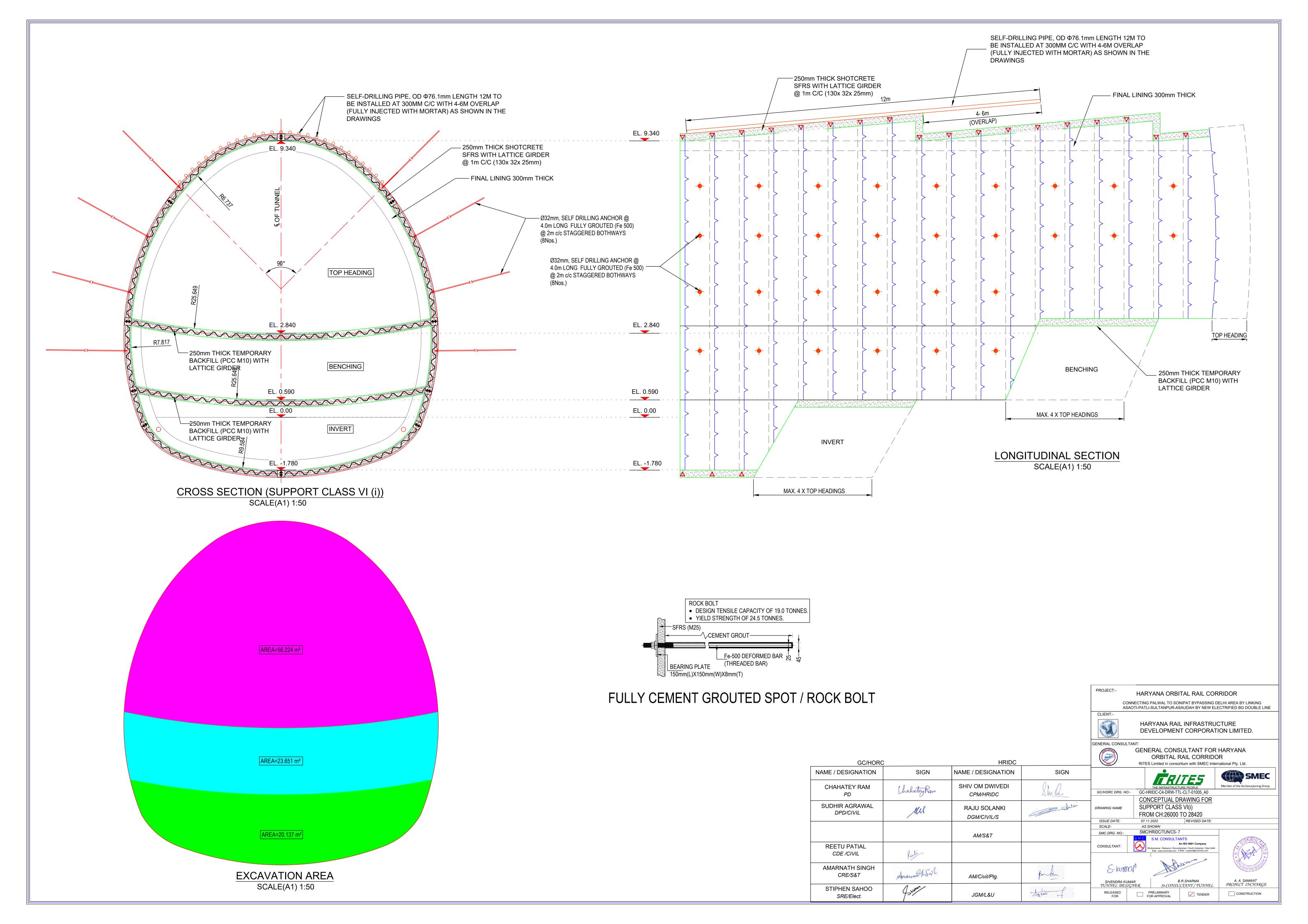
Section 6 **B: Documents**

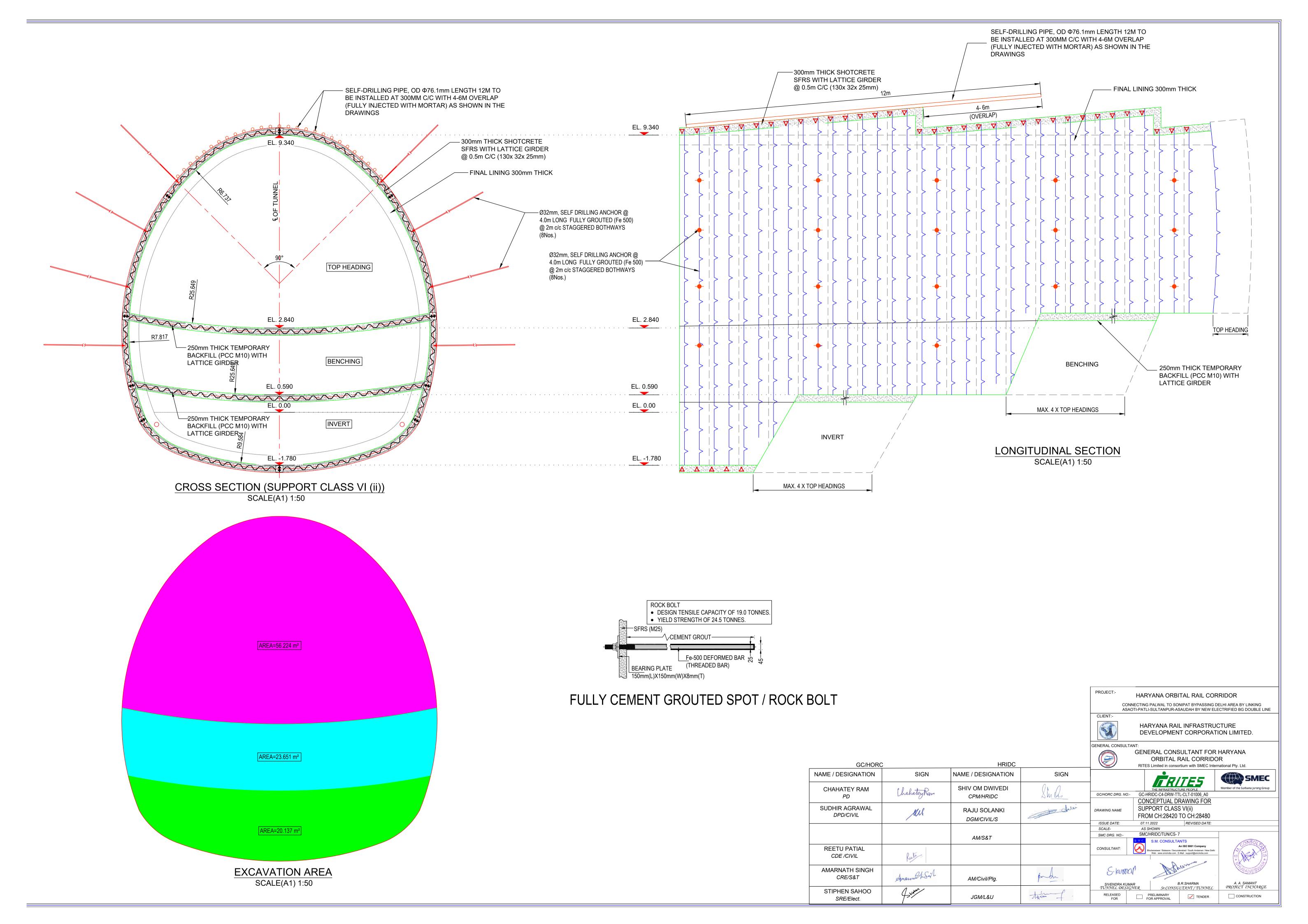

List of Documents

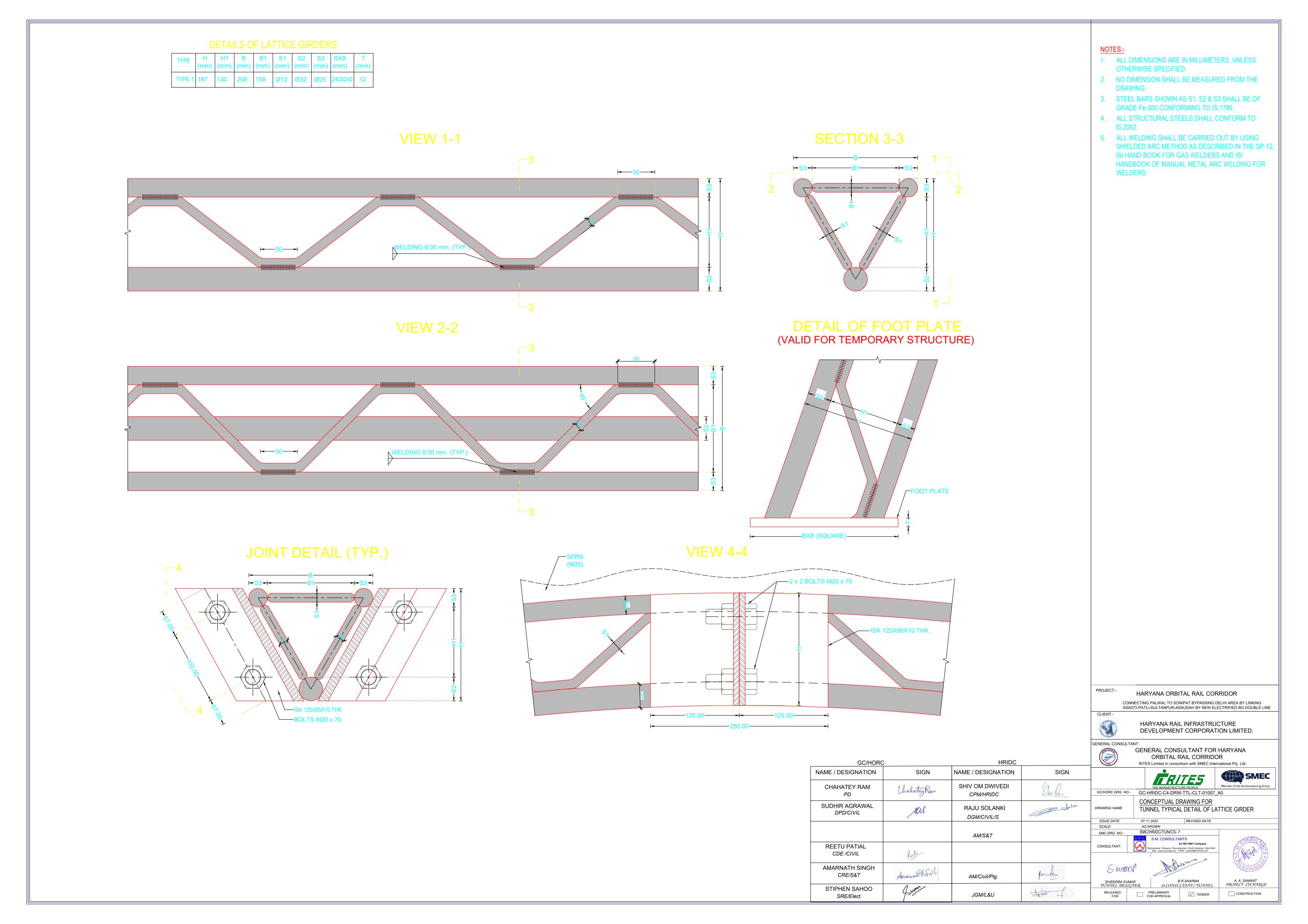

S. No	Documents title	
1.	Design Basis Report	
2.	Geotechnical Investigation Reports for Tunnel	
	i. Geotechnical Investigation Report	
	ii. Geological Interpretive Report	
	iii. Geotechnical Investigation Report Old Ch. 27+620 to Old Ch. 28+900KM	

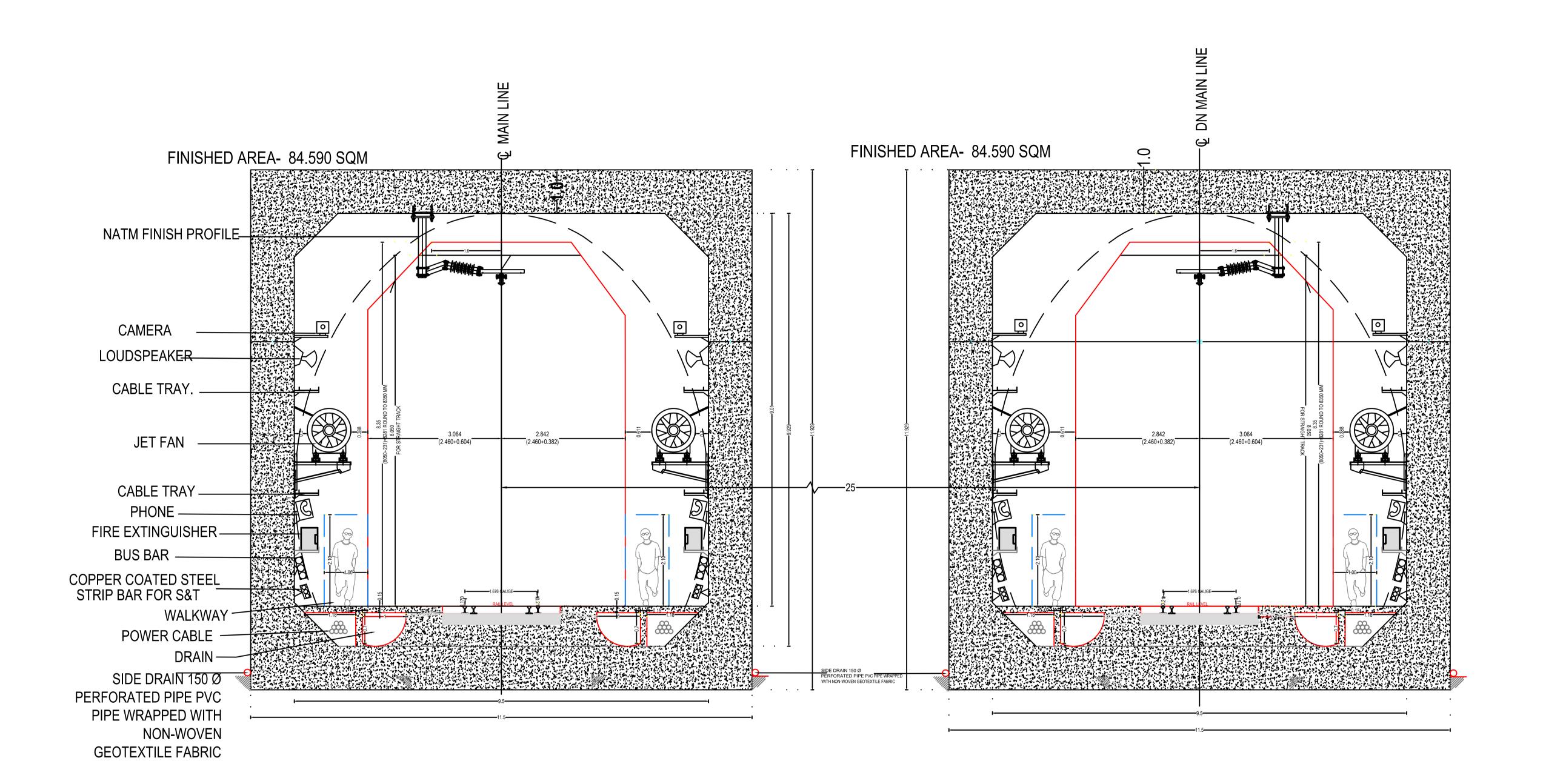

1. Alignment Plan & L-Section




2. Tunnel







NOTES:~

- ALL DIMENSIONS ARE IN MILLIMETERS
 AND LEVELS ARE IN METERS, UNLESS
 OTHERWISE SPECIFIED.
- 2. NO DIMENSION SHALL BE MEASURED FROM THE DRAWING.
- 3. MINIMUM EXCAVATION LINE SHALL INCLUDE CONSTRUCTION & DEFORMATION TOLERANCE.
- 4. GUARD RAIL SHALL BE PROVIDED
 THROUGHOUT THE LENGTH OF
 BALLASTLESS TRACK
- 5. BALLASTLESS TRACK TO BE DESIGN FOR 32.5 T AXLE LOADING
- 6. DIMENSIONS OF SLAB THICKNESS ARE TENTATIVE.
- 7. SEPARATE EARTHING MET

 CONNECTION FOR S&T SYSTEM SHALL

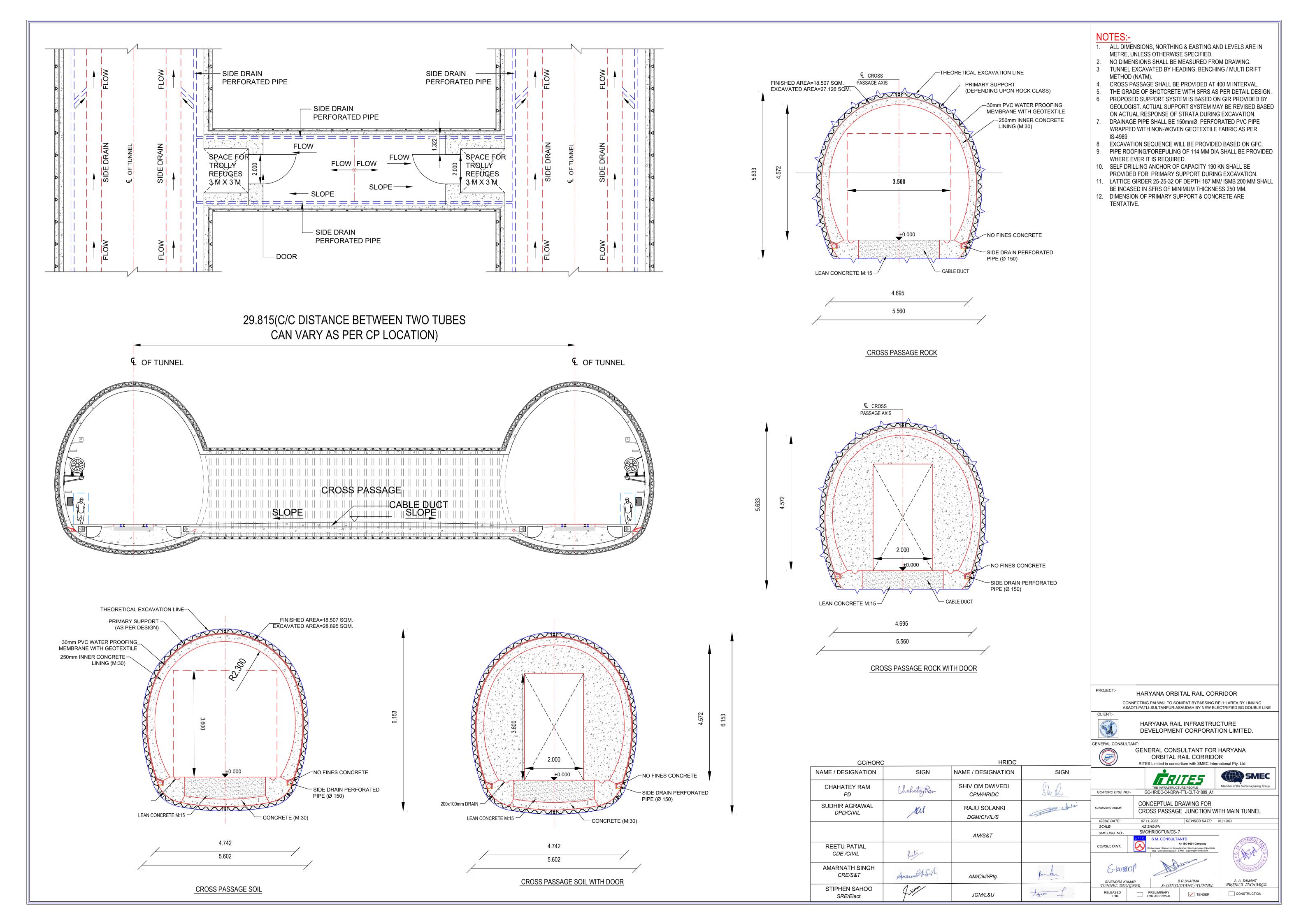
 BE PROVIDED.
- 8. ANCHOR BOLT FOR ROCS SHALL BE INSTALLED DURING TUNNEL LINING.
- CABLE CROSSING SHALL BE PROVIDED AT EVERY CROSS PASSAGE.
- 10. LUMINANCE CAMERA, LOUDSPEAKER,

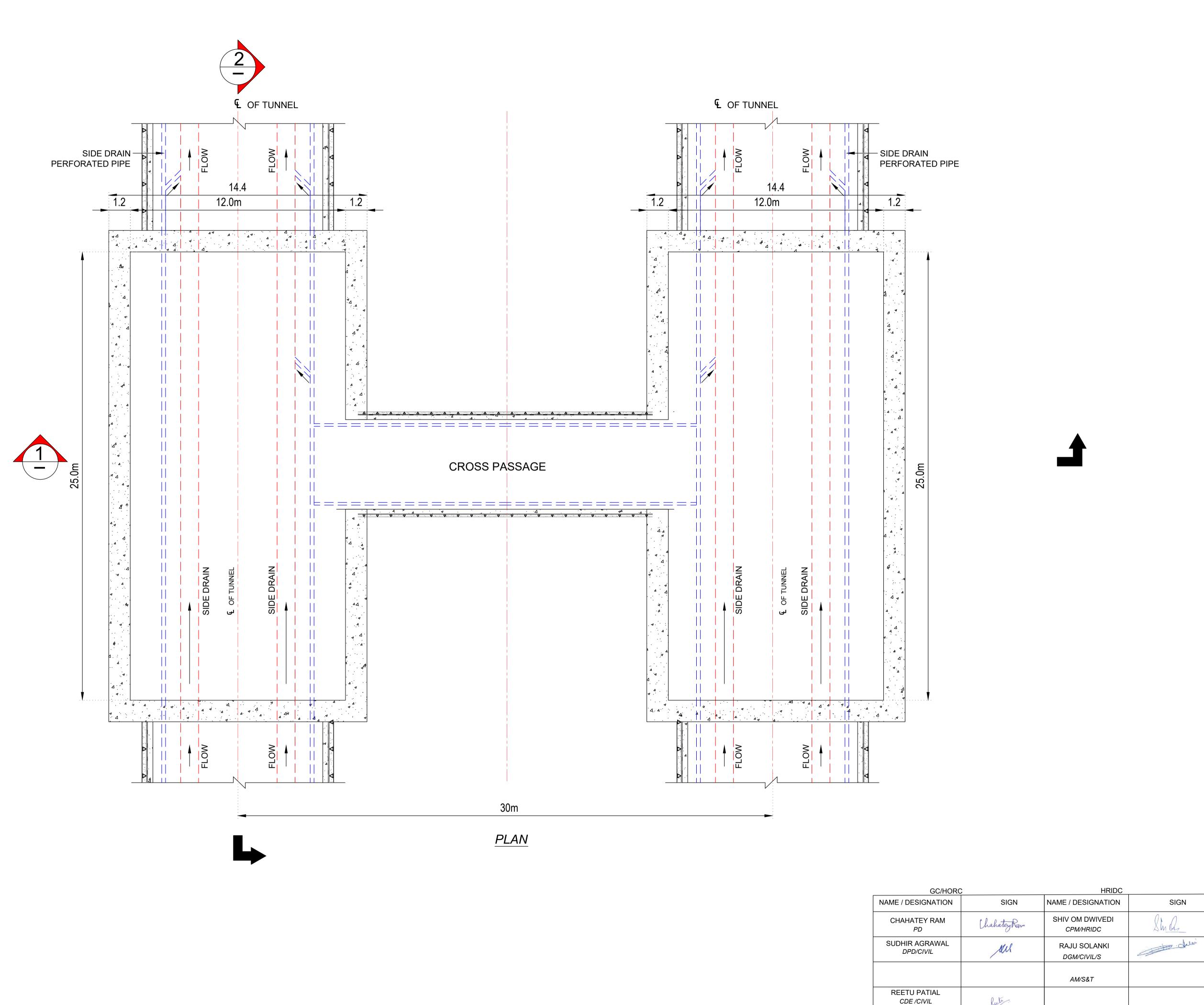
 JET FAN, PHONE, BUS BAR, COPPER

 COATED STEEL STRIP BAR FOR S&T

 AND ROCS WORK (EXCLUDING

 ANCHOR BOLTS) IS NOT IN THE SCOPE


 OF WORK OF C-4.


HARYANA ORBITAL RAIL CORRIDOR

CONNECTING PALWAL TO SONIPAT BYPASSING DELHI AREA BY LINKING ASAOTI-PATLI-SULTANPUR-ASAUDAH BY NEW ELECTRIFIED BG DOUBLE LINE

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED. GENERAL CONSULTANT: GENERAL CONSULTANT FOR HARYANA ORBITAL RAIL CORRIDOR HRIDC GC/HORC RITES Limited in consortium with SMEC International Pty. Ltd. NAME / DESIGNATION NAME / DESIGNATION SIGN SMEC SHIV OM DWIVEDI CHAHATEY RAM Chahatey Ran GC-HRIDC-C4-DRW-TTL-CLT-01008_A1 GC/HORC DRG. NO:-CPM/HRIDC CONCEPTUAL DRAWING FOR Julei Julei SUDHIR AGRAWAL CUT & COVER SECTION OF TUNNEL RAJU SOLANKI Kel RAWING NAME DPD/CIVIL DGM/CIVIL/S ISSUE DATE: REVISED DATE: 03.01.2023 SCALE-SMC/HRIDC/TUN/CS-7 SMC DRG. NO:-AM/S&T S.M. CONSULTANTS An ISO 9001 Company REETU PATIAL CONSULTANT: Reeter. CDE /CIVIL AMARNATH SINGH Smernett Six S. kumal CRE/S&T AM/Civil/Plg. A. A. SAMANT PROJECT INCHARGE B.R.SHARMA STIPHEN SAHOO RELEASED FOR PRELIMINARY FOR APPROVAL ✓ TENDER JGM/L&U SRE/Elect.

PROJECT:-

ALL DIMENSIONS, NORTHING & EASTING AND LEVELS ARE IN METER, UNLESS OTHERWISE SPECIFIED.

NO DIMENSIONS SHALL BE MEASURED FROM DRAWING. TUNNEL EXCAVATED BY HEADING, BENCHING / MULTI DRIFT METHOD (NATM).

THE GRADE OF SHOTCRETE WITH SFRS AS PER DETAIL DESIGN. PROPOSED SUPPORT SYSTEM IS BASED ON GIR PROVIDED BY GEOLOGIST. ACTUAL SUPPORT SYSTEM MAY BE REVISED BASED ON ACTUAL RESPONSE OF STRATA DURING EXCAVATION.

DRAINAGE PIPE SHALL BE 150mmØ, PERFORATED PVC PIPE WRAPPED WITH NON-WOVEN GEOTEXTILE FABRIC AS PER IS-4989 EXCAVATION SEQUENCE WILL BE PROVIDED BASED ON GFC. PIPE ROOFING/FOREPULING OF 114 MM DIA SHALL BE PROVIDED

WHERE EVER IT IS REQUIRED. SELF DRILLING ANCHOR OF CAPACITY 190 KN SHALL BE PROVIDED FOR PRIMARY SUPPORT DURING EXCAVATION. LATTICE GIRDER 25-25-32 OF DEPTH 187 MM/ ISMB 200 MM SHALL

BE INCASED IN SFRS OF MINIMUM THICKNESS 250 MM. DIMENSION OF PRIMARY SUPPORT & CONCRETE ARE TENTATIVE. INSERT PLATES SHALL BE PROVIDED IN THE WALL FOR PROVISION

OF SS STAIRS OF MINIMUM WIDTH OF 1.5M.

ROOFING SYSTEM OVER SHAFTS SHALL BE PROVIDED AS PER DBR.

LOCATION	
SHAFT-1	CH:26080
SHAFT-2	CH:26080
SHAFT-3	CH:27680
SHAFT-4	CH:2700U

PROJECT:-HARYANA ORBITAL RAIL CORRIDOR CONNECTING PALWAL TO SONIPAT BYPASSING DELHI AREA BY LINKING

ASAOTI-PATLI-SULTANPUR-ASAUDAH BY NEW ELECTRIFIED BG DOUBLE LINE

RELEASED FOR

AMARNATH SINGH

CRE/S&T

STIPHEN SAHOO

SRE/Elect.

AM/Civil/Plg.

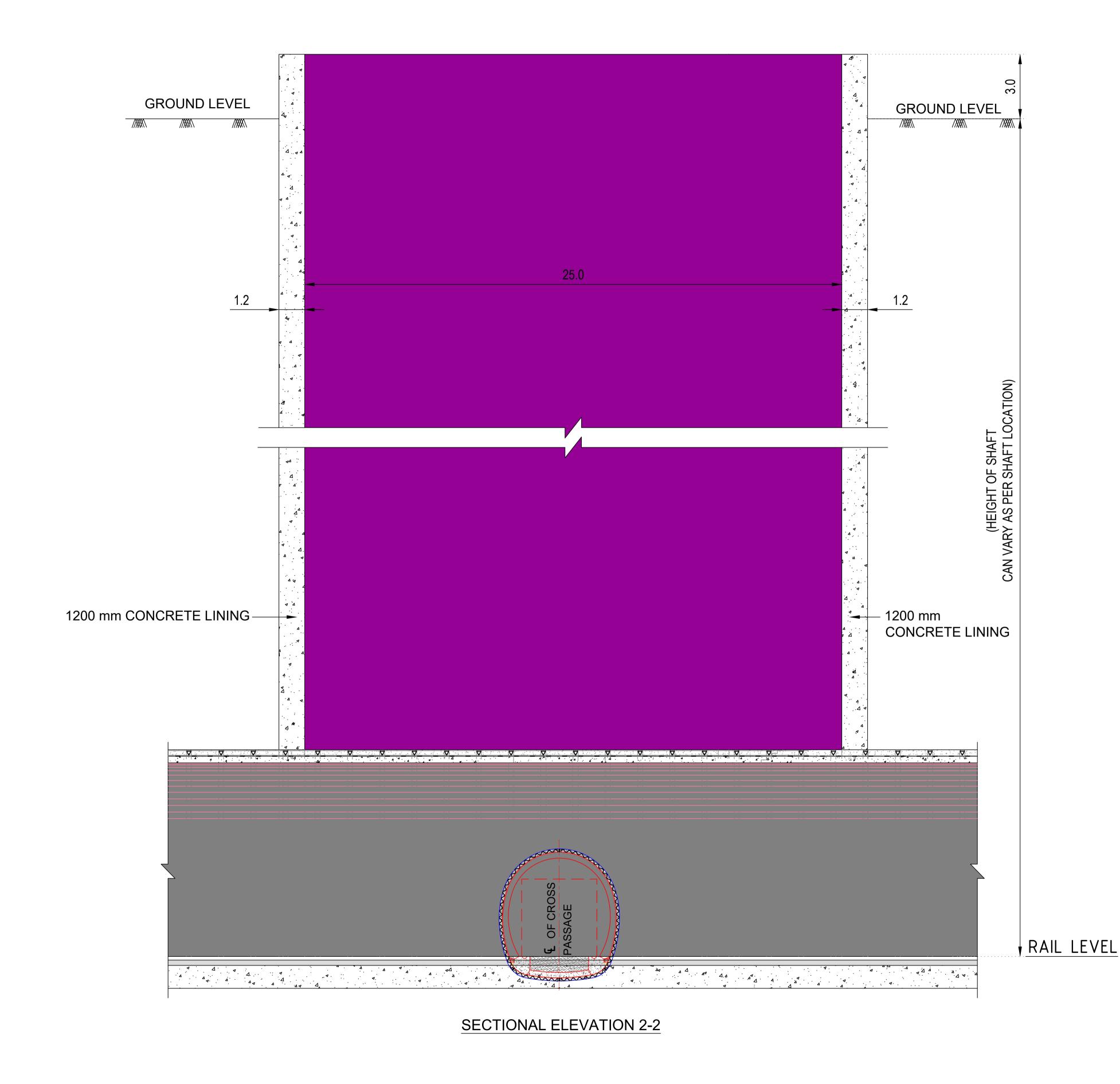
JGM/L&U

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

GENERAL CONSULTANT:

GENERAL CONSULTANT FOR HARYANA ORBITAL RAIL CORRIDOR RITES Limited in consortium with SMEC International Pty. Ltd.


TRITES GC/HORC DRG. NO:-GC-HRIDC-C4-DRW-TTL-CLT-01010_A2 CONCEPTUAL DRAWING FOR PERMANENT VENTILATION SHAFT JUNCTION WITH DRAWING NAME MAIN TUNNEL ISSUE DATE: 07.11.2022 REVISED DATE: 09.01.2023 AS SHOWN SMC/HRIDC/TUN/CS-7 SMC DRG. NO:-S.M. CONSULTANTS An ISO 9001 Company


S. kumal SIVENDRA KUMAR TUNNEL DESIGNER

A. A. SAMANT PROJECT INCHARGE

CONSTRUCTION

PRELIMINARY FOR APPROVAL ✓ TENDER

NAME / DESIGNATION NAME / DESIGNATION SHIV OM DWIVEDI Sha CHAHATEY RAM ChahateyRom CPM/HRIDC PDJulei SUDHIR AGRAWAL RAJU SOLANKI DPD/CIVIL DGM/CIVIL/S ISSUE DATE: SCALE-AM/S&T REETU PATIAL CDE /CIVIL AMARNATH SINGH Aneme Of Sil CRE/S&T AM/Civil/Plg.

JGM/L&U

GC/HORC

STIPHEN SAHOO

SRE/Elect.

ALL DIMENSIONS, NORTHING & EASTING AND LEVELS ARE IN METER, UNLESS OTHERWISE SPECIFIED.
 NO DIMENSIONS SHALL BE MEASURED FROM DRAWING.
 TUNNEL EXCAVATED BY HEADING, BENCHING / MULTI DRIFT

NO DIMENSIONS SHALL BE MEASURED FROM DRAWING.
 TUNNEL EXCAVATED BY HEADING, BENCHING / MULTI DRIFT METHOD (NATM).
 THE GRADE OF SHOTCRETE WITH SFRS AS PER DETAIL DESIGN.
 PROPOSED SUPPORT SYSTEM IS BASED ON GIR PROVIDED BY

GEOLOGIST. ACTUAL SUPPORT SYSTEM MAY BE REVISED BASED ON ACTUAL RESPONSE OF STRATA DURING EXCAVATION.

DRAINAGE PIPE SHALL BE 150mmØ, PERFORATED PVC PIPE WRAPPED WITH NON-WOVEN GEOTEXTILE FABRIC AS PER IS-4989 EXCAVATION SEQUENCE WILL BE PROVIDED BASED ON GFC.

PIPE ROOFING/FOREPULING OF 114 MM DIA SHALL BE PROVIDED WHERE EVER IT IS REQUIRED.

SELF DRILLING ANCHOR OF CAPACITY 190 KN SHALL BE PROVIDED FOR PRIMARY SUPPORT DURING EXCAVATION.

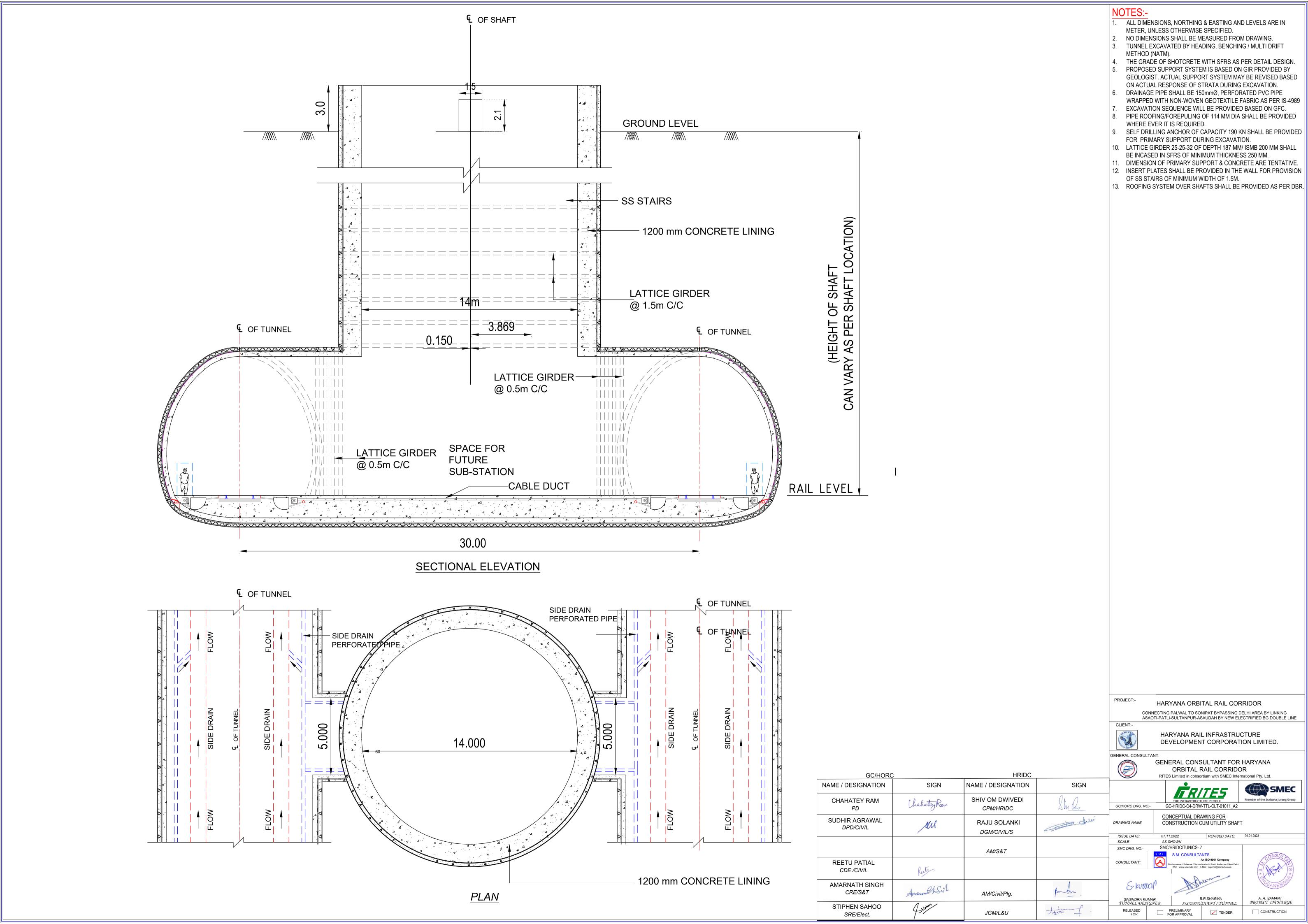
LATTICE GIRDER 25-25-32 OF DEPTH 187 MM/ ISMB 200 MM SHALL BE INCASED IN SFRS OF MINIMUM THICKNESS 250 MM.

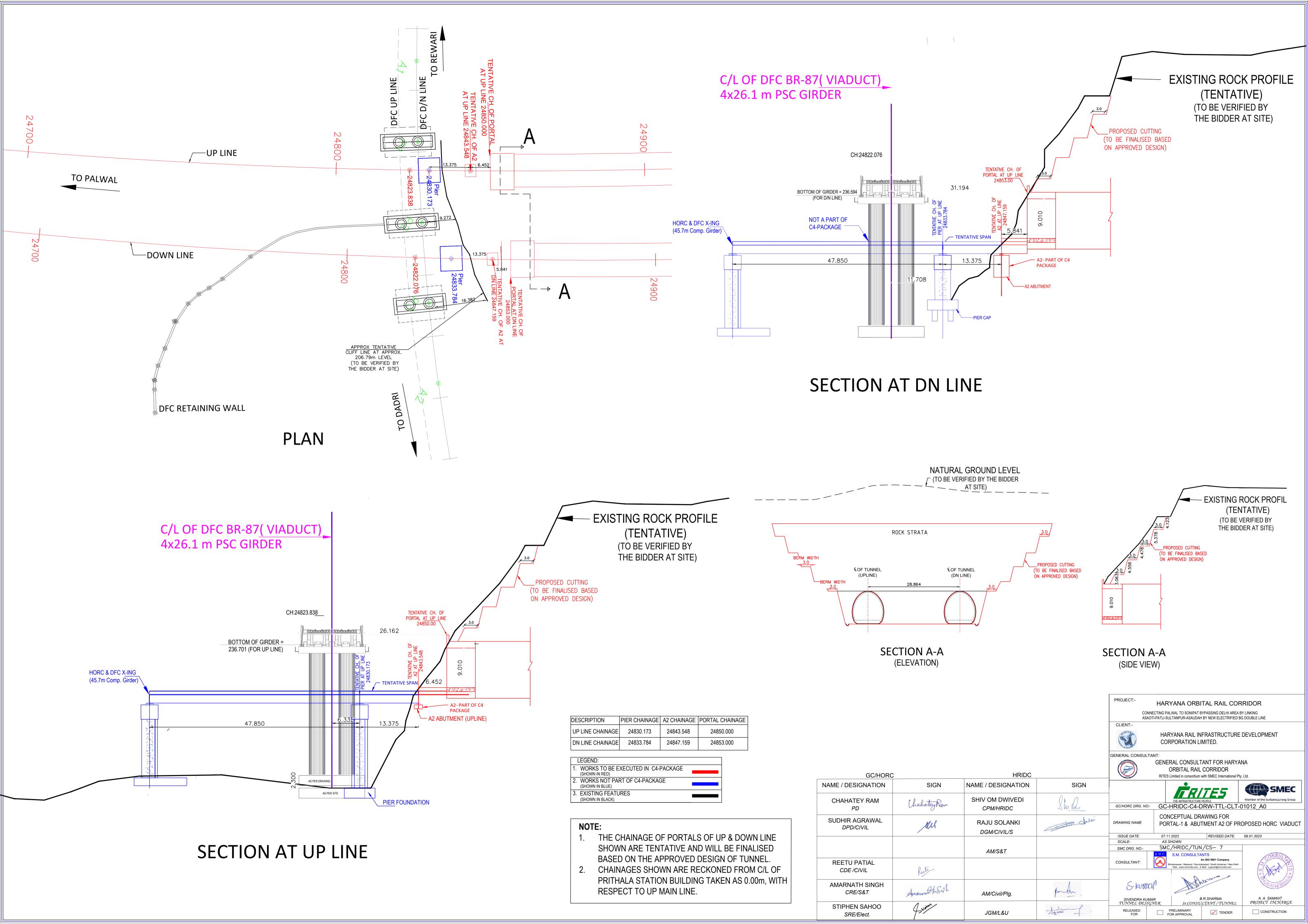
DIMENSION OF PRIMARY SUPPORT & CONCRETE ARE TENTATIVE. INSERT PLATES SHALL BE PROVIDED IN THE WALL FOR PROVISION OF SS STAIRS OF MINIMUM WIDTH OF 1.5M.

LOCATION		
HAFT-1	CH:26080	
HAFT-2	CH:26080	
HAFT-3	CH:27680	
HAFT-4	СП.27000	

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED. GENERAL CONSULTANT FOR HARYANA ORBITAL RAIL CORRIDOR RITES Limited in consortium with SMEC International Pty. Ltd. SIGN SHEET: 3 OF 3 GC-HRIDC-C4-DRW-TTL-CLT-01010_A2 CONCEPTUAL DRAWING FOR PERMANENT VENTILATION SHAFT JUNCTION WITH MAIN TUNNEL REVISED DATE: 09.01.2023 AS SHOWN
SMC/HRIDC/TUN/CS- 7 SMC DRG. NO:-S.M. CONSULTANTS S. kumal'

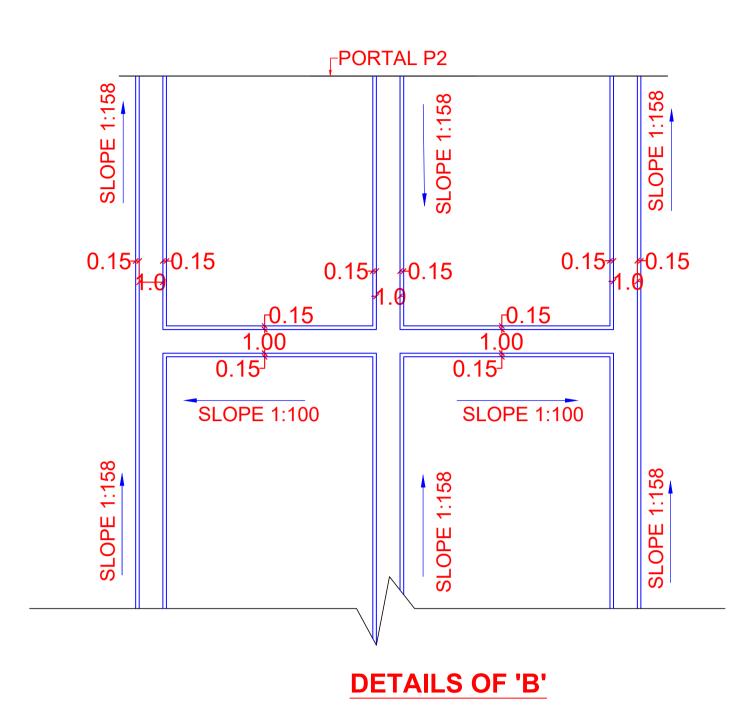
> RELEASED FOR


PROJECT:-

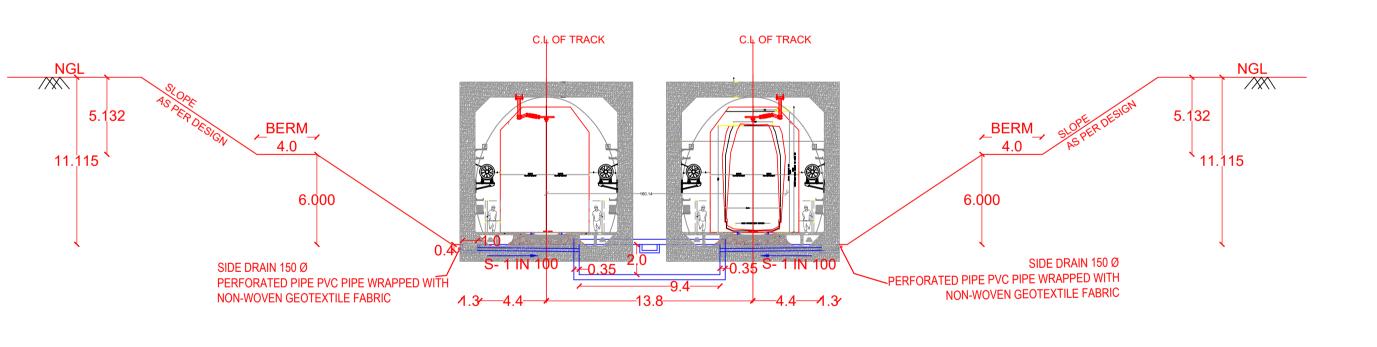

HARYANA ORBITAL RAIL CORRIDOR

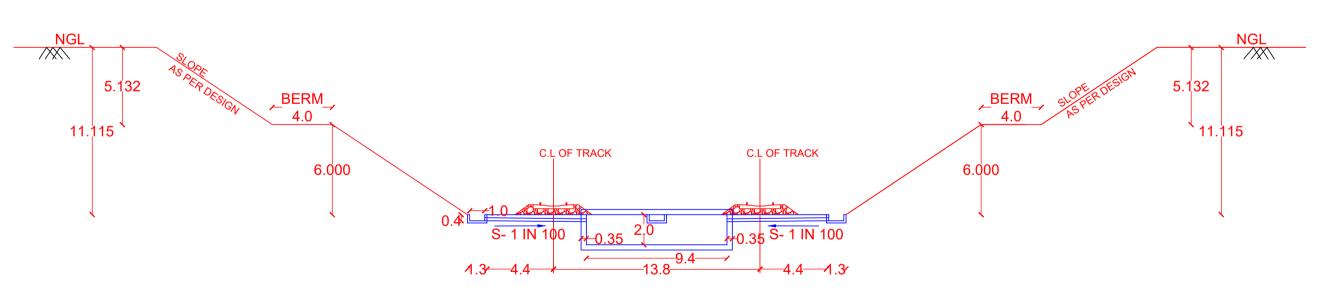
CONNECTING PALWAL TO SONIPAT BYPASSING DELHI AREA BY LINKING ASAOTI-PATLI-SULTANPUR-ASAUDAH BY NEW ELECTRIFIED BG DOUBLE LINE


✓ TENDER

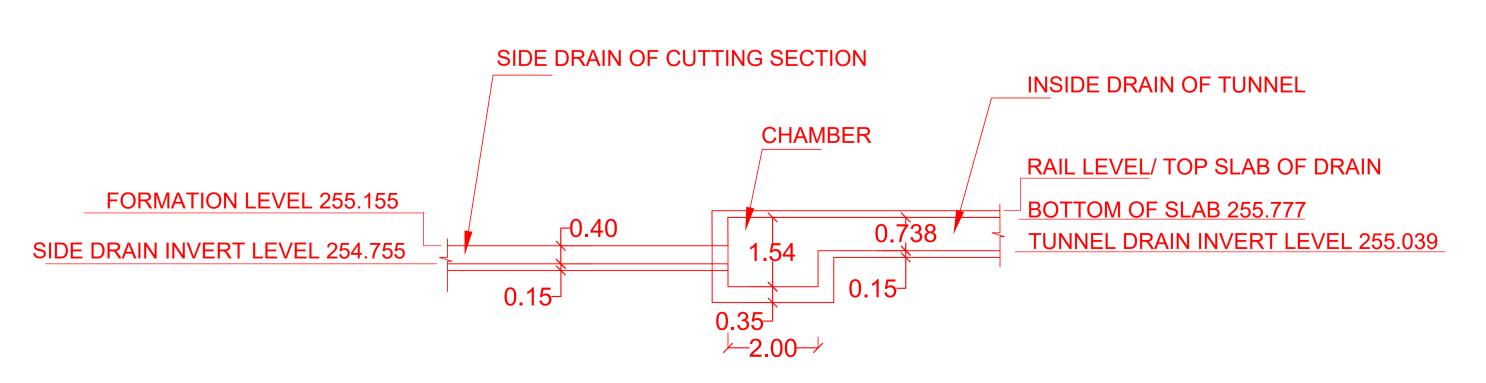

CONSTRUCTION

DETAILS OF SIDE DRAIN & PORTAL 2

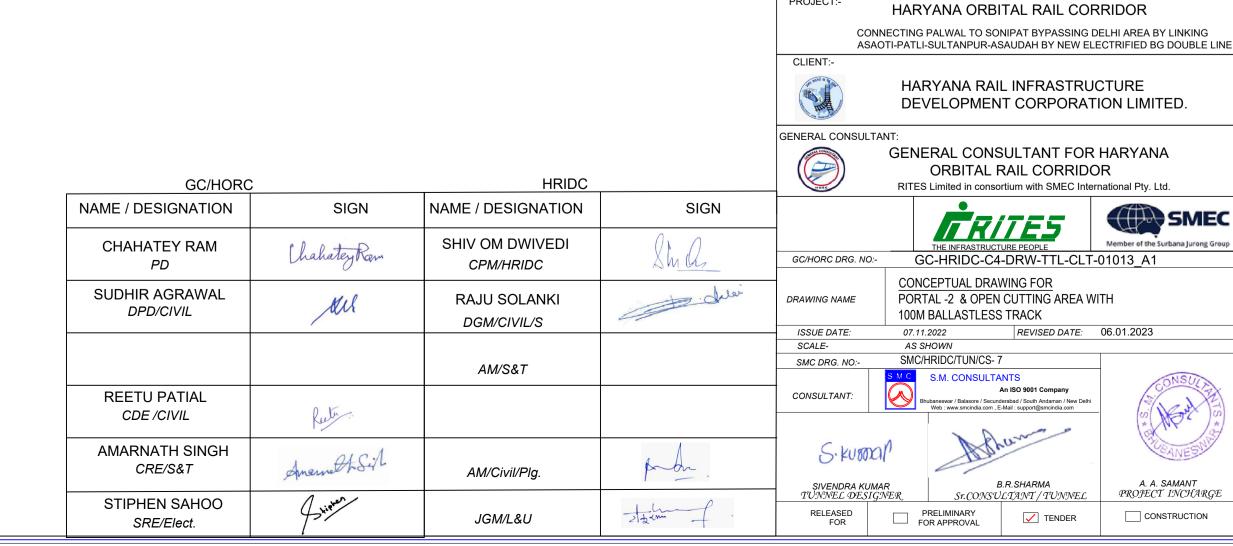




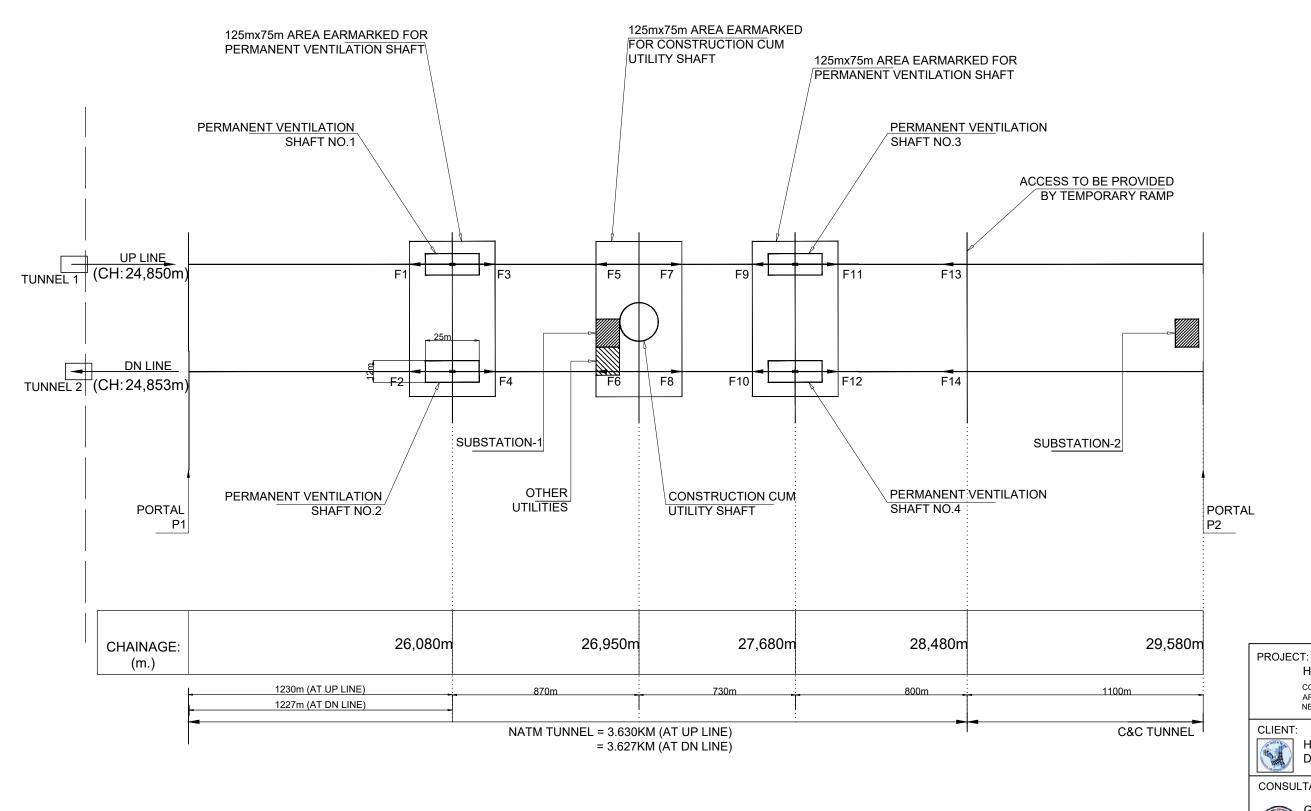
PROJECT:-


An ISO 9001 Company

LONGITUDINAL SECTION



CROSS SECTION AT CUTTING AT PORTAL



DETAILS OF 'A' DRAIN SLOPE AS PER FORMATION

CROSS SECTION AT CUTTING BEFORE PORTAL

3. Miscellaneous Drawings (Conceptual Plans)

NOTES:

- F1 F14 ARE THE WORKING FACES OF NATM TUNNEL.
- CHAINAGES SHOWN ARE RECKONED FROM C/L OF PRITHALA STATION BUILDING TAKEN AS 0.00m, WITH RESPECT TO UP MAIN LINE.

				_
GC/HORC		HRIDC		
NAME / DESIGNATION	SIGN	NAME / DESIGNATION	SIGN	
CHAHATEY RAM PD	ChahateyRow	SHIV OM DWIVEDI CPM/HRIDC	Sh. a.	Γ
SUDHIR AGRAWAL DPD/CIVIL	all	RAJU SOLANKI DGM/CIVIL/SOUTH	- dulai	ŀ
REETU PATIAL CDE/ CIVIL	Rute]

HARYANA ORBITAL RAIL CORRIDOR

CONNECTING PALWAL TO SONIPAT BYPASSING DELHI AREA BY LINKING ASAOTI-PATLI-SULTANPUR-ASAUDAH BY NEW ELECTRIFIED BG DOUBLE LINE

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

CONSULTANT:

GENERAL CONSULTANT FOR HARYANA ORBITAL RAIL CORRIDOR RITES Limited in consortium with SMEC International Pty. Ltd.

TITLE:- SCHEMATIC DIAGRAM OF **HORC TUNNEL**

SKETCH NO. SHEET NO. GC-HRIDC-C4-SK-TUNNEL-001 A1

SCALE: ISSUE DATE REVISED DATE AS SHOWN 09.01.2023 07-11-2022

6B. Documents

	Bid No. HORC/HRIDC/TPC-01/2023
1. DESIGN BASIS	REPORT
Section 6: Bid Drawings and Documents	

DESIGN BASIS REPORT (FINAL)

EXPLORING ALTERNATE ALIGNMENTS, FINAL LOCATION SURVEY, GEOLOGICAL MAPPING, GEO-TECHNICAL INVESTIGATION, DETAIL DESIGN OF TUNNEL & ITS APPROACHES INCLUDING VIADUCT IF ANY AND OTHER ANCILLARY WORK IN SOHNA-MANESAR SECTION OF HRDC PROJECT.

Client:

HARYANA RAIL INFRASTRUCTURE
DEVELOPMENT CORPORATION LIMITED.

Prepared By:

S.M. CONSULTANTS, S.M.TOWER, PLOT NO.-130, MANCHESWAR INDUSTRIAL ESTATE, RASULGARH, BHUBANESWAR-751010, ODISHA

DESIGN BASIS REPORT (FINAL)

EXPLORING ALTERNATE ALIGNMENTS, FINAL LOCATION SURVEY, GEOLOGICAL MAPPING, GEO-TECHNICAL INVESTIGATION, DETAIL DESIGN OF TUNNEL & ITS APPROACHES INCLUDING VIADUCT IF ANY AND OTHER ANCILLARY WORK IN SOHNA-MANESAR SECTION OF HORC PROJECT.

Prepared & Submitted By			
M/s. S. M. Consultants			
Prepared By	Tunnel Designer		
		(Shivendra Kumar)	
Approved By	Sr. Tunnel Consultant		
		(B. R. Sharma)	

Client:

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

Prepared By:

S.M. CONSULTANTS, S.M.TOWER, PLOT NO.-130, MANCHESWAR INDUSTRIAL ESTATE, RASULGARH, BHUBANESWAR-751010, ODISHA

Contents

1.Introduction	5
2.Salient Features of Tunnel Portion	6
3.Scope of DBR	6
4.References	7
5.Geological/Geotechnical Conditions of Project Area	7
6.Determination of Cross Section of Tunnel	9
7.Design Basis Report for Portal Slope Stability Analysis	10
7.1.Geology of Portal Area	10
7.2.Design Data for Portal Slopes	11
7.2.1.Factor of Safety for portal	11
7.2.2.Self-Weight of Rock Mass:	11
7.2.3.Earthquake Loads:	11
7.2.4.Geotechnical Parameters for Portal P1:	12
7.2.5.Geotechnical Parameters for Portal P2:	13
7.2.6.Support/Reinforcement Properties for Portals:	13
7.2.7.Shotcrete with wire mesh:	13
7.2.8.Anchor Plate	14
7.2.9.Fully Grouted rock bolt	14
7.2.10.Self-Drilling Anchor	15
7.2.11.Steel Rib	16
7.3.Methodology for Portals Slope Design	17
7.3.1.Design of Portal Slope for various failure mode	18
7.3.2.Types of Failure	18
7.3.3.Planar Failure for Portal Slope	18
7.3.4.Wedge Failure for Portal Slope	19
7.3.5.Global Stability Check for Portal Slopes	20
7.3.6.Global Stability Check with Tunnel opening	20
7.3.7.Rock Fall Barrier	20
8 Design Basis Report for Tunnel Underground Excavation	21
8.1.Geology of Tunnel	21
8.2.Geotechnical Design Parameters for Tunnel	22
8.3.Material Strength Criterion	22
8.4.Strength Properties of Material for Tunnel	23
8.5.In-Situ Stress for Tunnel	25
8.6.Support Properties for Tunnel	26
8.6.1.Shotcrete Properties	26
8.6.2.Steel fibers:	27
8.6.3.Synthetic fibers:	27

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 1 of 60
Tender Document (Final)	01	3671-13 2022	Page 1 of 60

8.6.4.Fully Grouted Rock Bolt	28
8.6.5.Lattice Girder	29
8.7.NATM Tunnelling – Concept	30
8.8.Design Approach	30
8.9.Design Methodology for Tunnel Support Design	31
8.10.Wedge Analysis-Kinematic Analysis	33
8.11.IS Code Method-Tunnel in Rock	34
8.12.Ultimate wall support pressure	35
8.13.Bolt Spacing	35
8.14.Bolt Length	35
8.15.Rock bolt capacity	36
8.16.Shotcrete capacity	36
8.17.Analytical Method According to Prof. Feder and Erdmann/Duddeck	36
9Numerical Analysis for Tunnel	37
9.1Loads	37
9.2Dead Load	37
9.3Rock Load:	37
9.4Seismic Load	37
9.5External Water Pressure	38
9.6Future Road Traffic Load	38
9.7Properties of Proposed support system	38
9.8Material Factor of Safety	38
10Stages of Analysis in Numerical Method of Design:	38
10.1Sensitivity Analysis:	39
10.2Interpretation of Results	40
10.3Instrumentation and Support Performance	40
11Design of RCC Portal	41
11.1.Material Properties	41
11.2.Methodology for Design of RCC Portals	42
11.3.Design Assumptions	42
11.4.Boundary Conditions	42
11.5.Design Loads	43
11.6.Load Combinations	43
11.6.1.Ultimate Limit State (ULS)	43
11.6.2.Serviceability Limit State (SLS)	44
11.6.3.Concrete Cover	44
11.6.4.Reinforcement	44
11.6.5.Crack width	44
11.6.6.Deflection:	44
12Secondary Lining Design	44

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	CEDT 15 2022	Dago 2 of 60
Tender Document (Final)	01	SEPT-15 2022	Page 2 of 60

12.1Method of Analysis	45
12.2Calculation of Spring Constants	45
12.3Load Cases	46
12.3.1Self-Weight [G1]	46
12.3.2Invert Fill [G1]	46
12.3.3Exhaust Fan & Overhead System [G1]	46
12.3.4Earth Pressure [G2]-Rock	46
12.3.5Earth Pressure [G2]-for Soil:	47
12.3.6Lateral Load for Rock and soft ground:	48
12.3.7Shrinkage [G3]	48
12.3.8Water Pressure [G4]	48
12.4Live Loads [Q]	48
12.4.1Temperature Load [Q1]	48
12.4.2Earthquake	49
12.4.3Applied load cases	50
12.4.4Ultimate Limit State (ULS)	50
12.4.5Serviceability Limit State (SLS)	50
12.4.6Structural design method	50
12.4.7Concrete cover	51
12.4.8Crack width	51
13Design Basis for Cut and Cover Tunnel	52
13.1Soil parameters	52
13.2Cast in place concrete	53
13.3Concrete cover	53
13.4Crack Width	53
13.5Calculation of Spring Constants	54
13.6Primary Load case for Cut and Cover	54
13.6.1G1 -Self-Weight:	54
13.6.2G2-Lateral Earth Pressure on Wall	54
13.6.3G3- Weight of Fill	55
13.6.4E1 -Earthquake/Seismic Load	55
13.6.5 Future Road Traffic Load [G2]	56
13.7 Applied load cases	56
13.8 A layer of PCC of grade M20 150 mm thick shall be provided below bottom sletunnel	
13.9 Analysis Method of Cut and Cover	57
14 Cross Passages	
15 Permanent Ventilation Shafts	
16 Construction cum Utility Shaft	
Annexures	

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	CEDT 15 2022	Dago 2 of 60
Tender Document (Final)	01	SEPT-15 2022	Page 3 of 60

LIST OF TABLE

Table 1: Discontinuity Sets for Portal-P1	11
Table 2: FOS for various Loading Conditions	11
Table 3: Rock Mass Parameters for Portal Slopes.	12
Table 4: Soil Properties for Portal	13
Table 5: Laboratory Test carried out in rock	21
Table 6: Laboratory Test carried out in Soil	21
Table 7: Summary of Intact Rock Mass properties	22
Table 8: Discontinuity Sets along Tunnels (As per GIR Table No 3.2)	22
Table-9: Material Strength Parameters for Hoek-Brown Criterion-Rock	24
Table-10: Recommended material Properties for tunneling in Soil	25
Table 11: In-Situ Stress Parameters for Tunnels	26
Table 12: Shotcrete Properties (SFRS)	28
Table 13: Rock Bolt Properties	29
Table 14: Self Drilling Anchor Properties	29
Table 15: Lattice Girder Properties	29
Table-16: Instrumentation Proposed for Tunnel Excavation	41
Table-17: Partial factors for materials for ULS.	51
Table-18: Soil parameter for Cut& cover Box	52

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 4 of 60
Tender Document (Final)	01	JEF 1-13 ZUZZ	Page 4 of 60

Haryana Rail Infrastructure Development Corporation Ltd. (HRIDC) has been incorporated under the provision of Companies Act on 22.08.2017 with equity contribution of 51% from Govt. of Haryana and 49% from Ministry of Railways with an objective to develop, finance and implement viable railway projects (by itself or through a subsidiary SPV) including projects which require viability gap funding (VGF). Presently, HRIDC is implementing various Railway infrastructure development projects in Haryana with necessary cooperation from Indian Railways. As a sequel to its project development in Haryana state, HRIDC has planned for design and construction of New Board Gauge Double Railway line from Palwal to Sonipat via Sohna, Manesar and Kharkhouda for passenger and freight traffic. It will provide seamless connectivity to Dedicated Freight Corridors (DFC) at Prithala station and to Indian Railways at Palwal, Patli, Sultanpur, Asaudha and Harsana Kalan stations. The projected route named as Haryana orbital rail corridor, which is 140 km rail link project to provide alternative route to Goods traffic presently moving in a circuitous and congested path via Delhi and consuming more time. Once this line is constructed movement by rail only instead of road due to curb pollution menace. This project will be beneficial to the industrial Hubs of Kharkhouda, Manesar and Sohna and will help in development, traffic can run faster and attract new traffic because of opening of rail transport. In future, environmental issues will come up in a big way favoring long distance traffic of this region of Haryana. This project has a tunnel for crossing Aravali Range near Sohna.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page F of 60
Tender Document (Final)	01	3571-13 2022	Page 5 of 60

2. Salient Features of Tunnel Portion

FEATURES				
SL.NO,	DESCRIPTION	DETAILS		
1	PROJECT SECTION	IMT SOHANA-DULAWAHT SECTION		
2	NO OF TUNNEL	2 Nos Tunnel (UP Main/DN Main)		
3	TUNNEL	Single Tube single track		
4	STANDARD OF LOADING	32.5T Axel Load		
5	TOTAL LENGTH OF TUNNEL	4700 M (EACH LINE)		
6	LENGTH OF NATM TUNNEL IN ROCK	1120 M (24880-26000)		
7	LENGTH OF NATM TUNNEL IN SOIL	2480 M (26000-28480)		
8	LENGTH OF CUT &COVER TUNNEL IN SOIL	1100M (28480-29580)		
9	PORTAL 1 IN ROCK	CH:24880 M		
10	PORTAL 2 IN SOIL (Cut& Cover)	CH:29580 M		
11	NO. OF SHAFT	5Nos (4 Permanent Ventilation Shafts & 1 Construction cum utility Shaft)		
		Permanent Ventilation Shaft Ch:26080		
12	LOCATION OF SHAFTS	Construction cum utility shaft Ch:26950		
		Permanent Ventilation Shaft Ch:27680		
13	MAX. DEGREE OF CURVATURE IN TUNNEL	1-degree RHS		
13	IVIAX. DEGREE OF CORVATORE IN TONNEL	0.5-degree LHS		
14	LENGTH OF STRAIGHT TRACK IN TUNNEL	1660.32 M		
15	LENGTH OF CURVATURE TRACK IN TUNNEL	3039.68 m		
16	TYPE OF TRACK	Ballast Less track		
17	TRACTION	Electrified with high rise OHE (rocs)		
18	CROSS PASSAGE	At 350.0 m interval.		
17	MAX.ROCK/SOIL PILLAR THICKNESS BETWEEN TWO TUNNEL	2D		

3. Scope of DBR

This DBR deals with preparation of methodology and baseline of support system design for portals (P1 & P2), cut and cover, tunnel excavation and primary lining design of the proposed alignment of tunnel between chainage 24+880 to Ch 29+580, total length of4700m long tunnel (1120m tunnel in Phyllite Rock, 2480m in Soil& 1100m in Cut &Cover).

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 6 of 60
Tender Document (Final)			1

4. References

The following references are used in the context of the analysis and design of slope:

- i. Finite Element Analysis code for Excavations and Slopes.
- ii. Redate Manual
- iii. IS: 456: 2000-Plain and Reinforced Concrete Code of Practice
- iv. RDSO Design and Construction Guidelines of Tunnels G17
- v. IS:13365 (Part-2)-1992: Quantitative Classification Systems of Rock Mass- Guidelines Rock Mass Quality for Prediction of Support Pressure in Underground Openings, Bureau on Indian Standards, New Delhi.
- vi. IS:15026-2002: Tunneling methods in rock masses Guidelines, Bureau on Indian Standards, New Delhi.
- vii. Indian Railway Standard Code of Practice for Plain, Reinforced and Pre-Stressed Concrete Bridge [IRS-CBC]
- viii. IS 1893(Part-1): 2002 Criteria for earthquake resistant design of structures
- ix. Seismic design and analysis of underground structures" by YMA Hashish, JJ Hook, Birger Schmidt and John I-Chiang Yao.
- x. Lowson, A.R., and Z.T. Bieniawski. 2013. Critical Assessment of RMR based Tunnel Design Practices: a Practical Engineer's Approach. Rapid Excavation & Tunneling Conference. Washington DC.16 pp
- xi. ITA guidelines for Tunnel ventilations and Fire Safety.
- xii. Other relevant IS Codes and IRS Code.
- xiii. U.S. Army Corps of Engineers Manual EM1110-2-2901 Engineering and Design Tunnel and Shafts in Rock

5. Geological/Geotechnical Conditions of Project Area

Tunnel proposed lies in Delhi Ridge, Delhi ridge constitutes northernmost extension of the Aravalli range in the form of two ridges, i.e. Sohna ridge in Haryana, nearly 45 km from Delhi, and west of it is Harachandpur ridge also known as Delhi ridge, which has become famous for its environmental importance to this region. Physio-graphically the north-western part of the India covers deserts of the Rajasthan and Haryana, Aravalli ranges and Indo-Gangetic alluvium. The Aravalli Mountains constitute remnant monuments of Precambrian times, whereas Thar desert and alluvium are Quaternary features formed by

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 7 of 60

Aeolian and alluvial processes. In Haryana and Delhi region quartzites are exposed as NE-SW trending ridges amidst the alluvial and aeolian cover. Sohna-Ferozpur Jhiraka ridge runs from Nowganawa in Rajasthan to Bhundsi a place about 45 km south of Delhi. Northeast of the Sohna is a broad Harachandpur ridge, which extends up to Delhi, where it is known as famous Delhi ridge. These two ridges consist of thickly bedded quartzites with minor schist. The quartzites are reported to exhibit sedimentary structures like ripple marks, current bedding, mud cracks, flute cast and certain depositional features. Volcanic fragments and bands within the Alwar quartzites in and around Sohna and stratified tuffbeds in Badkhal-Surajkund have also been reported, indicating area contemporaneous volcanic activity in the area. The region around the site consists of metamorphosed arenaceous rocks of the Alwar group. The Lithology is dominated by Quartzite's with some intercalations of phyllites near the southern portal. The Quartzite's are met sedimentary rocks that comprise greater than 80% quartz along with feldspar and mica minerals, the mineral grains show an equigranularity interlocking texture.

The phyllites are low-grade metamorphic rocks, they have a marked fissility (a tendency to split into sheets or slabs) due to the parallel alignment of platy minerals; they have a sheen on their surfaces due to tiny plates of micas.

The quartzite's near to surface showed high weathering and were highly friable and non-cohesive while as we move deeper (> 15 m) the quartzite becomes more resistive and less weathered. Quartz is a tectosilicate mineral that ranks 7 on the Mohr hardness scale, since it crystallizes later according to the Bowen reaction series it is also resistive to weathering. Feldspar on the other hand ranks 6 on the Mohr hardness scale and crystallizes earlier thus is prone to weathering. in the southern part intercalation of phyllites/schist along with quartzite are observed.

The total tunnel length is 4.7 km, out of which 1.1 km of tunnel will be within the quartzite rock mass of Delhi Supergroup and 2.9 km will run through soil and remaining 0.7Km will be Cut Cover type structure. Based on the available surface information from the geological field investigation and close observation of the drilled cores from the litho-logs, it has been observed that after crossing the soil

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 8 of 60

the tunnel will enter into a folded rock mass where the axis of the tunnel will be perpendicular to the fold axis, thus favorably oriented with respect to the folded bedding planes. However, the folded rock layer has suffered extreme level of later brittle fracturing, which has been testified by the presence of 6 sets of joints of different orientation and a few late brittle discrete shear zones (which is certainly not active in nature). These joints and the fractures have significantly reduced the strength of the otherwise sufficiently cohesive metamorphic rock mass. Presence of the intersecting closely spaced joint sets make the tunnel part within the rock body highly susceptible to wedge failure.

Figure 1: Google Map of proposed Tunnel

6. Determination of Cross Section of Tunnel

Following factors shall be taken into account while deciding the cross section of tunnel,

- Fixed Structure Gauge for tunnel of HORC
- 2. Horizontal & Vertical clearance on curves as per IRSOD
- 3. Footpath Size

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 9 of 60

- 4. Drain Size
- 5. Type of OHE.
- 6. Provision for Space for Ventilation Fan
- 7. Geological Features

Maximum fixed structure gauge provided by RDSO for the HORC tunnel is shown in Annexure-1. Based on the above parameters tentative cross section of tunnel for rock and soil has been shown in **Annexure-1**.

7. Design Basis Report for Portal Slope Stability Analysis

7.1. Geology of Portal Area

For the proposed tunnel, Portal-1 is placed in moderately strong phyllite which is suitable for portal location whereas Portal-2 is placed in soil whose stability shall be ensured by suitable protection measures. The Proposed portals of tunnel are namely Portal P1 and Portal P2 at chainage 24+880 m and 29+580 m of the project area. At portal P1 there is an overburden of Rock of around 25m while at portal P2 there is an overburden of soil of less than around 1m. During the excavation and portal formation adequate slope shall be provided so that failure of any overburden material (rock/soil) shall be avoided.

Major discontinuity sets mapped in and around the portals area are presented below which is taken from **GIR Table No-3.2**.

Joint Set	Average Strike	Average True Dip amount	Average True Dip direction
J1	035	80	SE
J2	035	20	NW
J3	000	84	Е
J4	000	40	W
J5	300	55	NE
J6	300	80	NE

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 10 of 60

Table 1: Discontinuity Sets for Portal-P1

Test on joint infill material have not been carried out by the Employer. The contractor shall get infill material tested for shear strength parameters. The above proposed joint set and shear parameter which shall be obtained by the Contractor, shall be considered for kinematic analysis of rock slope at portal P1. Tunnel portal P2 falls in soil. So kinematic analysis of the same is not required. Its slope protection measures shall be designed for global failure using suitable protection measures such as SDA, shotcrete with wire mesh.

7.2. Design Data for Portal Slopes

7.2.1. Factor of Safety for portal

Local stability for portal P1 and global stability of cut slope of Portals P1 & P2 shall be checked. Minimum factors of safety for different failure load cases are tabulated in Table 2. These are based on FHWA (Federal Highway of America) guidelines

Description	Minimum FOS Required	
Normal condition	1.5	
Extreme Condition	1.1	
	Normal condition Extreme	

Table 2: FOS for various Loading Conditions

7.2.2. Self-Weight of Rock Mass:

As per GIR Para 4.5.1.2-self-weight of rock mass (saturated unit weight) may be taken as 26.72 kN/m³ for rock while for soil it may be taken as 19kN/m³ as per GIR Para 5.4.2.

7.2.3. Earthquake Loads:

This Project area falls under seismic zone IV of Indian Seismic Zoning Map, where maximum seismic zone coefficient (Z) is 0.24, so Horizontal seismic coefficient Ah = Z/2 *Sa/g *I/R here Sa/g = 2.5, I = importance Factor = 1.5, R=

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNE Tender Document (Final)	L 01	SEPT-15 2022	Page 11 of 60

Response Reduction Factor = 2.5 so Ah = 0.24/2*2.5*1.5/2.5 = 0.18 and Vertical Seismic Coefficient equal to 2/3rd of horizontal Coefficient will be 0.12.

7.2.4. Geotechnical Parameters for Portal P1:

Intact rock properties are based on bore holeBH-13. Rock mass properties have been determined based on laboratory test results of intact rock using Mohr Columb fit parameters using Roc Data software. For deriving rock mass property for FEM analysis of cut slope, shear strength parameters are required which have been derived using Roc lab software in which input parameters are UCS, GSI and mi.

Description		Unit	Rock Mass Portal (P1) From Bore Hole BH-13
	UCS(Table 6.1 of GIR)	MPa	60
	RMR (Table 6.1 of GIR)		20-40
Intact Rock	GSI=RMR _{av} -5		25
Properties	mi (Roc Lab Software)		20(For quartzite)
	D-disturbance factor		0.2
	٧		0.3
	c (peak)	MPa	0.395
	Ф (peak)	deg	49.38
Rock Mass	c (residual)	MPa	0.354
Parameters	Φ (residual)	deg	46.93
	Tensile Strength	MPa	0.008
	Deformation Modulus	MPa	1836
Disturbed 2m thick	С	MPa	0.233
Rock Mass D=0.7(Will be	Ф	deg	37.06
modelled in Phase2 to consider effect of	Tensile Strength	MPa	0.004
blasting during excavation.)	Deformation Modulus	MPa	1193

Table 3: Rock Mass Parameters for Portal Slopes.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 12 of 60

The above tabulated parameter of rock mass may be used for Global slope stability analysis of Portal Cut Slopes (Portal P1). The Mohr Coulomb fit parameter for rock mass has been attached as *Annexure-2*.

Value of K (In -situ stress ratio) for slope stability analysis for the Portal P1 and P2shall be taken as 0.5.

7.2.5. Geotechnical Parameters for Portal P2:

As per geological section Portal P2 falls in soil .and bore hole data obtained from **BH-32 &33** has been considered to derive geotechnical parameter for global stability of slope. Following geotechnical parameters may be taken for global stability analysis of slope. Refer **Table 3.3 of GIR**.

	E Value	MPa	31
	C Cohesion	KPa	8
Soil Properties for Portal	Φ	Degree	26
	Saturated Density	kN/m3	22

Table 4: Soil Properties for Portal

7.2.6. Support/Reinforcement Properties for Portals:

Support in the form of systematic rock bolt/self-drilling anchor SDA and shotcrete with wire mesh shall be used for portals. The following support properties will be considered for the shotcrete and soil nails.

7.2.7. Shotcrete with wire mesh:

The 28 days strength of shotcrete shall be minimum 25 N/mm2. The early strength will be estimated using young shotcrete strength development curve as per class J2 of Austrian guidelines (Fig 2). At portals shotcrete with wire mesh (100mmx100mm x5 mm) will be used.

Grade of mix	Unit	Reference Code	M25
Characteristic Compressive	МРа	IS 456:2000	25

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 13 of 60

Exploring Alternative Alignment And Other Ancillary Works In Sohana-Manesar Section Of "Haryana Orbit Rail Corridor" Project In The State Of Haryana.

strength(fck)			
Allowable Compressive Strength	МРа	IS 456:2000	6.0
Tensile strength=	MPa	IS 456:2000, B2.1.1	3.2
Allowable Shear Strength	МРа	IS15026:2002	5.5
Young's Modulus	МРа	IS 456:2000	25000

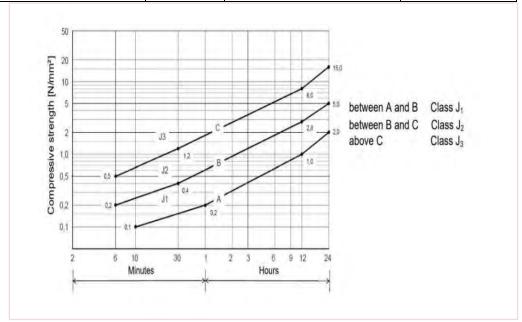


Figure 2:Early strength development of young shotcrete

7.2.8. Anchor Plate

For rock bolt anchor plate of Mild steel Fe 500 of size 150 mm x150 mm x 8 mm shall be used, which is adequate for 25 mm diameter rock bolts but its adequacy will be verified at site during pull out test of rock bolts.

7.2.9. Fully Grouted rock bolt

Rock bolt of Portals will be deformed bar of Grade Fe500D, whose characteristic curve with reference to IS 456:2000 is attached as figure 3.

Diameter of Rock Bolt	mm	25
Minimum Dia of Hole	mm	38/45*
Steel Grade (Yield Strength)	MPa	Fe 500 (500)

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 14 of 60

Cross-sectional Area	mm ²	491
Yield Capacity	kN	245.43
Elastic Capacity (0.80x yield)	kN	196
Design Capacity Considered (Approx.)	kN	190
Length of Rock Bolt	m	4/6/8
Factor of Safety		1.25

^{*}Diameter of hole of rock bolt may vary from 38 mm to 45 mm. Final decision of its diameter will be taken after pull out test carried out on rock bolt at site. Pull out test shall be carried out for its full design capacity of 190 kN.

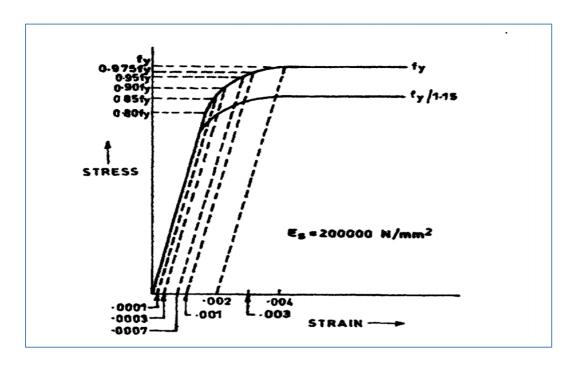


Figure 3: Characteristic Curve of Fe500D

7.2.10. Self-Drilling Anchor

For Portal P2 which falls in soil self-drilling anchor of suitable length shall be used along with shotcrete and wire mesh.

Specification of Self Drilling Anchor	SDRA 38/19
Outside Diameter (mm)	38
Internal Diameter (mm)	19

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 15 of 60

Exploring Alternative Alignment And Other Ancillary Works In Sohana-Manesar Section Of "Haryana Orbit Rail Corridor" Project In The State Of Haryana.

Cross Sectional Area (mm²)	700
Ultimate Load (kN)	500
Yield Load (kN)	400
Weight (kg/m)	5.5
Length of Self Drilling Anchor	6m/8m/10m
Factor of Safety	1.25
Design Capacity (KN)	300kN (Approx.)

7.2.11. *Steel Rib*

Steel Ribs shall be used in portal region (around 15 m from start) where chance of rock mass movement due to planar slide and creep is more. Size of steel ribs can be optimized as per design. Steel ribs used will be of Grade Fe250. Characteristic curve of mild steel with reference to IS456:200 is attached as figure -4.

Support type		Steel rib		
Grade of Steel			Fe 250	
Description of section as		ISMB	ISMB200@	ISMB 250
per IS 808		150 @15		@ 37.3
-		kg/m		kg/m
Depth of section	mm	150	200	250
Cross-sectional Area	mm ²	1910	30800	4750
Moment of Inertia	m ⁴	7.18x10 ⁻⁶	2.12 x 10 ⁻⁵	5.13 x 10 ⁻⁵
Modulus of Elasticity	MPa	200000	200000	200000
Yeild Strength of Steel Rib	МРа	250	250	250

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 16 of 60

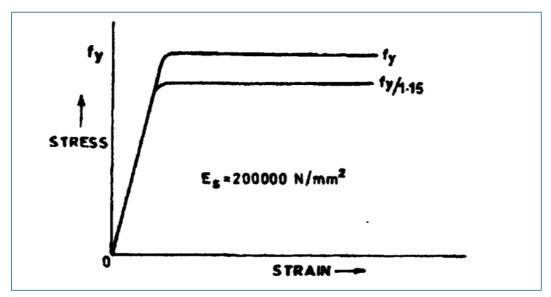


Figure 4:Characteristic Curve of Fe250

7.3. Methodology for Portals Slope Design

Tunnel Portal P1 is located in quartzite's and quartzitewith thin- inter bedded layer schist type rock. The rock mass available around the portal P1 is slightly weathered rock. Excavation of Portal shall be planned so as to minimize excavation and cut height. Portal P2 falls in soil. So kinematic analysis is omitted but global stability check shall be carried out as described below.

- 1 First Kinematic analysis shall be carried out to check toppling, planar and wedge failure.
- 2 Planar and wedge failure shall be checked with and without support system, if wedges are not stable (FOS is less than desirable) wedge shall be analyzed with support system and its adequacy against desired FOS shall be checked.
- An excavated slope will be checked against global failure using strength reduction method with help of RS². Excavated slope shall be analyzed stage wise- first up to heading excavation level and then upto final excavation level. If excavated slope is unstable (factor of safety is less than desired), it shall be reanalyzed with suitable slope protection measures to achieve desired factor of safety.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 17 of 60
Tender Document (Final)	01	02. 1 13 2022	1 486 17 01 00

7.3.1. Design of Portal Slope for various failure mode.

Portal slope shall be analyzed for various failure modes to check stability of slope. Following sections describe the methodology for slope stability of portal for different failure modes.

7.3.2. Types of Failure

Various types of failure of portal cut slope have been given below, for which adequacy of support system shall be checked.

7.3.3. Planar Failure for Portal Slope

For this type of failure to occur, the following geometrical conditions must be satisfied:

- a) The plane on which sliding occurs must strike parallel or nearly parallel (within approximately $\pm 20^{\circ}$) to the slope face.
- b) The sliding plane must "daylight" in the slope face, which means that the dip of the plane must be less than the dip of the slope face, that is, $\psi_D < \psi_f$.
- c) The dip of the sliding plane must be greater than the angle of friction of this plane, i.e. $\psi_p > \phi$.
- d) The upper end of the sliding surface either intersects the upper slope, or terminates in a tension crack.
- e) Release surfaces that provide negligible resistance to sliding must be present in the rock mass to define the lateral boundaries of the slide. Alternatively, failure can occur on a sliding plane passing through the convex "nose" of a slope.

The typical plane sliding mechanism is shown in Figure 7.

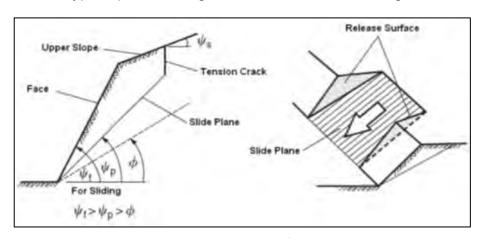


Figure 5: Geometric Conditions for Planar Failure

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 18 of 60

7.3.4. Wedge Failure for Portal Slope

This failure occurs when slopes containing discontinuities striking obliquely to the slope face and sliding of a wedge of rock takes place along the line of intersection of two such planes. The geometry of the wedge for analyzing the basic mechanics of sliding is defined in Figure 8. Based on this geometry, the general conditions for wedge failure are as follows:

- a) Two planes will always intersect in a line. On the stereo net, the line of intersection is represented by the point where the two great circles of the planes intersect, and the orientation of the line is defined by its trend (α_i) and its plunge (ψ_i) .
- b) The plunge of the lb line of intersection must be flatter than the dip of the face, and steeper than the average friction angle of the two slide planes, that is $\psi_{fi}>\psi_{i}>\phi$. The inclination of the slope face ψ_{fi} is measured in the view at right angles to the line of intersection. (**Note:** ψ_{fi} would only be the same as ψ_{f} , the true dip of the slope face, if the dip direction of the line of intersection were the same as the dip direction of the slope face).

The line of intersection must dip in a direction out of the face for sliding to be feasible; the possible range in the trend of the line of intersection is between α_i and $\alpha_{i'}$.

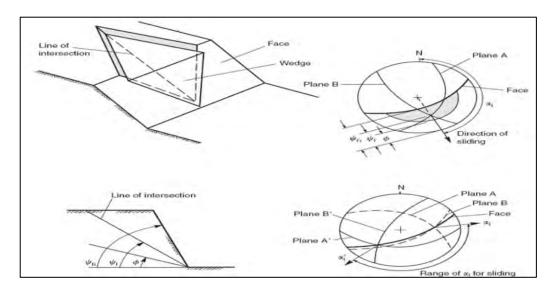


Figure 6: Geometric Conditions for Wedge Failure

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 19 of 60
Tender Document (Final)	01	3EP1-13 2022	Page 19 01 00

7.3.5. Global Stability Check for Portal Slopes

The stage wise global stability analysis for portal slopes shall be carried out for critical section using RS² software. First The critical section will be analyzed without any support system. The results of the analysis will be expressed as a factor of safety which is defined as the ratio of available shear strength to the shear stresses developed on the sliding plane. If FOS of unsupported slope is less than desired, suitable support system shall be used, and it will be reanalyzed to achieve desired FOS. In global stability analysis of portal slope stage wise analysis first up to tunnel heading excavation level shall be carried out. After that analysis for final excavation up to invert level will be carried out. Although support requirement for analysis of final stage is likely to govern but stage analysis shall be included in design report pertaining to portal cut slopes.

7.3.6. Global Stability Check with Tunnel opening

After excavation and support of portal slope tunnel will be excavated stage wise up to heading level and then up to invert level. So stability of rock mass after tunnel opening shall be checked for various conditions and requirement of steel ribs, concrete lining and fore poling will be assessed. The analysis of portal slope with tunnel opening will be covered in report pertaining to design of underground support system.

At site at many places big size boulders are available which can cause problem during portal excavations. So it will be advisable to use rock fall barrier at different locations specially at portal locations.

7.3.7. Rock Fall Barrier

At portal-1 rock fall barrier at different locations shall be installed based on the size of the boulder and its kinetic energy to protect both portal and DFCC track.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 20 of 60

8 Design Basis Report for Tunnel Underground Excavation

8.1. Geology of Tunnel

Proposed HORC tunnel for NATM is around3600 m long out of which 1120m is inside the rock while remaining 2480 m falls in soil as indicated in geological section. For 1120m long Tunnel sub surface exploration has been carried out with total 6 Nos of bore hole namely BH-13, BH-14, BH-15, BH-15A, BH-16& BH-17. It is anticipated that rock mass encountered inside the tunnel will be mainly strong phyllite with more than six joints.

For assessing the material properties for tunneling in soil 16 Nos of bore holes have been carried out which are namely BH-17 to BH-33.

	Unconfined Compressive Strength,
	Point Load Index Test
	Tensile Strength
	Specific Gravity
Laboratory test any distant for made	5. Modulus of elasticity
Laboratory test conducted for rock	Water absorption
	7. Poisons' ratio
	8. Triaxial Test
	Hardness test
	10. Abrasive test

Table 5: Laboratory Test carried out in rock

Sl. No.	Laboratory tests	IS Codes
1	Preparation of soil sample	IS: 2720(part-1)-1983 (Reaffirmed 2015)
2	Moisture Content	IS: 2720(part-2)-1973 (Reaffirmed 2015)
3	Specific Gravity	IS: 2720(part-3)(sec-1)-1980 (Reaffirmed 2016)
4	Grain Size Analysis	IS: 2720(part-4)-1985 (Reaffirmed 2015)
5	Atterberg's Limits	IS: 2720(part-5)-1985 (Reaffirmed 2015)
6	Bulk Density	
7	Triaxial Shear Strength	IS: 2720(part-11)-1993 (Reaffirmed 2016)
8	Direct Shear Strength	IS: 2720(part-13)-1986 (Reaffirmed 2016)
9	Consolidation Test	IS: 2720(part-15)-1986 (Reaffirmed 2016)

Table 6: Laboratory Test carried out in Soil

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 21 of 60

8.2. Geotechnical Design Parameters for Tunnel

The geotechnical design parameters for the analysis shall be derived from bore holes information of tunnel (Laboratory test data & GIR). Major Discontinuities based on geological report of tunnels for kinematic analysis have been tabulated in **Table-7**.

Tunnels	Bore Hole	Unconfined Compressive Strength (MPa)	Modulus of Elasticity (GPa)	Point Load Index Range (MPa)
	BH-13	63	53-31	2.18
Tunnel (1100 m	BH-14	56	53-33	2.99
long) in	BH-15	67	52-41	3.37
Quartzite Rock	BH-15A	65	50-42	3.14
	BH-16	64	55-39	3.07

Table 7: Summary of Intact Rock Mass properties

Joint Set	Average Strike	Average True	Average True
		Dip amount	Dip direction
J1	035	80	SE
J2	035	20	NW
J3	000	84	Е
J4	000	40	W
J5	300	55	NE
J6	300	80	NE

Table 8: Discontinuity Sets along Tunnels (As per GIR Table No 3.2)

8.3. Material Strength Criterion

For the numerical analysis of underground excavations, selection of the material model is a critical issue in terms of the rock mass behavior. Most widely accepted material models that phase² supports are,

• Mohr-Coulomb (for Tunnel in Soil)

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 22 of 60

Hoek-Brown (For tunnel in rock)

The first material model Mohr-Coulomb is best suited to model the behaviour of soils, especially shear strength characteristics of soils. In case of rock, where shear modulus is high, it is recommended to use the Hoek-Brown material model. Hoek-Brown criterion is extensively used in analysis of underground excavations in rock and is based upon an assessment of the interlocking of rock blocks and the condition of the surface between these blocks. The generalized Hoek-Brown criterion is expressed by the equation

$$\sigma$$
1' = $\sigma_{3'} + \sigma_{ci} ((m_b \times \sigma_{3'} / \sigma_{ci}) + s)^a$

$$m_b = m_i \exp((GSI - 100)/(28-14D))$$

$$s = \exp((GSI-100)/(9-3D))$$

$$a = \frac{1}{2} + \frac{1}{6} \times (e-GSI/15 - e-20/3)$$

$$Em = Ei (0.02 + ((1-D/2)/ (1+e ((60+15D-GSI)/11))))$$

 σ_3 and σ_1 ' are the minor and major effective principal stresses at failure.

 σ_{ci} is the uniaxial compressive strength of the intact rock material.

mi, s and a are material constants.

mb is a reduced value of the material constant mi.

GSI = Geological Strength Index.

D = Factor depends on degree of disturbance to which the rock mass has been subjected by blast damage and stress relaxation.

Ei = Intact Rock modulus.

Erm = Rock mass deformation modulus.

8.4. Strength Properties of Material for Tunnel

A summary of the material strength parameters for Hoek-Brown criterion adopted in the analysis is presented in Table 9 below.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 23 of 60

Exploring Alternative Alignment And Other Ancillary Works In Sohana-Manesar Section Of "Haryana Orbit Rail Corridor" Project In The State Of Haryana.

Rock mass Designation	Class IV
DMD D (CID TILL (4)	(Poor Rock) 20< RMR≤40
RMR Range (GIR Table 6.1)	20 11
RMR _{av}	30
GSI= RMR-5	25
UCS (MPa) (GIR Table 6.1)	60
m _i (Rock Lab for Quartzite Rock)	20
Rocky	
D=Disturbance Factor	0
m _b	1.373
S	0.0002
a	0.531
E _d (MPa)	1836
Residual Property	has been calculated by taking D=0.2
m _b	1.516
S	0.0004
a	0.516
Poisson's ratio	0.20

Table-9: Material Strength Parameters for Hoek-Brown Criterion-Rock

Above parameter shall be used as rock mass parameter for support design using FEM software RS² (Phase²) software. It is anticipated as per Geological Exploration that all condition of rock mass of whole stretch of tunnel in rock will be covered in Class IV category. Derived rock mass parameter from Roclab software is appended as *Annexture-3*.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 24 of 60

Exploring Alternative Alignment And Other Ancillary Works In Sohana-Manesar Section Of "Haryana Orbit Rail Corridor" Project In The State Of Haryana.

Parameter	Type of Soil	
Φ for cohesive soil (from Laboratory Test)	CL	19°
Φ for non-cohesive	ML	
soil	ML-CL	32°
(from corrected N Value)	SM	32
Cohesion (C) (from Laboratory Test)	CL	25 KPa
Cohesion (C) (from Laboratory Test)	ML-CL SM	3 КРа
	Cohesive (CL)	28 MPa
Modulus of Elasticity (E)	Non-Cohesive (ML, SM, ML-CL)	30 MPa
	Cohesive (CL)	1852 kg/m³
Density	Non-Cohesive (ML, SM, ML-CL)	1765 kg/m ³

Table-10: Recommended material Properties for tunneling in Soil

Note: Above mentioned property of soil has been taken from Table 6.2 of GIR.

8.5. In-Situ Stress for Tunnel

tectonically active tectonic affect the areas, stresses stress regime possibly leading to development of locked-in stresses within rock mass Also, overlying rock mass strata gives rise to stresses due to its weight which plays important role in local stress field. Due to excavation, redistribution of stresses will take place creating new stress field around the opening. Thus, the magnitude and orientation of virgin stress field plays an important role in deciding the stability of an opening. As tunnelling projects always have limited information on in-situ stress testing, it is proposed to undertake a sensitivity analysis and adopt such stress values which may lead to the development of the critical stress field. Calculations, in the general case where field test data is absent, will be

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago 25 of 60
Tender Document (Final)	01	3571-13 2022	Page 25 of 60

based on Sheory simplified equation to estimate the horizontal to vertical stress ratio k. This equation is $\mathbf{k} = 0.25 + 7 \mathrm{Eh}(0.001 + 1/z)$, where z (m) is the depth below surface and Eh (GPa) is the average deformation modulus of the upper part of the earth's crust measured in a horizontal direction. For different classes of rock horizontal stress coefficient by Sheory's formula has also been calculated. This tunnel is shallow tunnel (where cover is less than 3 times the diameter of tunnel) and no Techtronic stress is anticipated. So, taking K value as more than 1 is not advisable. So, considering fair rock k value of 1 may be considered. While k Value for soil has been adopted as per Jacky's formula

K by Sh	eory's Formula	К	0.73
K Value for Rock	to be considered	K	1.0
K value soil	considered for	К	0.5
In- Situ Stress	Vertical Stress (σ ₃)	MPa	
	In Plane Horizontal Stress (σ₁)	MPa	It will be applied according to Natural Surface of above tunnel surface by inbuilt command of RS ² (Phase ²
	Out of Plane Horizontal Stress (σ _z)	MPa	software)

Table 11: In-Situ Stress Parameters for Tunnels

8.6. Support Properties for Tunnel

8.6.1. Shotcrete Properties

The shotcrete is modeled as plastic standard beam element, so that the excess forces are transferred to the adjacent rock mass and support element, if the shotcrete yield at any point. Shotcrete with Steel Fiber or Polymer Fiber will be used for Tunnel. Addition of fiber in shotcrete will increase its flexural and shear strength, which will be validated by laboratory test. Compressive Strength, Cracking Strength and Elastic Modulus variation with addition to fiber has been attached in *Annexure-3*. For improving

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 26 of 60
Tender Document (Final)			<u> </u>

strength of shotcrete either steel fiber or synthetic polymer fiber shall be used.

8.6.2. Steel fibers:

Steel fibres shall comply with the requirements given in ASTM A 820 or similar national regulations. Following will be specification of steel fibre used for SFRS.

- Average Tensile strength of fibre shall not be less than 345 MPa.
- The tensile strength of any one of the ten specimens shall not be less than 310 MPa).
- Fibers shall withstand being bent around 3.2-mm diameter pin to an angle of 90° at temperatures not less than 16°C without breaking.
- Type I:Straight/Deformed cold-drawn wire shall be used for fibers.
- Aspect ratio (I/d) shall be 40 to 60.
- The length of the steel fibers shall not exceed 0.7 of the internal diameters of the pipes or hoses used unless a test has proven that longer fibers can be sprayed without blockage.
- During design of secondary lining fiber content per kg/m³ of shotcrete shall be derived.

8.6.3. Synthetic fibers:

Synthetic fibres shall be in accordance with ASTM C1116 or regulations valid in the place of use of the sprayed concrete. Product description of synthetic fibre reinforcement is given below

Name: Structural Synthetic Fibres

Product Description: Macro Structural Synthetic Polypropylene Fibre. Minimum tensile strength 550 MPa. These fibers show very defined ductile behavior characteristics. Performance levels are excellent in shotcrete. Width = 1.6825 Thickness = 0.4822 Length = 65mm Generates

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago 27 of 60
Tender Document (Final)	01	3571-13 2022	Page 27 of 60

a very high energy absorption rate when used in the concrete mix for shotcreting, enabling the matrix to provide greater flexural toughness.

Since tunnel will be lined with SFRS and its durability is very important for 120 years of life so we proposed higher grade shotcrete. During design of secondary lining synthetic fiber content per kg/m³ of Shotcrete shall be derived.

Grade of mix	FRS	Reference Code	M35
Modelled in Phase ² as			Elasto-Plastic element
Characteristic Compressive strength(fck) Cube	МРа	IS456:2000	35
Mean Tensile Strength of SFRS	МРа	IS 456:2000	3.5
Allowable Shear strength	МРа	IS15026	5.5
Young's Modulus	МРа	IS 456:2000	29580

Table 12: Shotcrete Properties (SFRS)

8.6.4. Fully Grouted Rock Bolt

Rock Bolt used for tunnel shall be deformed bar type of Fe500D Grade whose characteristic curve is attached *Annexure-3*. Grout hole may vary from 38 mm to 45 mm, which will be verified by pull out test up to design load at site.

Modelled in Phase2 as		Elastic -Element
Diameter of rock bolts	mm	25
Dia of Grout Hole	mm	38/45*
Steel Grade (Yield Strength)	MPa	500
Cross-sectional Area	mm ²	491

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 28 of 60
Tender Document (Final)	0 =	02. 1 20 2022	1 486 20 01 00

Modelled in Phase2 as		Elastic -Element
Yield Capacity	kN	245
Elastic Capacity (0.80x yield)	kN	203.2
Design Capacity Considered (approx)	kN	190

Table 13: Rock Bolt Properties

Specification of Self Drilling	SDRA 38/19
Anchor	
Outside Diameter (mm)	38
Internal Diameter (mm)	19
Cross Sectional Area (mm²)	700
Ultimate Load (kN)	500
Yield Load (kN)	400
Weight (kg/m)	5.5
Length of Self Drilling Anchor	4m/6m
Factor of Safety	1.25
Design Capacity (KN)	300KN (Approx.)

Table 14: Self Drilling Anchor Properties

8.6.5. Lattice Girder

Steel of Fe500D grade will be used for lattice girder formation which will be used for poor and very poor rock condition. Adequacy of lattice girder such as size and spacing will be validated by empirical and FEM design.

Support type	Lattice Girder		
Modelled in Phase2 as	Elastic Element		
Description of section	Lattice Girder (25-25-32)		
Depth of section	mm 187		
Cross-sectional Area	mm ²	1784	
Moment of Inertia	m ⁴	1.16 x 10 ⁻⁵	
Modulus of Elasticity	MPa	200000	
Yield Strength of Steel	МРа	500	

Table 15: Lattice Girder Properties

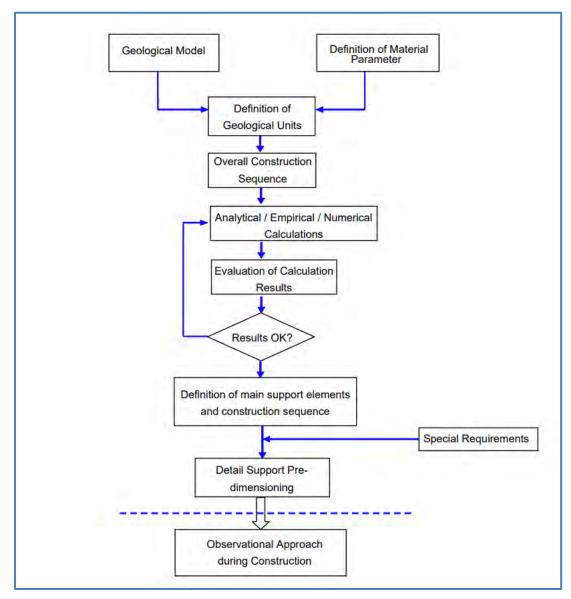
Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 29 of 60

8.7. NATM Tunnelling - Concept

The tunnel construction is proposed to be carried out in accordance with the principles of the New Austrian Tunnelling Method (NATM). The method is based on the concept of a cyclic sequence of excavation with subsequent installation of a primary support (outer lining) followed by the delayed installation of a secondary lining (inner or final lining).

The primary support, which consists of shotcrete, generally reinforced by wire mesh, lattice girders (where required) and rock bolts, will provide the immediate support and stability of the excavation. The secondary lining will provide the long-term support and durability of the tunnel.

Tunnel excavation will generally be carried out by means of drilling & blasting with drilling jumbos in rock or by tunnel excavator in soil. The ground support system will vary from place to place along the tunnel length, depending on ground properties.


8.8. Design Approach

NATM tunnel design shall be based on well accepted empirical, analytical methods and finite element numerical modeling. Empirical method shall be used for preliminary design of support system as per IS:13365 using RMR. Analytical method shall be used as the second method for design calculations for the support system and deflection. After assessing support requirement with empirical and analytical method, numerical method shall be used to check adequacy of support system, deflection and other parameters for tunnel.

The following flowchart shows the general design approach for the primary (outer) lining of NATM tunneling sections.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago 20 of 60
Tender Document (Final)	01) SEK 1-T2 5055	Page 30 of 60

The design methodology shall cover design phases (preliminary design & definitive design) prior to construction. The design will be adjusted (if required) during construction in an "observational approach".

8.9. Design Methodology for Tunnel Support Design

The support system shall be designed by considering rock mass type, rock mass quality and in-situ stress conditions expected to be encountered along the tunnel alignment as determined by review and assessment of available geotechnical data.

The preliminary support assessment will be carried out using rock mass classification by IS RMR system (Bieniwaski2013). For the analysis, various

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 31 of 60

parameters like rock strength, joint characteristics, ground water and orientation of discontinuities will be taken into consideration. Support recommendations will be made, based on stress-deformation analysis using RS² FEM software. The possibility of any wedge formation and tunnel stability will be also checked with UNWEDGE software (kinematic analysis will be carried out strictly for tunnel which falls in jointed rock mass).

During construction process, the support assessment shall be continuously reviewed to account for the actual geological conditions including joints, bedding, faults and fractures, infill material, surface roughness, water bearing properties and stress state and required changes in designed support shall be made accordingly.

Following steps will be followed to design rock support system of tunnel:

- Step 1 : Assess rock type and find rock mass property such as RMR (Rock Mass Rating), GSI (Geological Strength Index), MR_{value}, M_i and UCS (Unconfined Compressive Strength)
- Step 2 : From assessed rock mass categorize different class of rock mass using software Roc Data.
- Step 3 : Assess major discontinuities available along tunnel alignment and shear strength parameter of joint infill material.
- Step 4 : Find unstable wedges formed for defined tunnel section using Unwedge software, if factor of safety is greater than desired ok, otherwise re—analyse with support system as shotcrete and rock bolt at suitable spacing so that factor of safety of unstable wedges become greater than desired.
- Step 5: Design preliminary support system by empirical method (IS Code method) using RMR.
- Step 6: After design of support system by empirical method use analytical method as a second method to verify the support system.
- Step 7: Finally, verify support system by numerical method in following steps.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 32 of 60

Step 7A : Model different class of rock/Soil with different rock/soil parameters obtained from Roc Data and also incorporate different stages of excavation.

Step 7B : Simulate and analyse each class of rock/soil without support systems and observe deformation, strength factor and yielded zone.

Step 7C: Simulate and analyse each class of rock/soil with suitable support systems and observe deformation, yielded zone, and strength factor and check suitability of support system provided with capacity plots.

8.10. Wedge Analysis-Kinematic Analysis

Geo-mechanical wedge analysis shall also be carried out for rock portion. Analysis shall be carried out taking into account available joint data as main input and based upon the assumption that the wedges defined by three intersecting discontinuities are subjected to gravitational loading only.

The steps which are taken to support the structural instability caused due to discontinuities shall be as follows-

- Determination of average dip and dip direction of significant discontinuity sets.
- Identification of potential wedges which can slide or fall from the roof or walls.
- Calculation of the factor of safety of these wedges, depending upon the mode of failure.
- Calculation of the amount of reinforcement required to bring the factor of safety of individual wedges up to an acceptable level (FOS 1.5).
- Calculation of the amount of reinforcement required to bring the factor of safety of individual wedges up to an acceptable level (FOS 1.1) with seismic loading.

In this analysis, wedges that will be formed on excavation boundary will be evaluated providing detailed information for each wedge as listed below:

Weight of the wedge

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 33 of 60

Exploring Alternative Alignment And Other Ancillary Works In Sohana-Manesar Section Of "Haryana Orbit Rail Corridor" Project In The State Of Haryana.

- Apex height
- Safety factor without support
- Required support pressure
- Bolt type (diameter & design tensile capacity)
- Length
- Pattern spacing (in plane, and out of plane)
- Safety factor with support

8.11. IS Code Method-Tunnel in Rock

IS code 13365 (Part-1) gives guidelines to use support pressure in terms of RMR as load on opening of tunnel which needs to be balanced by support system. In the present case the height of overburden above the crown of tunnel is moderate (varies from 20 m to 40m), hence the ground has been considered as non-squeezing for the design of rock support of tunnel. For non-squeezing ground IS: 13365 (part 1) has recommended following empirical equations for calculating Roof and wall support pressure. For deriving design parameter/roof pressure latest Lawson -Beniawiski RMR method shall be used (10).

The permanent roof support pressure Proof (kN/m²) can be estimated using the following empirical relationship between the joint number RMR, Density of rock and Span of Tunnel.

$$P_{r} = \frac{100 - RMR}{100}.10m. \left(\frac{Span}{10m}\right)^{\frac{1}{2}}.\rho_{r}.\gamma_{r}$$

By Lawson and Bieniawiski (10)

Where γ_r is partial safety factor and ρ_r density of rock, $\gamma_r = 1$ shall be adopted.

P_v rock load intensity in kN/m²

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago 24 of 60
Tender Document (Final)	01	3571-13 2022	Page 34 of 60

8.12. Ultimate wall support pressure

In view of the more favorable position of walls as compared to roofs, the following formula shall be applied for calculating P_{wall} :

$$P_{\text{wall}} = K_h x P_v$$

Where $K_h = 1$ -Sin ϕ

where φ is friction angle

Horizontal Stress Coefficient which shall be taken as 0.5, considering a conservative value of 30 degree.

8.13. Bolt Spacing

Bolt spacing is taken as a function of RMR only. Spacing has to reflect fracture frequency and the need for shotcrete to provide adequate support between the bolts at the better rock end of the scale where the shotcrete cannot realistically be considered as working on its own as an arch. Spot bolting only is assumed to be needed above RMR = 85.

Rock bolt spacing

a) if 20<RMR<=85

$$S_b = 0.5m + 2.5m. \frac{RMR - 20}{65}$$

b) if 10 < RMR<= 20

$$S_b = 0.25m + \frac{(RMR - 10)^{1.5}}{140}.m$$

c) RMR <=10

$$S_b = 0.25m$$

8.14. Bolt Length

Bolt length must vary with span and RMR. Based on empirical guidelines used in mining and the results of numerical modeling studies, the following relationship was obtained:

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 35 of 60

$$Span = \frac{\left(L_b + 2.5\right)^{\frac{RMR + 25}{52}}}{3.6}$$

where Span is width of excavation in meters and L_b is embedded bolt length in meters.

8.15. Rock bolt capacity

Bolt capacity

$$F_{bd} = \frac{F_b}{\gamma_b} \cdot \left(\frac{RMR}{85}\right)^{\frac{40}{RMR}}$$

8.16. Shotcrete capacity

The design capacity of shotcrete support is based on the concept of the shotcrete acting simply as an arch in compression. The basic formula for this type of support is:

Support Pressure = Thickness x design strength / Radius

Design capacity

$$f_{cd} = \frac{f_{ck}}{\gamma_s} \cdot \left[0.2 + 0.8 \cdot \left(\frac{RMR}{100} \right)^{\frac{3}{2}} \right]$$

Where f_{ck} is shotcrete cylinder strength and γ_s is a partial factor. Ys may be taken as = 1

8.17. : Analytical Method According to Prof. Feder and Erdmann/Duddeck

The detailed geotechnical and structural design of the primary support shall be carried out using the closed-form solutions according to Prof. Feder (Mining University of Leoben, Austria) and the analytical approach according to H. Duddeck / J. Erdmann. The main variables considered in the analyses shall be tunnel overburden, excavation cross-section, ground types and its properties and in-situ stress condition.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 36 of 60
Tender Document (Final)		321 1 13 2022	1 486 30 01 00

The analytical calculation approach after Prof. Feder is based on the closed – form solution for a circular opening in an elastoplastic medium with a primary stress field of $K_0 = 1.0$. This closed form solution has been extended by Prof. Feder to allow for primary stress fields different from $K_0 = 1$. Different rock strength parameters in the elastic and the plastic (fractured) zone around the tunnel and volume increase of the rock mass material in the fractured zone due to crack development is considered. The method allows for easy and fast parameter studies regarding the determination of the stress and displacement field around a tunnel. The bending moments are derived by assuming an eccentricity of the normal forces by 1/30 of the sprayed concrete shell thickness or 20mm whichever is higher (according to EN 1992-1-1: 2004).

This analytical calculation approach uses elastic, uniform soil/rock conditions and full shear bond between the elastic lining and the subsoil. Further circular shaped full-face excavation is assumed. As result of the Erdmann / Duddeck calculation normal forces N, bending moments M and shear forces V in the shotcrete shell at the crown, bench and invert – sections are obtained. The analysis according to Erdmann/Duddeck is generally used for shallow tunnels with a low stress-level.

9 Numerical Analysis for Tunnel

9.1 Loads

Following loads shall be considered for design of support system of tunnel excavation. Numerical analysis shall be carried out using FEM program RS².

9.2 Dead Load

Dead Load of support element (liner, rib etc.) shall be simulated in FEM program RS² by using inbuilt command.

9.3 Rock Load:

In-Situ Stress corresponding maximum vertical cover above the tunnel shall be considered with given horizontal stress coefficient in Table 7.

9.4 Seismic Load

In the underground tunnel, seismic loading is not generally considered, unless any poor ground condition (i.e., fault) is passing through the tunnel.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 37 of 60

9.5 External Water Pressure

The water table is below the grade level for most of the reach of tunnel. Hence, no permanent water table anticipated above the tunnel. However, to account for saturation due to rains/monsoons, saturated unit weight is considered in the analysis. Therefore, there is no need to consider the effect of external water pressure on tunnel support system design.

9.6 Future Road Traffic Load

A load of 20 kN/m² shall be considered over top of the tunnel for future road traffic.

9.7 Properties of Proposed support system

Properties for support system for tunnel excavation such liner and rock bolts shall be adopted as per working stress method.

9.8 Material Factor of Safety

For rock bolt, lattice girder and steel rib material factor of safety of 1.25 will be taken, while shotcrete will be allowed to yield and its full strength can be used for design of support system.

10 Stages of Analysis in Numerical Method of Design:

The stability analysis of the Tunnel shall be carried out using Finite Element Program RS², as a continuum model using Hoek and Brown criteria and stresses and deformations around the tunnel shall be estimated to check the stability of the tunnel. The numerical model of excavated cavity has been conceived as plain strain model with external boundaries as natural surface around tunnel. Six node triangular finite elements with fine meshing shall be used close to the excavation boundaries of the tunnel, so that the variations in the stress field could be captured with higher precision. Size of the elements shall be gradually increased toward the external boundaries to reduce the number of elements and calculation time. External boundaries shall be taken as fixed and in-situ stresses are applied as per the loading corresponding to cover and horizontal stress coefficient obtained for tunnel.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago 29 of 60
Tender Document (Final)	01	3571-13 2022	Page 38 of 60

Excavation sequence of the tunnel shall be simulated in the model using the stage construction approach. For all class of rock mass, heading and benching excavation will be simulated. Stage-1 is generation of model and initialization of in-situ stress. stage-2 is material softening of heading portion. stage-3 is heading excavation and support, stage-4 is material softening of benching-1 portion and stage-5 is benching-1 excavation and installation of rock support. stage-6 is material softening of benching-2 portion and stage-7 is benching-2 excavation and installation of rock support.

10.1 Sensitivity Analysis:

While doing Analysis and design of tunnel support system specifically in soil where parameters are very sensitive and has serious impact on requirement of tunnel support system, deflection and method of excavation.

Following parameters are sensitive.

- 1. Overburden depth in soil (H)
- 2. Cohesion Value of Soil C
- 3. Friction Angle value of Soil φ
- 4. Deformation Modulus of Soil E

As per GIR and Longitudinal profile specifically in soil overburden depth varies between 8m to 40m while other parameters are varying too, which has been taken from Table 5-7 of GIR as follow.

SOIL				
Properties Values				
	Silty Sand(SM)	Inorganic Silt (ML)	Clay (CL)	
Modulus of Elasticity (E)	28-30 MPa	10-40 MPa (increasing with depth)	10-28 MPa (increasing with depth)	
cohesion (kgf/cm²)	0.04-0.08	0.11 - 0.14	0.25 - 0.35	
friction angle (Deg.)	26-27	23 – 28	10 - 16	
unit weight (γ) (gm/cc)	1.90-1.91	1.7-1.8	1.8-2.0	

For sensitivity analysis of support system above mentioned 4 Parameters shall be varied and its adequacy shall be checked.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 39 of 60

10.2 Interpretation of Results

The analysis results shall be used to investigate the influence of geometry and in-situ stress variability on stress changes. The induced stresses in the plane of the analysis can be viewed by means of stress contour patterns in the region surrounding the excavations. As a tool for interpreting the amount of deviatory overstress (principal stress difference) around openings, strength factor contours give a quantitative measure of "(strength) / (induced stress)" according to failure criterion for the rock mass. Adequacy of rock support system as estimated by rock classification approach will thus be verified. Analysis results will provide the following information.

- Deformation of tunnel calculated by FEM analysis shall be permitted up to 1% of the excavated size of the opening. If deformation is more than 1%, these cases shall be treated separately.
- Depth of Plastic Zone: It will be used to check the adequacy of bolt length.
- Utilization of Rock Bolts and Liners: Utilization of rock bolt shall be assessed by its axial force, while utilization of steel liners will be assessed through capacity plot with significant factor of safety to cater uncertainty of geological parameters.
- Shotcrete will be modeled as elasto-plastic element and its yielding will be allowed below springing line as this will not depict complete failure of shotcrete.

10.3 Instrumentation and Support Performance

In NATM, the primary purpose of geotechnical and structural instrumentation is to monitor the performance of the underground construction process in order to avoid or mitigate problems. Instrumentation and monitoring scheme for NATM tunnel shall be submitted by contractor to Engineer for approval.

List of Instrumentation to be provided in NATM tunnel is given below in table 16.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 40 of 60
Tender Document (Final)			

S. No	Instrumentation Details	Locations of Instrumentation to be provided in tunnel
1	3 Point MPBX	3 Nos of 3 Point MPBX at every 50 m.
2	Optical 3-D Deformation Monitoring	7 Point Optical Convergence Array (with accuracy of 1 mm) at every 25 m.
3	Roof settlement Point	1-Point roof settlement at every 25m.
4	Load Cells	five center hole load cells (with accuracy 0.5%) of250 kN capacity at identified locations as approved by the Engineer.
5	Pressure Cells	7 Nos of Pressure cells of 100 bars (accuracy 0.25%) at each section at every 100 m.
6	Switch Box	2 Nos of Switch Box at every 50 m
7	Strain Gauge	7 Nos of Strain Gauge per section @ every 100 m.

Table-16: Instrumentation Proposed for Tunnel Excavation

11 Design of RCC Portal

RCC portal with adequate thickness shall be designed at both end of NATM Tunnel for a length of 10m. Final thickness of portal members and size shall be decided as per structural design of portal.

11.1. Material Properties

> Concrete

Grade of Concrete: M35

• Young's Modulus of Concrete (E):29580MPa (as per IS 456:2000)

> Reinforcement steel

The steel for structural reinforcement shall correspond to Fe 500D according to IS 1786-2008:

Young's modulus : E=200 GPaYield strength : $f_y=500 \text{ MPa}$

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 41 of 60

11.2. Methodology for Design of RCC Portals

The structural analysis of portal frame shall be carried out using 2D model. The model shall be analyzed for various load combinations using STAAD Pro software. The resulting moments and forces shall be used to verify the ultimate limit state of collapse. The beam and columns of portal shall be designed for Limit state of collapse. The area of the footings shall be fixed on the basis of the allowable bearing pressure and the applied loads and moments under service load conditions.

11.3. Design Assumptions

(a) Unit Weights:

Following unit weights for different materials shall be considered for the design:

Material	Unit weight (kN/m³)
Reinforced Concrete	25
Rock	27
Soil-rock debris	22

(b) Site Specific Peak ground acceleration for DBE shall be 0.24 g.

Portal frame structure shall be considered as primary structure with importance factor 1.5 and IS456:2000 shall be adopted for design and detailing.

- (c) Response reduction factor shall be taken as 3.
- (d) Allowable Bearing Capacity:

The allowable bearing capacity of rock mass shall be calculated as per IS:12070-1987. Allowable Bearing capacity of soil shall be calculated from the shear strength parameters of the soil as per GIR.

11.4. Boundary Conditions

The model of portal frame shall be fixed at foundation level.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 42 of 60

11.5. Design Loads

The following loads shall be applied to the frame model:

(a) Dead load [G1]

- (i) The dead load shall include self-weight of structural concrete. The self-weight of structural concrete is calculated internally by STAAD Pro software.
- (ii) Rock Load: Distribution of rock loading on the portal beam along its length shall be assumed as triangular with 45° dispersion at the ends.

(b) Live Load [G2]

Live load to be applied on the beam element of portal frame shall be as follows:

Accidental Load: Uniformly distributed load corresponding to 2.0 m height of soil-rock debris over portal beam shall be considered to account for additional load in the event of slide of rock mass.

(c) Earthquake Load (EQ):

Lateral loads on joints at the beam level shall be applied on the structure.

Wind load and temperature load shall not be considered for the design.

11.6. Load Combinations

Following load combinations shall be considered as applicable loading conditions for the structure:

11.6.1. Ultimate Limit State (ULS)

I =1.25×G₁

II = $1.25 \times G_1 + 1.70 \times G_2$

III = $1.25 \times G_1 + 1.70 \times G_2 + 1.6 \times EQ$

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 43 of 60

11.6.2. Serviceability Limit State (SLS)

 $I = 1.0 \times G_1$

 $II = 1.0 \times G_1 + 1.0 \times G_2$

III = $1.0 \times G_1 + 1.0 \times G_2 + 1 \times EQ$

11.6.3. Concrete Cover

Nominal cover to the reinforcement shall be provided considering mild exposure condition of weather and 1.5 hours of fire resistance. The nominal cover to the reinforcement (including links) shall not be less than dia of bar or 20 mm (for mild exposure). The nominal concrete covers adopted for the different members are as below:

Beam 35 mm

Columns 50 mm

11.6.4. Reinforcement

All members shall be designed based on IS 456: 2000. The reinforcements are designed to resist factored flexural moments, shear forces and axial forces for the most critical combination of loads. Shear reinforcement is designed as per the provisions stipulated in IS 456:2000

11.6.5. Crack width

A maximum crack width of 0.25 mm (moderate durability exposure) is proposed. The crack width will be calculated in accordance with IS 456-2000 or RCC shall be designed such that tensile stress in lining is within cracking strength.

11.6.6. Deflection:

The final deflection due to all loads including the effects of temperature, creep and shrinkage and measured from the as-cast level of the supports of floors, roofs and all other horizontal members, should not normally exceed Span/250.

12 Secondary Lining Design

Secondary lining shall be provided in complete length of NATM tunnel. RCC lining shall be provided in soil portion tunnel and initial 20 m reach of Portal P1 of rock. The minimum grade of concrete shall be M35. Minimum thickness of secondary lining shall be 300mm.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 44 of 60

12.1 Method of Analysis

A two-dimensional Plane Frame Analyses shall be performed using the computer program STAAD Pro. V8i SS5. A near realistic 2Dmodel using beams bedded by radial and tangential springs shall be considered. Analysis and design shall be carried out as per CBC.

12.2 Calculation of Spring Constants

The lining shall be modeled as a beam bedded by springs. Multiple beam elements shall be created along centroidal axis of lining subtending angle of 5° to 10° representing linear 2D structure.

Beam model spring constants shall be derived from following formula:

$$C_r = K_S \times A$$

$$K_{\scriptscriptstyle S} = \frac{E}{\left(1+\nu\right) \times R}$$
 , From EM 1110-2-2901

where:

Cr = Radial Spring Constant of soil/rock

A= Tributary area of beam element

Ks = Modulus of Sub grade reaction

E... Young's Modulus of soil/rock (As per GIR)

Poisson's Ratio of rock mass (As per GIR)

R.... Radius of Tunnel (with $R \le 7$ m)

The tangential spring constants are set as 1% of normal (radial) spring constants:

$$Kt = 0.01 \times Ks$$

SEPT-15 2022	Page 45 of 60
	SEPT-15 2022

12.3 Load Cases

12.3.1 Self-Weight [G1]

The volume used for calculation of self-weight of structures is based on the nominal dimensions of the structure. Self-weight of the reinforced concrete lining will be calculated with unit weight of concrete of $y_{con}=25kN/m^3$.

Self-Weight will be considered as dead load with partial load safety factor of 1.25 as per IRS – CBC 1997.

12.3.2 Invert Fill [G1]

As the invert fill is acting favorable on the tunnel invert, this load is not considered in the analysis.

12.3.3 Exhaust Fan & Overhead System [G1]

An overhead system for exhaust fan load is considered to be acting on inner lining of the tunnel. These systems are directly fixed by anchors. A suitable load on 7.2kN acting apart 1m shall be applied to inner lining.

An overhead system is considered as a single vertical concentrated load with a value of 3.0 kN placed 1m horizontal from the centerline of the tunnel on the left side of the arch.

A load factor of 1.25 is considered as per as per IRS – CBC 1997.

12.3.4 Earth Pressure [G2]-Rock

With regard to vertical rock pressure (vertical load of overburden to the lining),) following loads are considered to be I to be applied on lining:

Earth Pressure shall be calculated based on RMR value of different class of rock.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 46 of 60
Tender Document (Final)	01	3EP1-13 2022	Page 40 01 00

$$P_{r} = \frac{100 - RMR}{100}.10m. \left(\frac{Span}{10m}\right)^{\frac{1}{2}}.\rho_{r}.\gamma_{r}$$

By Lawson and Bieniawiski

Where γ_r is partial safety factor for lining design this will be equal to unity and ρ_r density of rock.

P_v rock load intensity in kN/m²


The effective lateral earth pressure is equal to the product of load due to weight of overburden and coefficient of lateral earth pressure K_0 . The assumed Earth Pressure Coefficient $K_0 = 0.5$

Earth pressure is considered with partial load safety factor of 1.70 as per IRS – CBC 1997.

12.3.5 Earth Pressure [G2]-for Soil:

With regard to vertical earth pressure (vertical load of overburden to the lining) the same shall be applied as follows:

For soil, earth pressure σ_V shall be given by equation $\sigma_V = H^*\gamma_s$ subject to a maximum of $D^*\gamma_s$ where H is height of overburden. For secondary lining design earth pressure shall be applied as indicated in sketch below.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 47 of 60
Tender Document (Final)	0 -	3211 13 2022	1 486 17 01 00

12.3.6 Lateral Load for Rock and soft ground:

The effective lateral earth pressure is equal to the product of load due to weight of overburden and coefficient of lateral earth pressure K0. The invert loading shall be applied up to springing line as per given vertical load distribution. For lining design both for rock and soil K value shall be considered as 0.5.

12.3.7 Shrinkage [G3]

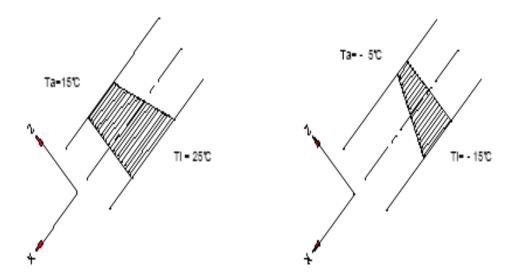
The self-tension of the tunnel bearing elements due to concrete shrinkage is simulated as uniform cooling of the lining. The amount of lining deformation is calculated according to IS 456 -2000 and converted into uniform cooling temperature difference of -15°C.

Since the internal forces due to shrinkage results from constraint deformation the partial load factor shall be set equal to 1.25 as per IRS – CBC 1997.

12.3.8 Water Pressure [G4]

Water pressure on permanent lining shall be considered as per "design water table" along tunnel.

12.4 Live Loads [Q]


12.4.1 Temperature Load [Q1]

The temperature loads are applied only onto the tunnel arch above the construction joint. An average temperature during construction equal to t_m =+10° is assumed and active temperature differences acting on the tunnel lining are taken as follows:

	Document No.	Rev.	Date	Page
	ASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 48 of 60
1 Tend	der Document (Final)			

Exploring Alternative Alignment And Other Ancillary Works In Sohana-Manesar Section Of "Haryana Orbit Rail Corridor" Project In The State Of Haryana.

b) Since the internal forces due to temperature differences result from constraint deformation the partial load safety factor according is adopted equal to 1.15 for ULS and 0.80 for SLS as per IRS – CBC 1997.

12.4.2 Earthquake

In general, subsurface structures are subjected to much less stress in earthquake than buildings/structures above ground. These stresses reduce with increase in depth. So, it can be assumed that earthquake induced stress in tunnel are much lower due to earthquakes. As a rule, tunnels are not designed for earthquake forces. (PI refer "Guide 853.9120 to 853.2001 DB directive", concerning paragraph 16).

Hence, the effect of earthquake force is not considered for structural design of tunnel inner lining.

Further, to verify this assumption, effect of seismic on tunnel evaluated as described in literature "Seismic design and analysis of underground structures" by YMA Hashish, JJ Hook, Birger Schmidt and John I-Chiang Yao (ref Tunneling and Underground Space Technology 16 (2001) 247-293) shall be considered and manually seismic forces induced shall be considered.

But at initial 20m reach of the portal tunnel lining shall be designed for earthquake forces due to inclined cutting /movement of overburden of portal slope.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 49 of 60

12.4.3 Applied load cases

The applied load cases will be following:

- G₁ Self weight (Includes Fan & Overhead System Weight)
- G₂ Earth pressure
- G₃ Shrinkage
- Q₁ Temperature loads (winter and summer)
- E Earthquake loads

The general formats for combinations of actions for the ultimate and serviceability limit states as given in Indian Railway Standard- Concrete Bridge Code 1997 (IRS-CBC), Table-12

The partial factors for actions and combination of actions are taken from IRS Concrete Bridge Code 1997.

The load combinations used for the calculation are listed in the following tables.

12.4.4 Ultimate Limit State (ULS)

Calculations of ultimate limit state consider the following load combinations: Ordinary load combinations:

```
 \begin{array}{ll} I &= 1.25 \times G_1 \\ II &= 1.25 \times G_1 + 1.70 \times G_2 \\ III &= 1.25 G_1 + 1.70 \times G_2 + 1.25 \times G_3 \\ IV &= 1.25 \times G_1 + 1.70 \times G_2 + 1.25 \times G_3 + 1.15 \times Q_{1,summer} \\ V &= 1.25 \times G_1 + 1.70 \times G_2 + 1.25 \times G_3 + 1.15 \times Q_{1,winter} \\ \end{array}
```

12.4.5 Serviceability Limit State (SLS)

Calculations of serviceability limit state consider the following load combinations:

```
 \begin{array}{ll} I &= 1.0 \times G_1 \\ II &= 1.0 \times G_1 + 1.0 \times G_2 \\ III &= 1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3 \\ IV &= 1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3 + 0.80 \times Q_{1,summer} \\ V &= 1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3 + 0.80 \times Q_{1,winter} \\ \end{array}
```

12.4.6 Structural design method

The structural design is carried out in accordance with EN 1992 as Indian codes does not provide any guidelines for design of plain cement concrete

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 50 of 60

Load combinations for the Ultimate Limit States (ULS) and the Serviceability Limit States (SLS) are considered for the reinforcement design as described in section above.

Partial safety factors for materials for ultimate limit states are adopted according to Indian codes IS456- 2000

Load Combination	Concrete	Reinforcement Steel
Ordinary Load Combination	1.5	1.15

Table-

17: Partial factors for materials for ULS

12.4.7 Concrete cover

The minimum concrete covers to all reinforcement (main and distribution reinforcing bars) considering the exposure conditions are adopted as follows:

- Concrete exposed to earth (external face) 50 mm
- Concrete not exposed to earth (internal face) 40 mm

12.4.8 Crack width

A maximum crack width of 0.2 mm (moderate durability exposure) is proposed. The crack width shall be calculated in accordance with IS 456-2000 or RCC shall be designed such that tensile stress in lining is within cracking strength.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 51 of 60
Tender Document (Final)	01	361 1 13 2022	1 486 31 01 00

13 Design Basis for Cut and Cover Tunnel

The following Cross Section of Cut & Cover Structures shall be used as described in Figure 7. As per proposed alignment where soil cover is less than 10m, twin rectangular Cut and Cover tunnel is proposed.

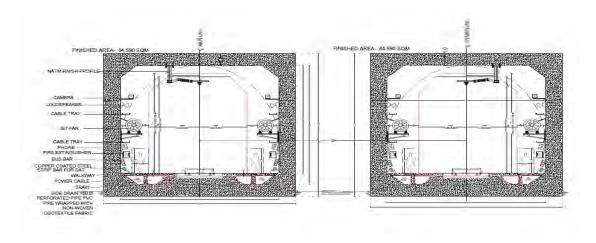


Figure 7:Twin Rectangular Shape Cut and Cover for Two Single track
The proposed cross section is preferred over a circular crown section due to
anticipated difficulties by the construction agency.

13.1 Soil parameters

The following geotechnical parameters have been considered for the analysis and design of Cut & Cover structures.

Below Mentioned soil parameter for Cut and Cover has been taken from Table 3.3 of GIR.

Locatio n	Depth from N.G.L in m.	Group of sample	Cohesi on (C) in KPa	Angle of internal friction (Φ)	E (in MPa)	Safe Bearing Pressure for 25 mm settlement in T/m²	Recommen ded SBC in T/m ²
DII 22	21.0	MI	4	26	21	39.0	35
BH-32	24.0	ML	4	26	31	35.0	35
BH-33	20.0	ML-CL	8	26	27.6	27	27

Table-18: Soil parameter for Cut& cover Box

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 52 of 60

13.2 Cast in place concrete

 Specified characteristic compressive Cylinder strength f_{ck} = 35 N/mm² (Concrete Grade M35 according to IS 456:2000)

• Young's modulus: E = 29580 MPa

• Poisson's ratio: v = 0.2

• Unit weight: $Y = 25 \text{ kN/m}^3$

• The steel for structural reinforcement shall correspond to Fe 500 according to IS 1786-2008:

Young's modulus E=200 Gpa

Yield strength f_{yk}=500 MPa

13.3 Concrete cover

For Underground structural elements in contact with non- aggressive soil

Sl. No.	Structural Components	Nominal Cover(mm)
1.	Inner slabs, walls	50
2.	Outer slabs	70
3.	Walls outer	70

13.4 Crack Width

All structural concrete elements shall be designed to prevent excessive cracking due to flexure. The maximum crack widths shall be as specified below.

A. Permissible crack width

Flexural crack width for different structural components is to be checked for all the load combinations at service stage except for instantaneous loading like seismic, winds.

- 1. For Members in Contact with Soil: -
 - 0.2mm for soil face
 - 0.3mm for inner face

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 53 of 60

13.5 Calculation of Spring Constants

The cut and cover box are modelled as a beam bedded by springs.

Beam model spring constants are derived from modulus of sub grade reaction Ks, which is calculated from: Ks= E / [1+v·) From EM 1110-2-2901

where: E... Young's Modulus of soil/rock mass

v ...Poisson's Ratio of soil/rock mass = 0.2

The spring constant of a bedding spring representing a certain area A of sub grade is derived as: (Ks x A) per meter.

For a typical E value of 30 MPa, Ks=25 MPa/m i.e. 25000 kN/m²/m

13.6 Primary Load case for Cut and Cover

13.6.1 G1 -Self-Weight:

The structural thickness/sizes of various elements are described in STAAD input and self-weight of all these members are calculated by STAAD itself by specifying the density of material used.

Density of reinforced concrete is considered as 25 KN/m3.

13.6.2 G2-Lateral Earth Pressure on Wall

The walls of the cut and cover tunnel will have compacted granular backfill and for that the soil properties proposed for design are as follows:

 $E = 15000 \text{ KN/m}^2$

Angle of Friction (\emptyset) = 30 degrees

Unit Weight (γ) = 20 KN/m³

 K_{\circ} the initial geological earth pressure at rest coefficient is used in the ground/structure interaction analysis with design earth pressure at rest (K_{\circ} = 0.5)

LEP at top of Roof slab (K_oγH)

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago E4 of 60
Tender Document (Final)	01	3EP1-13 2022	Page 54 of 60

13.6.3 G3- Weight of Fill

This load corresponds to dead weight of soil above roof of box. It is height of fill above top slab multiplied by density of soil.

13.6.4 E1 -Earthquake/Seismic Load

Following the seismic mapping as per Indian Seismic Zoning Map IS 1893 and 1984, the project site is situated in seismic zone *IV*. Seismic coefficient has been calculated as per IS 1893-1:2002,

As per IS 1893:2002, the design horizontal seismic coefficient (Ah) for a structure shall be determined by the following expression:

$$Ah = (ZISa) / (2Rg)$$

The description and values of above variables as per viii are provided below:

I: Importance factor = 1.5

Sa/g:Average response acceleration factor = 2.5

Hence, the design horizontal seismic coefficient (Ah), using above values has been calculated as.

$$Ah = 0.15$$

Seismic load due to earth pressure from soil has been calculated in accordance with IS 1893-2002, wherein Dynamic earth pressure (full value) is considered up to a depth of $0.5H_T$ (where H_T = Depth to bottom of Tunnel box) and reduces linearly from this value to half of this value at the base of the structure.

Dynamic lateral soil pressure increments at top of box = $A_h x \gamma x H_T$

Dynamic lateral soil pressure increments at Bottom of box = $0.5*A_h x y x H_T$

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 55 of 60

13.6.5 Future Road Traffic Load [G2]

A load of 20 kN/m² shall be considered over top of the tunnel for future road traffic.

13.6.6 Exhaust Fan & Overhead System [G1]

An overhead system for exhaust fan load is considered to be acting on inner lining of the tunnel. These systems are directly fixed by anchors. A suitable load on 7.2kN acting apart 1m shall be applied to inner lining.

An overhead system is considered as a single vertical concentrated load with a value of 3.0 kN placed 1m horizontal from the centerline of the tunnel on the left side of the arch.

A load factor of 1.25 is considered as per as per IRS - CBC 1997.

13.7 Applied load cases

The applied load cases will be following:

- G1 Self weight (Includes Fan & Overhead System Weight)
- G2 Earth pressure & Future Road Traffic Load
- G3 Weight of Fill
- Q1 Temperature Loads (Winter and Summer)
- E1 Earthquake loads

The general formats for combinations of actions for the ultimate and serviceability limit states as given in Indian Railway Standard- Concrete Bridge Code 1997 (IRS-CBC), Table-12

The partial factors for actions and combination of actions are taken from IRS Concrete Bridge Code 1997.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Dago 56 of 60
Tender Document (Final)	01	3EP1-13 2022	Page 56 of 60

13.8 A layer of PCC of grade M20 150 mm thick shall be provided below bottom slab of the Cut and Cover tunnel.

13.9 Analysis Method of Cut and Cover

A two-dimensional Plane Frame Analyses are performed using the computer program from STAAD Pro. V8i SS5. A near realistic 2Dmodel using beams bedded by springs has been created and loads have been applied using STAAD command Springs have been generated by using Staad command and reference can be made to STAAD manual for further details.

The bedding is modeled in such a way that the parts of the cross-sections where inward deformation occurs, i.e. where the springs would be subject to tensions, are neglected. The material behavior of ground and lining is generally assumed as being elastic.

After applying all the forces on the model in STAAD Pro .The loads are combined as per the prescribed and the Members are checked for the load combiation for Ultimate Limit State (ULS) and Serviceability Limit State (SLS).

ULS Load Combinations

I =1.25 \times G₁

II = $1.25 \times G_1 + 1.70 \times G_2$

III = $1.25 \times G_1 + 1.70 \times G_2 + 1.25 \times G_3$

 $IV = 1.25 \times G_1 + 1.70 \times G_2 + 1.25 \times G_3 + 1.15 \times Q_{1,summer}$

 $V = 1.25 \times G_1 + 1.70 \times G_2 + 1.25 \times G_3 + 1.15 \times Q_{1,winter}$

SLS Load Combinations

 $I = 1.0 \times G_1$

 $II = 1.0 \times G_1 + 1.0 \times G_2$

III = $1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3$

 $IV = 1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3 + 0.80 \times Q_{1.summer}$

 $V = 1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3 + 0.80 \times Q_{1,winter}$

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 57 of 60

Seismic Load Combinations

Min V/ Max H == $1.0 \times G_1 + 1.0 \times E_1$

Max V/Max H = $= 1.0 \times G_1 + 1.0 \times G_2 + 1.0 \times G_3 + 1.0 \times E_1$

Where G1, G2, G3, E1 and Q1 is explained in Para 8.1.2.4

The Normal force, Bending moment and shear force for all members are taken from the Staad Pro and designed as per ,"IS 456:2000 Plain and Reinforced Concrete (Fourth Revision).

Deflection:

As per clause No-23.2 of IS456:2000 Deflection of Top slab and Wall shall be restricted to Span/250 and H/250 respectively.

14 Cross Passages

Cross passages shall be provided at maximum distance of 350m c/c. The main purpose of cross passage is to connect the running twin tunnels for the purpose of emergency egress. The cross passages shall be constructed by NATM method and temporary support using rock bolt, shotcrete linings and lattice girders. The design of the temporary support will encompass issues such as:

- Temporary face stability and support;
- The need for ground treatment and/or pre-support measures;
- Control of groundwater; and
- Excavation and support sequencing to limit ground movement.

For cross passage Concrete lining of minimum thickness 250mm shall be used.

Primary support and secondary lining Design shall be carried similar to main tunnel.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 58 of 60

15 Permanent Ventilation Shafts

- 15.1 To minimize ventilation requirement four rectangular permanent ventilation shafts at Chainage Km 26+080 and Chainage Km 27+680 have been provided. Size of rectangular ventilation shaft shall be 25m x 12m (clear opening). At the locations of permanent ventilation shafts it is mandatory to provide connecting cross passage with clear opening as shown in Tender drawings. All the permanent ventilation shafts shall be of RCC and shall be designed for all the loadings during construction and design life.
- 15.2 Permanent ventilation shafts shall be designed for all load cases and combination as mentioned in Clause 13 of this DBR. Inspection arrangements of permanent ventilation shafts during service life shall also be designed by the Contractor.
- 15.3 Precast /Cast in Situ PSC/RCC roofing system over the shafts with proper ventilation arrangement shall be designed by the Contractor as per relevant IS Codes/NBC. Each shaft shall be provided with steel access door at natural ground level having sturdy locking arrangement with anti-theft features.

16 Construction cum Utility Shaft

- 16.1 A construction cum utility shaft shall be provided at Chainage Km 26+950. The main purpose of construction shaft is to provide multiple faces to expedite the tunnel excavation and to provide access for utilities to the tunnel. At the location of construction cum utility shaft cross passage shall be provided having the same cross-sectional area as the main tunnel.
- 16.2 Construction cum utility shaft shall be designed for all load cases and combination as mentioned in Clause 13 of this DBR. Inspection arrangements of construction cum utility shaft during service life shall also be designed by the Contractor.
- 16.3 Precast /Cast in Situ PSC/RCC roofing system over the shaft with proper ventilation arrangement shall be designed by the Contractor as per relevant IS Codes/NBC. Shaft shall be provided with steel access door at natural ground level having sturdy locking arrangement with anti-theft features.

Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL	01	SEPT-15 2022	Page 59 of 60
Tender Document (Final)	01	01 SEP1-13 2022	

Annexures

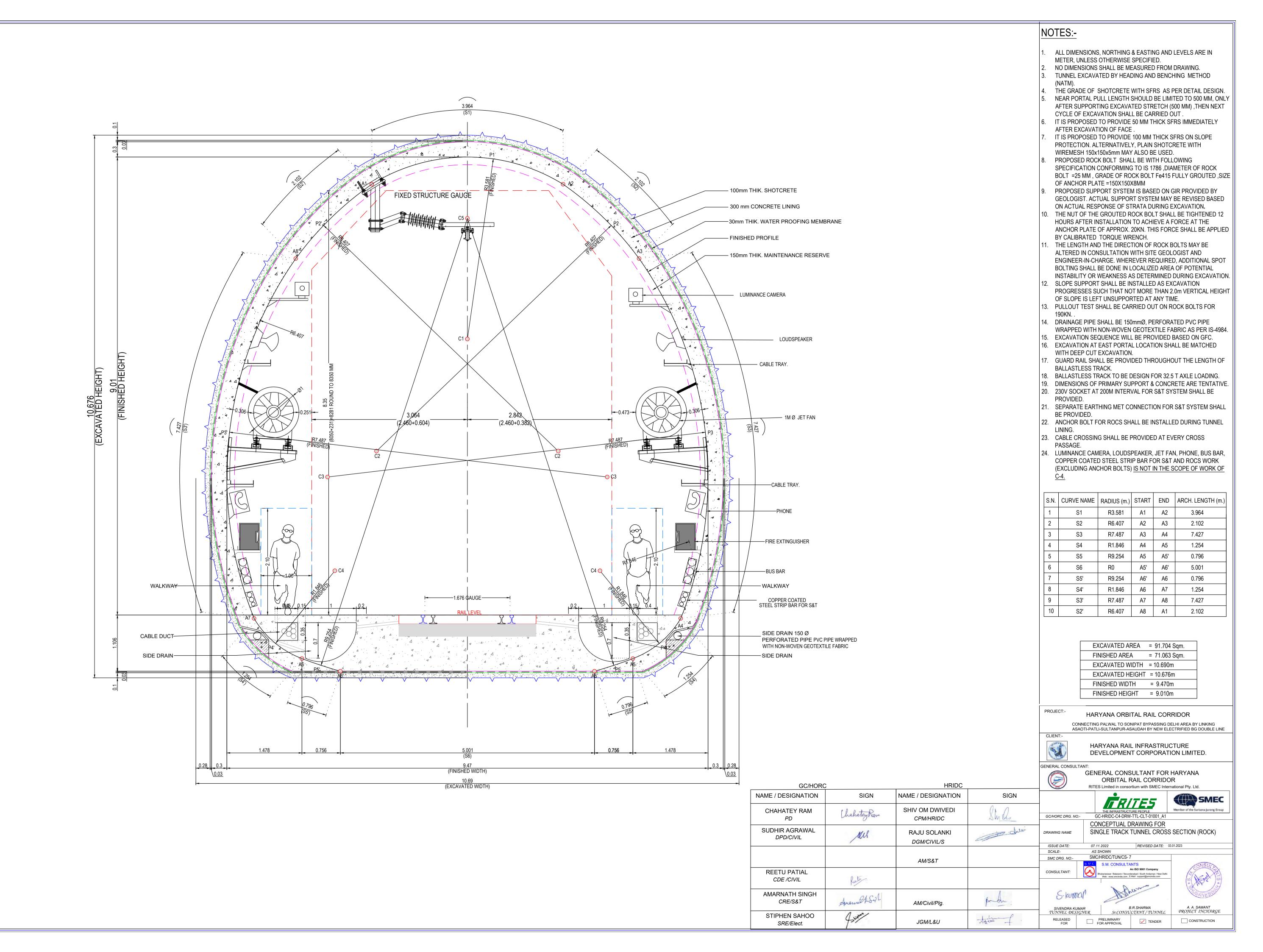
Document No.	Rev.	Date	Page
DESIGN BASIS REPORT OF TUNNEL Tender Document (Final)	01	SEPT-15 2022	Page 60 of 60

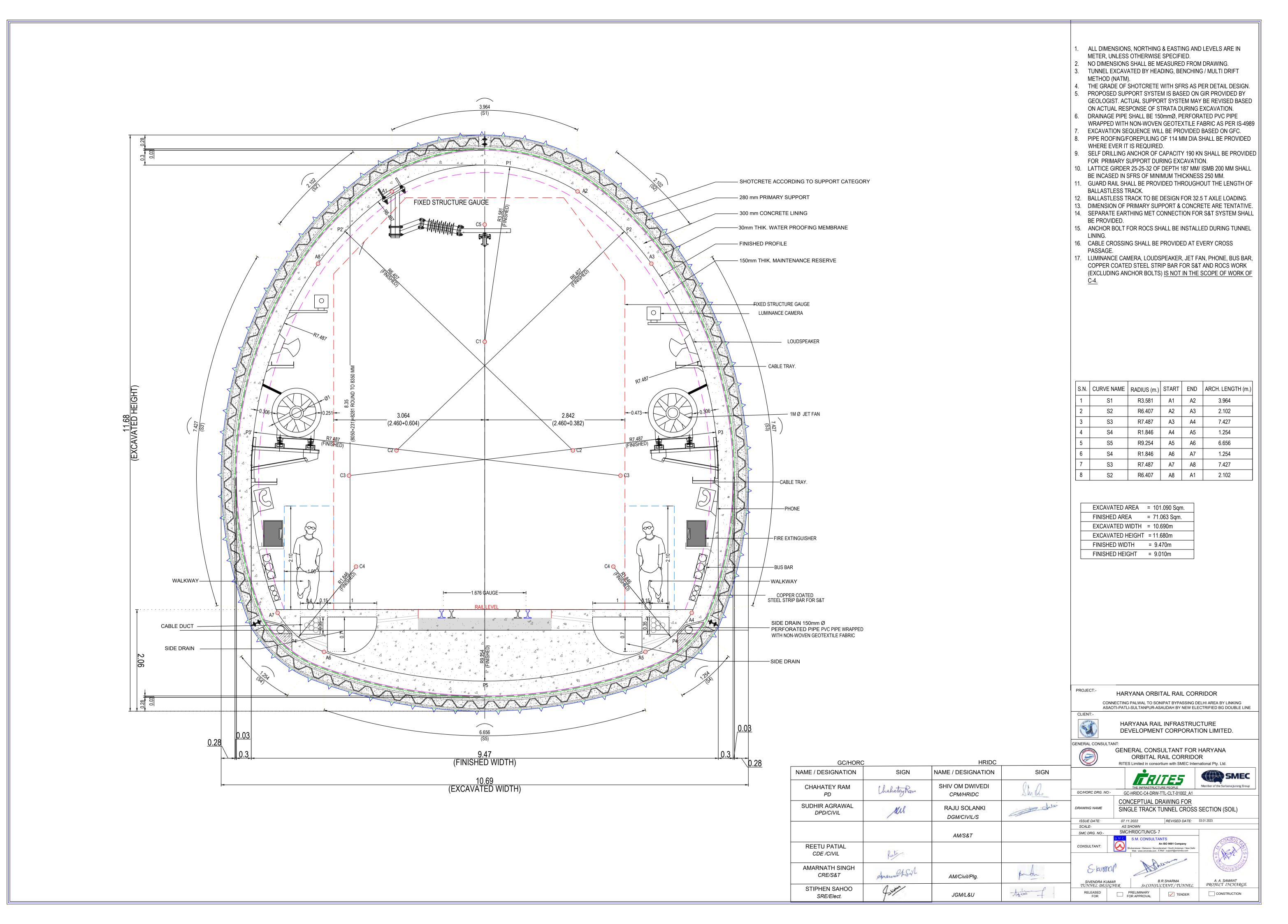
ANNEXURE - 1

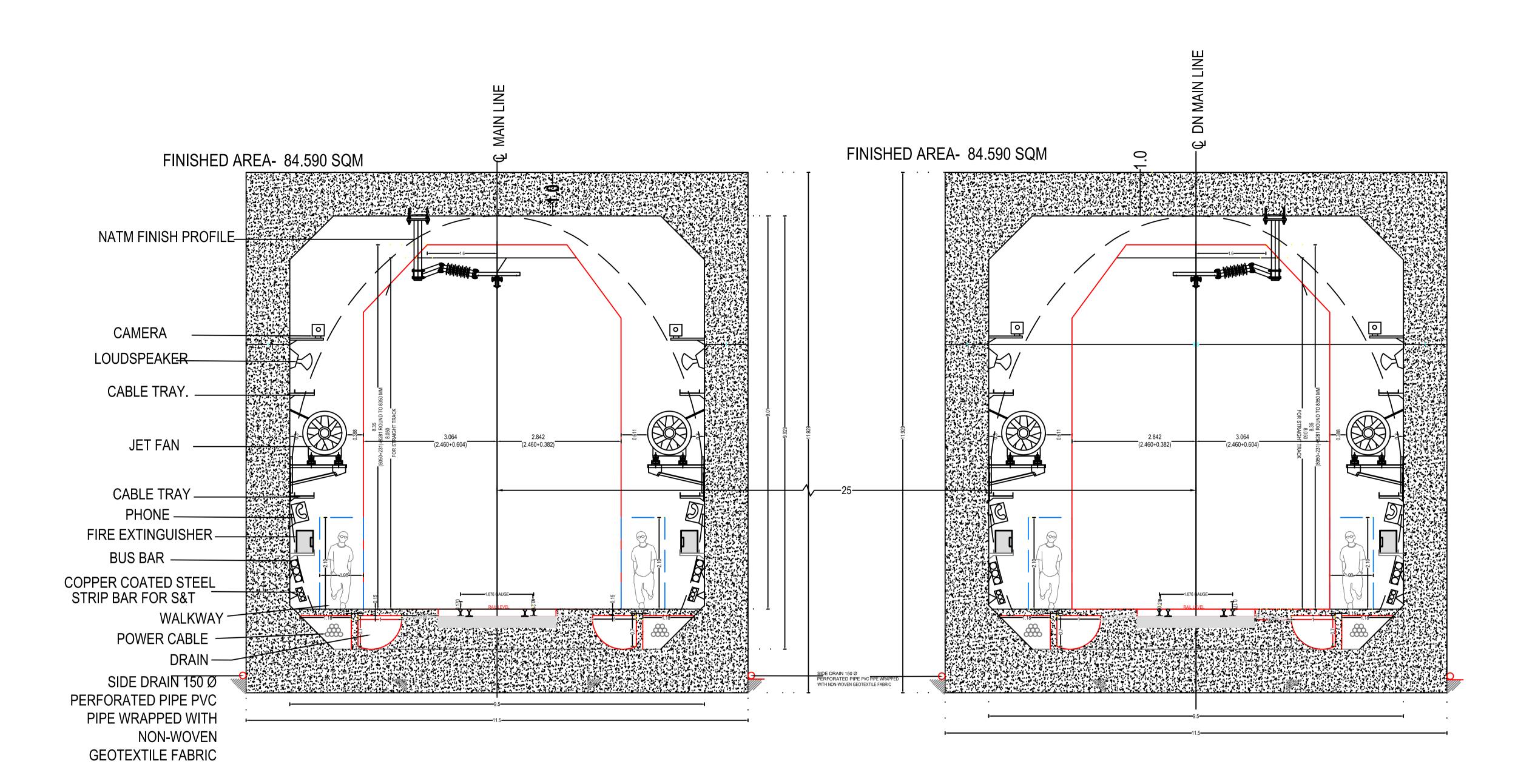
MMD AND FIXED STRUCTURE GAUGE FOR TUNNEL AND THROUGH GIRDER BRIDGES FOR HORC PROJECT OF HRIDC (Applicable at location of connectivity at Palwal Partic Sultangue

(Applicable at location of connectivity at Palwal, Patli, Sultanpur,
Asaudha and Harsana Kalan (Single Line)

NOTE:-


- (i) ALL DIMENSIONS ARE IN MILIMETRES EXCEPT WHERE OTHERWISE SHOWN.
- (ii) THE TRACK SHALL BE BALLASTLESS.
- (iii) EXTRA HORIZONTAL CLEARANCES REQUIRED ON CURVES SHALL BE AS PER APPENDIX OF IRSOD (BG), REVISED - 2022.


-2600-


(iv) EXTRA VERTICAL CLEARANCE SHALL BE PROVIDED ON CURVES AS UNDER:

 ${\sf EXTRA\ VERTICAL\ CLEARANCE\ (MM)} = \frac{{\sf WIDTH\ OF\ MMD(MM)\ X\ SUPERELEVATION\ (MM)}}{{\sf DYNAMIC\ GAUGE\ (MM)}}$

- (v) HEIGHT OF FIXED STRUCTURE GAUGE WITH ROCS ARRANGEMENT WOULD BE 8050MM.
- (vi) IN CASE OF BALLASTED TRACK, NECESSARY PROVISION SHOULD BE MADE IN OVERHEAD STRUCTURES AND OVERHEAD EQUIPMENT TO PERMIT POSSIBLE RAISING OF TRACK BY 275mm IN FUTURE TO CATER TO INCREASED HEIGHT OF TRACK STRUCTURE AND OTHER UNFORESEEN FACTORS SUCH AS RE-GRADING etc.

NOTES:~

- ALL DIMENSIONS ARE IN MILLIMETERS
 AND LEVELS ARE IN METERS, UNLESS
 OTHERWISE SPECIFIED.
- 2. NO DIMENSION SHALL BE MEASURED FROM THE DRAWING.
- 3. MINIMUM EXCAVATION LINE SHALL INCLUDE CONSTRUCTION & DEFORMATION TOLERANCE.
- 4. GUARD RAIL SHALL BE PROVIDED
 THROUGHOUT THE LENGTH OF
 BALLASTLESS TRACK
- 5. BALLASTLESS TRACK TO BE DESIGN FOR 32.5 T AXLE LOADING
- 6. DIMENSIONS OF SLAB THICKNESS ARE TENTATIVE.
- 7. SEPARATE EARTHING MET

 CONNECTION FOR S&T SYSTEM SHALL

 BE PROVIDED.
- 8. ANCHOR BOLT FOR ROCS SHALL BE INSTALLED DURING TUNNEL LINING.
- 9. CABLE CROSSING SHALL BE PROVIDED AT EVERY CROSS PASSAGE.
- 10. LUMINANCE CAMERA, LOUDSPEAKER,

 JET FAN, PHONE, BUS BAR, COPPER

 COATED STEEL STRIP BAR FOR S&T

 AND ROCS WORK (EXCLUDING

 ANCHOR BOLTS) IS NOT IN THE SCOPE

 OF WORK OF C-4.

HARYANA ORBITAL RAIL CORRIDOR

CONNECTING PALWAL TO SONIPAT BYPASSING DELHI AREA BY LINKING ASAOTI-PATLI-SULTANPUR-ASAUDAH BY NEW ELECTRIFIED BG DOUBLE LINE

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED. GENERAL CONSULTANT: GENERAL CONSULTANT FOR HARYANA ORBITAL RAIL CORRIDOR HRIDC GC/HORC RITES Limited in consortium with SMEC International Pty. Ltd. NAME / DESIGNATION NAME / DESIGNATION SIGN SMEC SHIV OM DWIVEDI CHAHATEY RAM Chahatey Ran GC/HORC DRG. NO:-CPM/HRIDC CONCEPTUAL DRAWING FOR Julei Julei SUDHIR AGRAWAL CUT & COVER SECTION OF TUNNEL RAJU SOLANKI Kel RAWING NAME DPD/CIVIL DGM/CIVIL/S ISSUE DATE: REVISED DATE: 03.01.2023 SCALE-SMC/HRIDC/TUN/CS-7 SMC DRG. NO:-AM/S&T S.M. CONSULTANTS An ISO 9001 Company REETU PATIAL CONSULTANT: Rutu CDE /CIVIL AMARNATH SINGH Smerreth Six S. kumal CRE/S&T AM/Civil/Plg. A. A. SAMANT PROJECT INCHARGE B.R.SHARMA 1 Sugar STIPHEN SAHOO RELEASED FOR PRELIMINARY FOR APPROVAL ✓ TENDER JGM/L&U SRE/Elect.

PROJECT:-

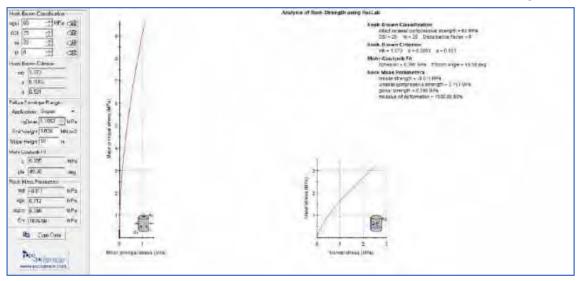


Figure 1: Above mentioned chart is Mohr Coulomb fit output from Roclab software for rock mass derived from intact rock property of laboratory with disturbance factor D=0.

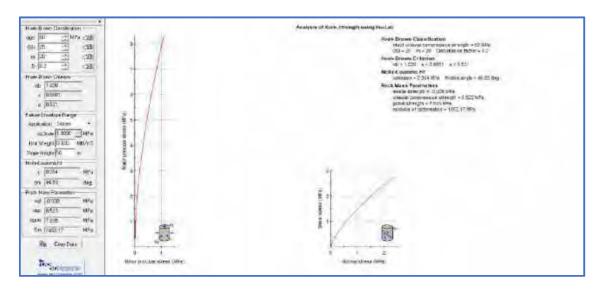


Figure 2: Above mentioned chart is Mohr Coulomb fit output from Roclab software for rock mass derived from intact rock property of laboratory with disturbance factor D=0.2.

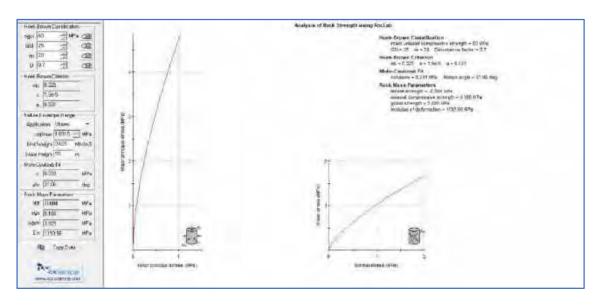


Figure 3 :Above mentioned chart is Mohr Coulomb fit output from Roclab software for rock mass derived from intact rock property of laboratory with disturbance factor D=0.7

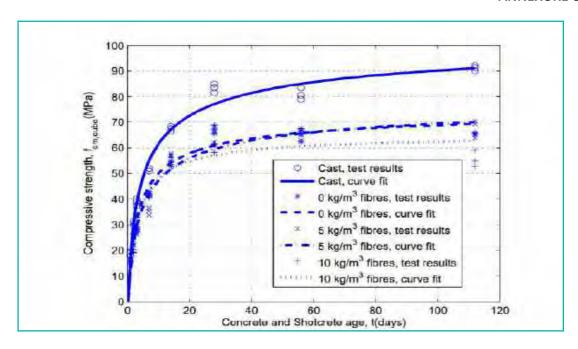


Figure 1: Shotcrete Compressive Strength

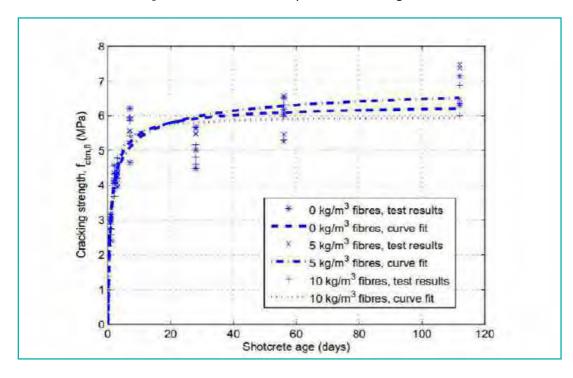


Figure 2:Shotcrete Cracking Strength

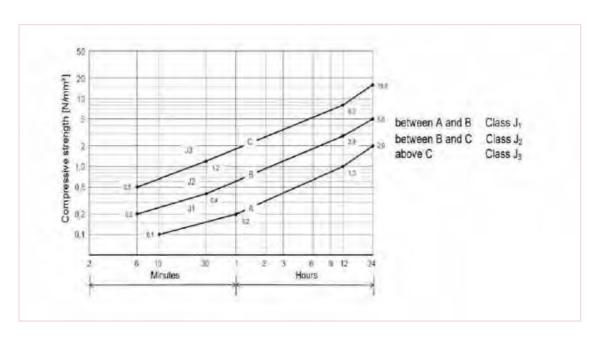


Figure 3: Early strength development of young shotcrete

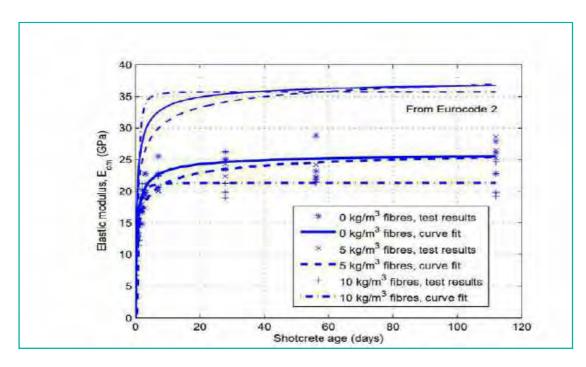


Figure 4:Shotcrete Elastic Modulus

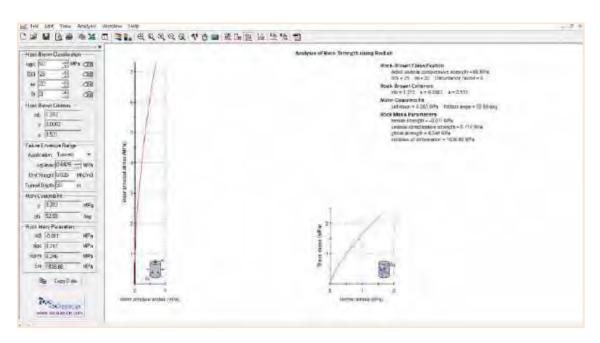


Figure 5 :For tunnel Above mentioned chart is Mohr Coulomb fit output from Roclab of rock mass derived from intact rock property of lab with disturbance factor D=0.

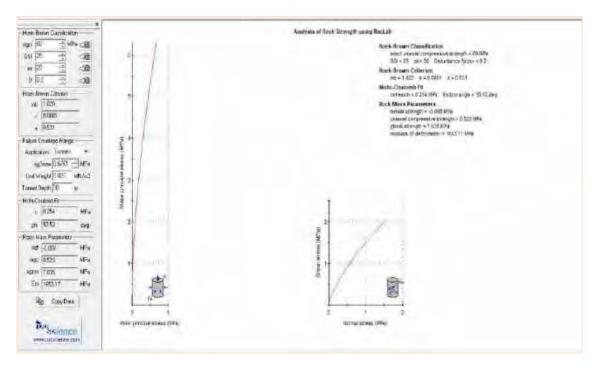


Figure 6 Above mentioned chart is Mohr Coulomb fit output from Roclab of rock mass derived from intact rock property of lab with disturbance factor D=0.2

	Contents	
i.	Geotechnical Investigation Report No. SMC/2050.	1-442
ii.	Geological Interpretive Report No. SMC/2050.	1-73
iii.	Geotechnical Investigation Report Old Ch. 27+620 to Old Ch. 28+900 km No. SR NO.: 544_21-22	1-222

Bid No. HORC/HRIDC/TPC-01/2023

i. Geotechnical Investigation Report No. SMC/2050.

GEOTECHNICAL INVESTIGATION REPORT FOR TUNNEL

EXPLORING ALTERNATE ALIGNMENTS, FINAL LOCATION SURVEY, GEOLOGICAL MAPPING, GEO-TECHNICAL INVESTIGATION, DETAIL DESIGN OF TUNNEL & ITS APPROACHES INCLUDING VIADUCT IF ANY AND OTHER ANCILLARY WORK IN SOHNA-MANESAR SECTION OF HORC PROJECT.

Client:

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

Prepared By:

S.M. CONSULTANTS, S.M.TOWER, PLOT NO.-130, MANCHESWAR INDUSTRIAL ESTATE, RASULGARH, BHUBANESWAR-751010, ODISHA

GEOTECHNICAL INVESTIGATION REPORT FOR TUNNEL

Prep	ared & Submitted By
M/	s. S. M. Consultants
GEOTECHNICAL ENGINEER	Shireesty
GEOLOGIST	Dr Dipanjan Bhattacharj
SENIOR CONSULTANT	Senior Consultanindira Gandhi Naturnai Tribai Univ Vivundrai Summa (Acentral university estati strad by an act of I Amarkaniak, Madnya Pradesh 40
	For S.M. Consultants
G	eneral Consultant
PD/GC	
DPD/GC/CIVIL	
	•
	Client
CPM/HRIDCL	
DGM/CIVIL/S/ HRIDCL	
EXE/CIVIL/ HRIDCL	
Client:	Consultant:

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

S.M. CONSULTANTS, S.M.TOWER, PLOT NO.-130, MANCHESWAR INDUSTRIAL ESTATE, RASULGARH, BHUBANESWAR-751010

	Consultant:	Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Contents
List of Figures:
List of Tables:
1 CHAPTER: INTRODUCTION
2 CHAPTER: LOCATION MAP AND TOPOGRAPHY
2.1 Locality:
2.1 Locality
2.2 Accessionty.
2.4 Climate:
2.5 Seismicity:
3 CHAPTER: SITE GEOLOGY: Geological Investigation of Rock and Soil14
3.1 Regional Geology:
3.2 Stratigraphy of the Area:
3.3 Local Geology:
3.3.1 Structural study of hard rock
3.3.2 Geological study of unconsolidated material and soil:
4 CHAPTER: EXPLORATORY DRILLING39
4.1 Borehole Core Details :40
4.1.1 Borehole Core details from Rock Region;40
4.1.2 Borehole Core details from Soil Region;
4.2 Permeability Test in Bed Rock48
4.2.1 Packer test method:
5 CHAPTER: GEOMECHANICAL CLASSIFICATION OF GEOLOGICAL UNITS50
5.1 Rock Quality Designation (RQD)50
5.1.1 Rocks Core Recovery and RQD Calculations:51
5.1.2 Methodology:51
5.2 Rock Mass Rating Index (RMR):54
5.3 The Unified Soil Classification System (USCS):
5.3.1 Coarse grained Soils60
5.3.2 Fine grained soils61

Name of Exploring alternate alignments, final location survey, geological mapping, geotechnical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project"

Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	5.4 U	SCS & RMR Correlation:	61
:	5.5 Q	System (NGI Tunneling Index):	63
6	CHAP'	TER: Engineering properties of the rock / soil	73
(6.1 La	aboratory Testing of Rock Mass	73
	6.1.1	Selection of Core Sample	73
	6.1.2	Tensile Strength	74
	6.1.3	Unconfined Compressive Strength	75
	6.1.4	Density, Specific Gravity, Water Absorption	77
	6.1.5	Point Load Strength Index	78
	6.1.6	Modulus of Elasticity and Poisson's Ratio	80
	6.1.7	Triaxial Test	84
	6.1.8	Hardness Test	87
	6.1.9	Abrasiveness Test	88
	6.1.10	Petrography Test	90
	6.1.11	Grain size analysis	99
	6.1.12	Mineralogical analysis	107
(6.2 Sc	oil Laboratory Test:	113
	6.2.1	Soil Types:	113
	6.2.2	Cohesion Test:	114
	6.2.3	Angle of Internal Friction:	115
	6.2.4	Natural Weight:	116
	6.2.5	Modulus of Elasticity (E):	117
7	CHAP'	TER: SUMMARY	118
,	7.1 St	ructure	118
,	7.2 Li	thology	118
	7.2.1	Rock Mass	118
	7.2.2	Soil	119
,	7.3 H	ydrogeological Conditions	119
8	REFE	RENCES	120
9	ANNE	XURES	121

Name of Exploring alternate alignments, final location survey, geological mapping, geotechnical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project"

Project:

Consultant:		Geotechnical		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

List of Figures:	
Figure 1 Geographical location of study area	8
Figure 2: Graph showing month wise rainy days for Gurgaon district. (Climate-data.org)	9
Figure 3: Wind Hazard map of Haryana (adopted from BMTPC)	
Figure 4: Flood zonation map of Haryana (adopted from BMTPC)	
Figure 5: Seismic map of state Haryana (adopted from National Centre for seismology)	
Figure 6: Regional structure of Delhi fold belt (Naha and Mohanty 1988)	
Figure 7: Superposed fold observed at 28 12' 33.57", 77 02'57.08"	
Figure 8 : Gash veins showing a dextral slip.	
Figure 9: Shear zone observed at location 28 12' 20.93", 77 02' 40	.20
Figure 10: Multiple joint sets were observed throughout the area	
Figure 11: Rose and contour diagram of the orientation of the joint set.	
Figure 12: Geological map of the area at 1:25000 scale.	
Figure 13: Detailed structural map of the major rocky area at 1:2000 scale. Joint sets are	
schematically drawn with their actual orientation. Average spacing between the joints are a	as
follows J1: 300 cm, J2:252.78cm, J3:160cm, J4:80cm, J5:32cm, J6:100cm	
Figure 14: Detailed structural map of the major soil area at 1:2000 scale.	
Figure 15: Detailed structural map of the major soil area at 1:2000 scale.	
Figure 16: Detailed structural map of the major soil area at 1:2000 scale.	
Figure 17: Detailed structural map of the major soil area at 1:2000 scale.	
Figure 18: Detailed structural map of the major soil area at 1:2000 scale.	
Figure 19: L-Section along the hilly terrain (1:25000 H and 1:2500 V). Joint sets are	
schematically drawn along their actual orientation.	.35
Figure 20: Detailed cross section of the portal face on the mountain front. Joint sets are	
schematically drawn along their actual orientation. Average spacing between the joints are	as
follows J1: 300 cm, J2:252.78cm, J3:160cm, J4:80cm, J5:32cm, J6:100cm	.36
Figure 21: Detailed lithological cross section at the end of NATM Structure in soil (CH	
28900)	.37
Figure 22: Cut and Cover structure at the end of tunnel – Portal II (CH29600)	.38
Figure 23: USCS Classification of coarse-grained soil.	.59
Figure 24: USCS Classification of fine-grained soil	.59
Figure 25 Relation between Liquid Limit and Plasticity Index of soil for USCS	.61
Figure 26 Graph showing correlation between USCS classification and RMR Classification	n.
(Warren, 2016)	
Figure 27: Graph showing correlation between different empirical equation for conversion	
between Q Index and RMR Index (adopted from Castro-fresno)	.64
Figure 28: Tensile Strength of rock mass from entire borehole length vs RL. (Refer to	
Annexure B in Geotechnical Report for detail).	.74
Figure 29: Unconfined Compressive Strength (UCS) of rock mass from entire borehole	
length vs RL (Refer to Annexure C in Geotechnical Report for detail).	.76

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Figure 30: Point Load Index (PLI) of rock mass from entire borehole length vs RL. (Refer to
Annexure E in Geotechnical Report for detail)
Figure 31: Modulus of Elasticity (E) of rock mass from entire borehole length vs RL. (Refer
to Annexure F in Geotechnical Report for detail)82
Figure 32: Poisson's Ratio distribution for the entire rock mass from entire borehole length vs
RL. (Refer to Annexure F in Geotechnical Report for detail)
Figure 33: Cohesive strength of rock mass from entire borehole length vs RL (Refer to
Annexure F in Geotechnical Report for detail)85
Figure 34: Angle of internal friction of rock mass from entire borehole length vs RL (Refer to
Annexure G in Geotechnical Report for detail)86
Figure 35: Hardness of rock mass from entire borehole length vs RL. (Refer to Annexure H
in Geotechnical Report for detail)87
Figure 36: Abrasiveness of rock mass from entire borehole length vs RL. (Refer to Annexure
I in Geotechnical Report for detail)89
Figure 37: Borehole 13 sample under optical microscope (Cross polarized 5X)93
Figure 38: Borehole 14 samples under optical microscope (Cross polarized 5X)94
Figure 39: Borehole 15 Samples under optical microscope (cross polarized 5X)95
Figure 40: Borehole 15(A) Samples under optical microscope (cross polarized 5X)96
Figure 41: Borehole 16 sample under optical microscope (cross polarized 5X)97
Figure 42: Borehole 17 sample under optical microscope
Figure 43: Borehole 13 Grain size analysis histogram99
Figure 44: Borehole 14 Grain size analysis histogram
Figure 45: Borehole 15 Grain size analysis histogram
Figure 46: Borehole 15(A) Grain size analysis histogram
Figure 47: Borehole 16 Grain size analysis histogram
Figure 48: Borehole 17 Grain size analysis histogram
Figure 49: Borehole 13 Mineral percentage
Figure 50: Borehole 14 Mineral percentage
Figure 51: Borehole 15 Mineral percentage
Figure 52: Borehole 15(A) Mineral percentage
Figure 53: Borehole 16 Mineral percentage.
Figure 54: Borehole 17 Mineral percentage
Figure 55: Variation in cohesion value of soil with RL
Figure 56: Variation in phi value of soil with RL
Figure 57: Variation in density value of soil with RL
Figure 58: graph for Modulus of elasticity for soil vs RL

Name of Exploring alternate alignments, final location survey, geological mapping, geotechnical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project"

Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

List of Tables:	
Table 1: Stratigraphy of North Delhi fold belt (after Roy 1988)	16
Table 2: Orientation of the joints at places around the site	
Table 3 : Average orientation of Joint sets	
Table 4: Boreholes Details.	
Table 5 Parker test results	49
Table 6: Categories of rock with respect to their RQD value	
Table 7: Average, Minimum & Maximum Value of RQD	
Table 8: RMR Classification Parameters and Their Ratings	
Table 9: Rating Adjustment for Discontinuity Orientations	
Table 10: Rock Mass Classes Determined from Total Ratings	56
Table 11: Avg., Maximum, minimum of Eq-RMR for soil	
Table 12: Rock Mass classification based on their Q Value on logarithm scale (after	
Bieniawski,1976)	65
Table 13: Description & Rating for Jn	67
Table 14 Description & Rating for J _r	67
Table 15 Description & Rating for J _a	
Table 16 Description & Rating for J _w	
Table 17 Description & Rating for Stress Reducing Factor (SRF)	70
Table 18 Average, Maximum, and Minimum Q-Value from Borehole (Follow annexure A	for
detailed information)	
Table 19: The laboratory tests conducted for rock.	
Table 20: Result of Tensile strength (Follow annexure B for detailed information)	
Table 21: Result of UCS Test (Follow annexure C for detailed information)	76
Table 22: Result of Density, Specific Gravity, Water absorption (Follow annexure D for	
detailed information)	
Table 23: Result of Specific Gravity (Follow annexure D for detailed information)	
Table 24: Result of Water absorption (Follow annexure D for detailed information)	
Table 25: Result of point load index test (Follow annexure E for detailed information)	
Table 26: Modulus of elasticity (Follow annexure F for detailed information)	
Table 27: Poisson's ratio (Follow annexure E for detailed information).	
Table 28: Result of Cohesive Strength test (Follow annexure F for detailed information)	85
Table 29: Result of angle of internal friction (Ø) Test (Follow annexure F for detailed	
information)	
Table 30: Result of Hardness Test (Follow Annexure G for detailed information)	
Table 31: Result of Abrasiveness test (Follow annexure G for detailed information)	
Table 32: Borehole wise details of collected sample for thin section	
Table 33: Mean, Median, Mode value of grain size analysis	
Table 34: Summery of cohesion test results for soil.	
Table 35: Summery of angle of internal friction test results for soil.	
Table 36: Summery of density test results for soil	116

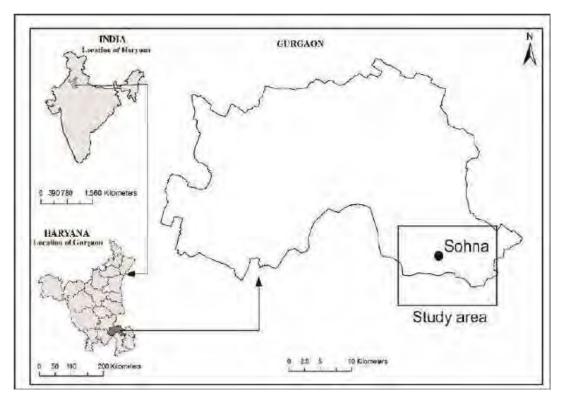
Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 37: Su	ummery of Modulus of E value	es for soil		117
A 7	Exploring alternate alignment	e final location curvey	geological manning	000

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd


1 CHAPTER: INTRODUCTION

This report presents results of sub-soil Exploration work for "Exploring alternate alignments, final location survey, geological mapping, geo-technical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project". This work was performed by M/s. S. M. Consultants, Bhubaneswar which was assigned by Haryana Rail Infrastructure Development Corporation Ltd. At the proposed site twenty-two numbers of bore holes were drilled to explore the sub-strata. The findings of work presented in this report are based on the subsurface conditions encountered at exploration site and results of laboratory testing of soil and rock samples. The properties of sub-strata should not be extrapolated to other areas without our prior review.

Name of Project:

Consultant:		Geotechnical		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	7 100	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

2 CHAPTER: LOCATION MAP AND TOPOGRAPHY

2.1 Locality:

Figure 1 Geographical location of study area

The area in the report lies within the district of Gurgaon of Haryana. The concerned region is a part of survey of India toposheet No. 53H/04 and spanned between longitude 77°58′36″& 77°06′00″and latitude 28°14′0″ & 28°10′30″.

2.2 Accessibility:

The area is 20km away from Gurgaon. The important towns in the area are Sohna, Gurgaon, Palwal. These towns are connected with important cities of the state and Delhi by

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

metaled roads. Delhi Bombay National Highway (NH-6) passes through Gurgaon State Highway No 43 passes through Sohna. Gurgaon is a railway station on Delhi Rewari section of the meter gauge line of the Northern Railway whereas Faridabad and Palwal are on Delhi Bombay broad gauge line. Most of the villages in the area are connected by all-weather metaled roads

2.3 Flora and Fauna:

The vegetation is sparse in the area mainly composed of bushes and shrubs, palm trees can be seen at places where nalas emerge from hills. Among the common fauna found in the area are Nilgai (Becephalus tragecamelus), Hare (Lepus sp). Common bird species in the area include sparrow (Passer Domestica) Pigeon (Colomba Livia) spotted dove (Straptopelia Chinensism), House crow (Corvus splenders), Indian Parrot (Psittacula eupatria), Mynah (Acidotheras), Vultures, Owls etc. Migratory water birds are also found in the area.

2.4 Climate:

The area has semi-arid type of climate. Summer are extremely hot with the temperature shooting up to 47°C. The winters are quite cold. The minimum temperature recorded in Gurgaon during 1968-70 was 2.0°C. The related humidity is maximum in August (above 80%) and minimum in June (above 35%). In the month of November, the wind velocity in the morning remains about 2.5km whereas in June it is generally 8 km Per

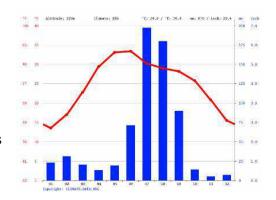


Figure 2: Graph showing month wise rainy days for Gurgaon district. (Climatedata.org)

hour. The general wind direction is westerly. Summer monsoon starts by the end of June or early July and lasts up to September. Rainfall is generally

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

restricted to this monsoon, though winter months also get some scanty rains Average annual rainfallis about 600 mm.

Climatic condition of the area is much varied characterized by hot and moist subhumid climate. It has mainly 4 seasons. The summer season is from March to Mid-June, the period from Mid-June to September is the Rainy season, October and November constitute the post monsoon season and winter is from December to February. The best time to visit this district is during winter.

Ministry of housing and urban affair, Government of India has done vulnerability mapping for Haryana state which includes multiple hazard zonation maps. The results are given below:

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

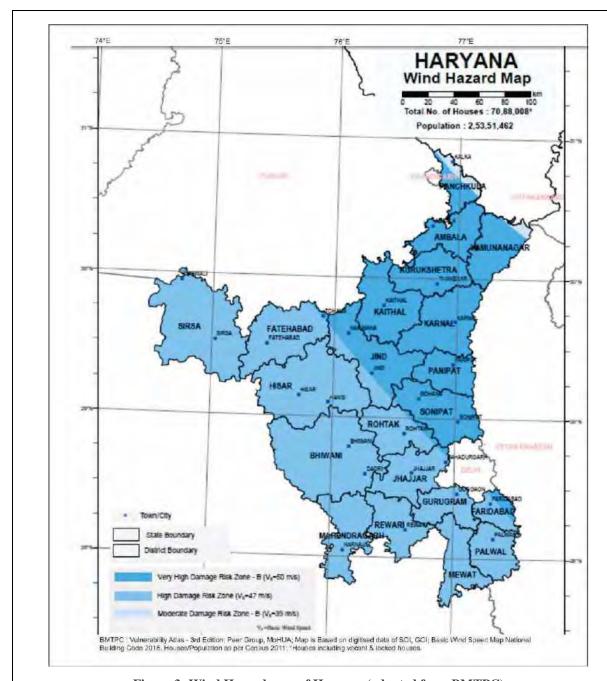


Figure 3: Wind Hazard map of Haryana (adopted from BMTPC)

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

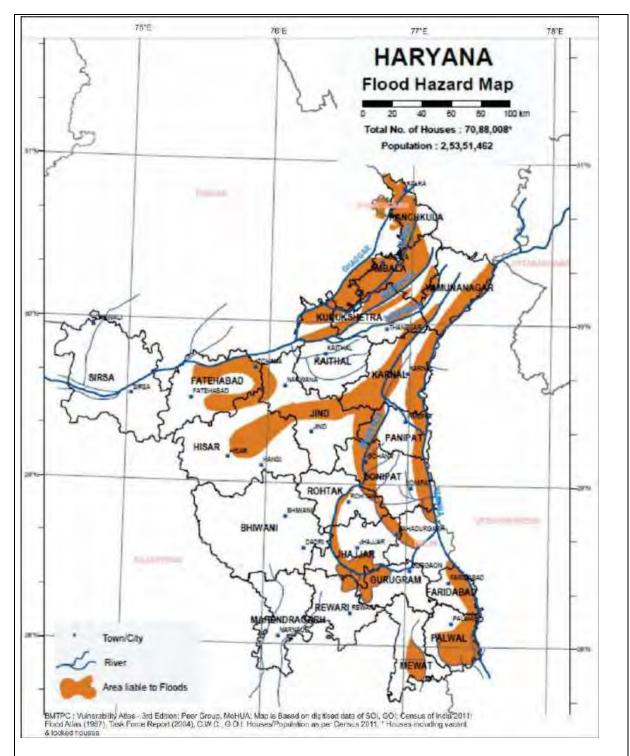


Figure 4: Flood zonation map of Haryana (adopted from BMTPC)

	Consultant:	Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report	SMC/2050	Infrastructure Development
		No.:	SWC/2030	Corporation Ltd

2.5 Seismicity:

According to National Center for Seismology the state of Haryana comprises three earthquake zone. The western part comes under zone II, the central part zone III and the eastern- south-eastern part in zone IV. The region around the site of construction comes under the zone IV of earthquake. Being within the earthquake zone IV the area of interest is at high risk with reference to the seismic activity. This region is liable to MSK VIII on Medvedev–Sponheuer–Karnik Scale, a macro seismic intensity scale or lower and is classified as the High Damage Risk Zone.

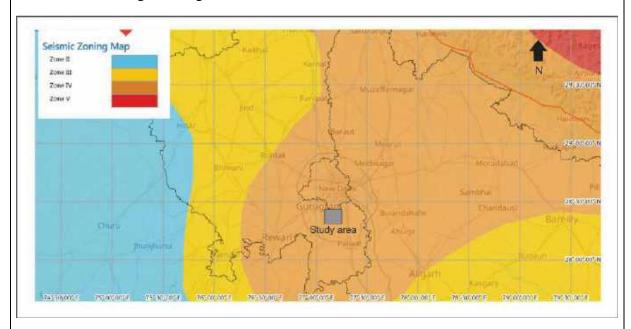


Figure 5: Seismic map of state Haryana (adopted from National Centre for seismology)

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

3 CHAPTER: SITE GEOLOGY: Geological Investigation of Rock and Soil

3.1 Regional Geology:

The rocks exposed in the area consist of Mesoproterozoic rocks of the North Delhi Fold belt which occur as long, linear, discontinuous chain of hills. The overall Delhi fold belt shows a NE-SW trend and extends from Gujrat (Deri- Ambaji) in the south to Delhi in the north. In the north and south the belt is overlain by Indo-Gangatic alluvium with sparse outcrop jutting out from the plain. Towards west it shows an unconformable contact with Marwar craton along a Phulad lineament and in the east the belt shows a faulted contact with Banded Gneissic Complex of pre-Delhi origin along Kaliguman lineament. The North Delhi Fold Belt has been divided into two groups by Heron (1935): the lower arenaceous Alwar Group and the upper argellaceous Ajabgarh Group. The Alwar Group comprises arkosic schists, phyllites, quartzites and meta- conglomerates whereas, the Ajabgarh Group comprises calc-schists, biotite schists, calc-silicates and marbles.

The regional structure of Delhi fold belt is considered as a broad synclinorium having N to NNE trend (Heron 1953) with core occupied by Delhi group, within the broad synclinorium four generations of deformation (D1 – D4) (Fig. 6) are seen in Delhi fold belt (Naha and Mohanty 1988). D1 and D2 are ubiquitous in all scales while D3 and D4 are seen only in some sectors. D1 folds are tight to isoclinal with a pervasive axial planar cleavage (S1). There are multiple occurrences of boudinage in D1 fold, which are parallel to axial planer cleavage (Naha et al.,1984). D2 folds ranges from open to isoclinal with vertical axial plane striking NNE -SSW to NE-SW. A crenulation cleavage (S2) is developed parallel to axial planes of the fold. D2 fold is coaxial with DF1 fold. Due to D2 various superposed folds have been developed in DFB, most common is Ramsay Type III fold (non-planar cylindrical) (Roy and Das 1985). DF3 folds are kink folds with sub horizontal axial planes. It has affected S1 and S2 cleavages and axial surfaces of DF1 and DF2 folds. At some places DF3 has conjugate axial plane striking NE-SW and SE-NW. It is formed by vertical compression

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

(Naha and Mohanty 1988). Due to interference from D3 fold there is development of Ramsay Type II fold (non-planer non-cylindrical fold) in the DF1 and Ramsay Type I fold (planer non-cylindrical fold) in DF2 (Roy and Das 1985).

DF4 fold are upright chevron fold, having NW-SE striking axial plane. They are formed by horizontal compression in an NE-SW direction (Naha and Mohanty 1988).

The different phase of deformation has led to metamorphism raging from greenschist to amphibolite facies.

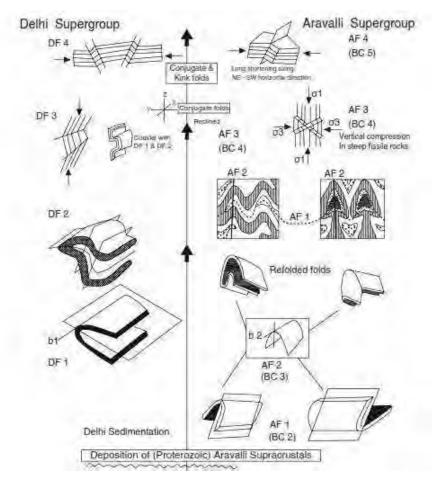


Figure 6: Regional structure of Delhi fold belt (Naha and Mohanty 1988).

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Recent		Alluvium and blown sand with thin Kankar bands at places
Post Delhi)		Quartz veins, pegmatites & Basalt, Intrusives)
	(Ajabgarh Formation	White, dull white to light brown, quartzite white gritty argillaceous intercalations and siltstone.
Delhi Group	(Alwar formation	Light to dark grey massive quartzite white gritty quartzite with subordinate amount of schist and phyllite

3.2 Stratigraphy of the Area:

Table 1: Stratigraphy of North Delhi fold belt (after Roy 1988).

3.3 Local Geology:

The region around the site consists metamorphosed arenaceous rocks of Alwar group. The Lithology is dominated by Quartzites with some intercalations of phyllites near the southern portal.

The Quartzites are metasedimentary rocks comprises greater than 80% quartz along with feldspar and mica minerals, the mineral grains show an equigranular interlocking texture.

The phyllites are low grade metamorphic rocks, they have a marked fissility (a tendency to split into sheets or slabs) due to the parallel alignment of platy minerals; they have a sheen on its surfaces due to tiny plates of micas.

The quartzites near to surface showed high weathering and were highly friable and non-cohesive while as we move deeper (> 15 m) the quartzite becomes more resistive and less weathered. Quartz is a tectosilicate mineral which ranks 7 on Mohr hardness scale, since it crystallizes later according to Bowen reaction series it is also resistive to weathering. Feldspar on the other hand ranks 6 on Mohr hardness scale and crystallizes earlier thus is prone to weathering.

In the southern part intercalation of phyllites/schist along with quartzite are observed.

Name of Project:

	Consultant:	Geotechnical		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

3.3.1 Structural study of hard rock

The compositional change in quartzite beds defines the bedding in the area and the regional trend of bedding plane is NE-SW with a steep dip towards SE.

A superposed fold was observed at 28°12′33.57″, 77°02′57.08″. DF2 and DF3 deformation phases of Delhi group was observed in the area. DF1 is the prominent fold pattern which was super posed with DF2 folding phase. Signatures of later brittle shearing, possibly related to DF4 phase, was also observed near the proposed portal face. The fold showed Ramsay's Type III folding pattern i.e., non-planar cylindrical (Fig. 7), the fold hinge showed a plunge of 20° towards 220. The Type III fold pattern in rest of the Delhi system of rocks are result of superposition of DF2 over DF3 deformation. The portal face lies perpendicular to the axial plane of the fold. The earlier generation of fold is isoclinal in nature where both the limbs dip towards south.

Near the fold area some quartz tension gashes were observed. Gash veins open up when rock gets stretched due to shearing and the tension fractures forms oblique to the shear zone which is later filled with mineral precipitate. In the present area the gash veins indicate a dextral shearing (Fig. 8)

At location 28° 12' 20.93", 77° 02' 40.50" another evidence of brittle-ductile shear zone was observed within the quartzite outcrop (Fig. 9). Prominent en-echelon fractures were observed within the outcrop which were rotated to form a sigmoidal structure, the fractures were not filled with mineral precipitate. The shear plane was dipping towards NE with a normal slip where the eastern block was showing a downthrown movement and the western block an upthrown movement. The last phase of deformation DF4 has led to the formation of brittle shearing.

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

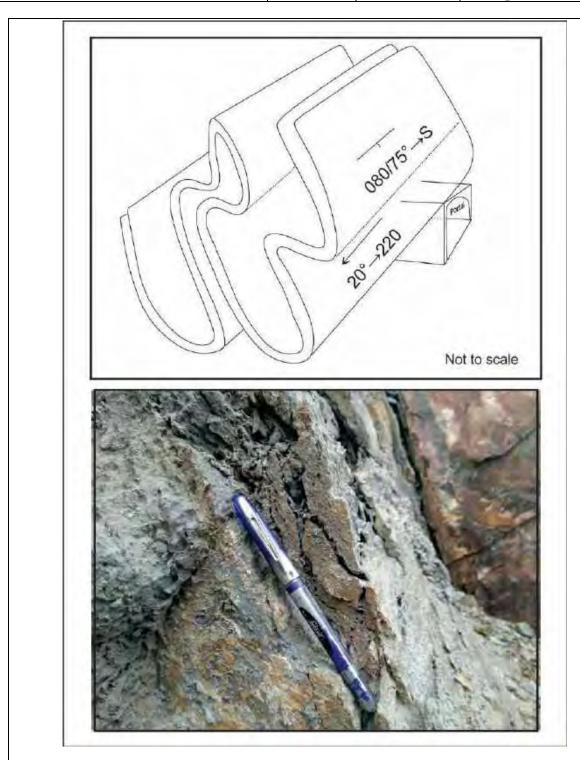


Figure 7: Superposed fold observed at 28 12' 33.57", 77 02'57.08"

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

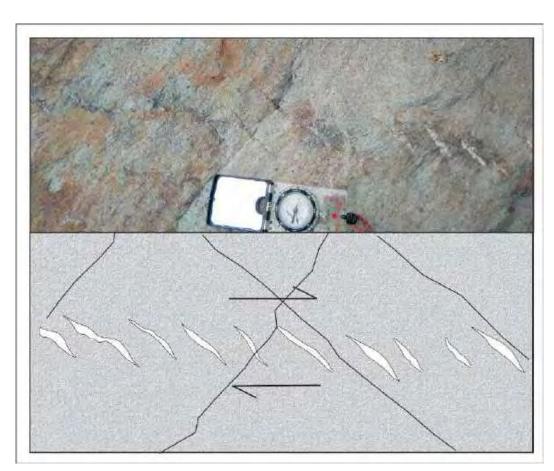


Figure 8 : Gash veins showing a dextral slip.

	Consultant:		technical ation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

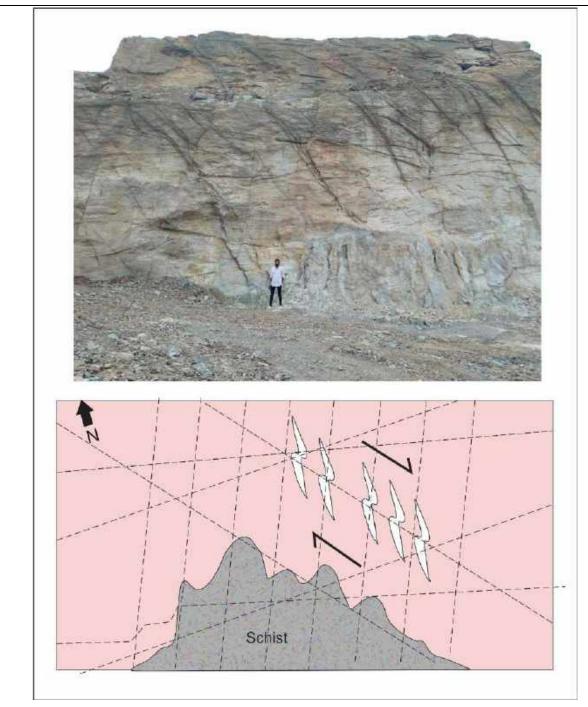


Figure 9: Shear zone observed at location 28 12' 20.93", 77 02' 40.

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Figure 10: Multiple joint sets were observed throughout the area.

	Consultant:	Geot	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	7000	Danaut		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

Orientation of the joints measured in field (Table 2) has been plotted on stereo net and contouring was done following Schimidt's 1% area rule (Figure 11). The diagram shows 6 distinct cluster of the poles to the joint planes, hence we designate the sets as J1, J2, J3, J4, J5, and J6 (Table 3).

Table 2: Orientation of the joints at places around the site.

S. NO	Strike	Dip	Dip Direction
1.	034	11	NW
2.	028	13	NW
3.	029	13	NW
4.	027	15	NW
5.	027	15	NW
6.	026	16	NW
7.	029	18	NW
8.	033	18	NW
9.	028	19	NW
10.	032	19	NW
11.	042	21	NW
12.	040	22	NW
13.	036	23	NW
14.	041	24	NW
15.	037	25	NW
16.	036	26	NW
17.	043	27	NW
18.	040	28	NW
19.	037	30	NW
20.	038	30	NW
21.	178	31	W
22.	172	32	W
23.	175	32	W
24.	170	34	W
25.	174	34	W
26.	172	36	W
27.	178	37	W
28.	172	38	W
29.	178	38	W
30.	178	39	W
31.	003	40	W

Name of Project:

	Consultant:	Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

S. NO	Strike	Dip	Dip Direction
32.	006	40	W
33.	004	41	W
34.	005	43	W
35.	008	43	W
36.	119	45	NE
37.	008	46	W
38.	009	46	W
39.	119	46	NE
40.	008	47	W
41.	002	49	W
42.	116	49	NE
43.	007	50	W
44.	110	50	NE
45.	110	51	NE
46.	111	51	NE
47.	114	51	NE
48.	117	51	NE
49.	115	52	NE
50.	119	52	NE
51.	122	57	NE
52.	126	59	NE
53.	127	60	NE
54.	130	60	NE
55.	121	62	NE
56.	129	62	NE
57.	122	63	NE
58.	128	63	NE
59.	124	64	NE
60.	126	65	NE
61.	117	70	NE
62.	117	70	NE
63.	029	71	SE
64.	032	71	SE
65.	026	72	SE
66.	111	72	NE
67.	028	73	SE
68.	030	73	SE
69.	035	73	SE
70.	116	73	NE

	Consultant:	Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

S. NO	Strike	Dip	Dip Direction
71.	119	74	NE
72.	117	75	NE
73.	178	76	Е
74.	030	76	SE
75.	170	77	Е
76.	174	77	Е
77.	030	77	SE
78.	110	77	NE
79.	113	77	NE
80.	171	79	Е
81.	178	79	Е
82.	179	79	Е
83.	027	79	SE
84.	032	79	SE
85.	174	80	Е
86.	176	80	Е
87.	114	80	NE
88.	116	80	NE
89.	040	81	SE
90.	042	81	SE
91.	122	81	NE
92.	171	82	Е
93.	175	82	Е
94.	045	82	SE
95.	126	82	NE
96.	039	83	SE
97.	122	83	NE
98.	125	83	NE
99.	125	83	NE
100.	005	84	E
101.	038	84	SE
102.	001	85	Е
103.	008	85	Е
104.	129	85	NE
105.	124	86	NE
106.	127	86	NE
107.	002	87	Е
108.	006	87	Е
109.	037	87	SE

	Consultant:	Geot	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	7000	Danaut		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

S. NO	Strike	Dip	Dip Direction
110.	042	87	SE
111.	127	87	NE
112.	009	88	E
113.	002	89	E
114.	043	89	SE
115.	130	89	NE
116.	001	90	E
117.	036	90	SE
118.	040	90	SE
119.	006	91	Е
120.	007	93	Е
121.	045	82	SE
122.	126	82	NE
123.	039	83	SE
124.	122	83	NE
125.	130	89	NW

Table 3: Average orientation of Joint sets

Joint Set	Average Strike	Average True Dip amount	Average True Dip direction
J1	035	80	SE
J2	035	20	NW
J3	000	84	Е
J4	000	40	W
J5	300	55	NE
J6	300	80	NE

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

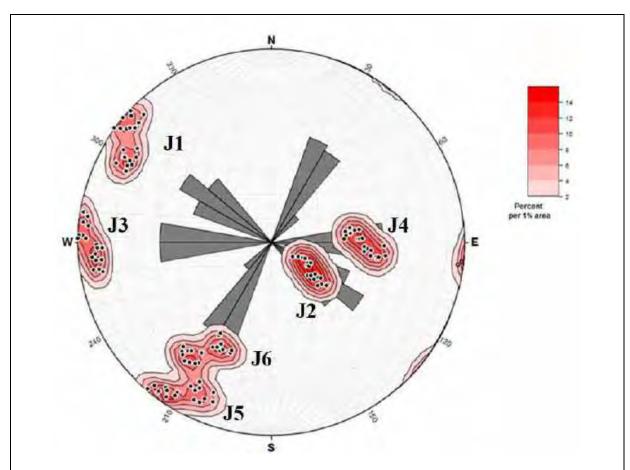


Figure 11: Rose and contour diagram of the orientation of the joint set.

3.3.2 Geological study of unconsolidated material and soil:

There are 4 types of soil were encountered along the tunnel alignment i.e., CL, ML, SM, ML-CL. From CH25800, the rock soil contact point in L-Section (Figure 19), upto CH26700 area were covered with ML type of soil. A very long patch of CL soil, from the boundary of ML at CH26700 up to CH28880, was present. A few small patches of ML and ML-CL soil were appeared within the large patch of CL. Two patches of ML soil, near CH27200 (around BH24) and near CH28560 (around BH29), and a patch of SM soil near CH 28500were found. Again, a portion of ML soil from CH2880 to CH29420 were found and rest of soil along the alignment were categorised into ML-CL type of soil.

Name of Project:

	Consultant:	Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Presence of any hot spring, artesian well/ free flowing well was not found and further, no active fault was detected in soil region along the proposed tunnel alignment.

A detailed geological map in a scale 1:25000 (Figure 12) and in 1:2000 scale showing all structural elements which includes faults, thrusts, shear zones, folds, joints, lithological boundaries along with finalised tunnel alignment(Figure 13), L-Section (Figure 19) along the hilly terrain (1:25000 H and 1:2500 V) and detailed cross sections (Figure 20, Figure 21, Figure 22) of the portal face on the mountain front and in the soil are given below;

Name of Project:

	Consultant:	Geotechi	nical Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure Development
S M C	BHUBANESWAR	Report No.:	SMC/2050	Corporation Ltd

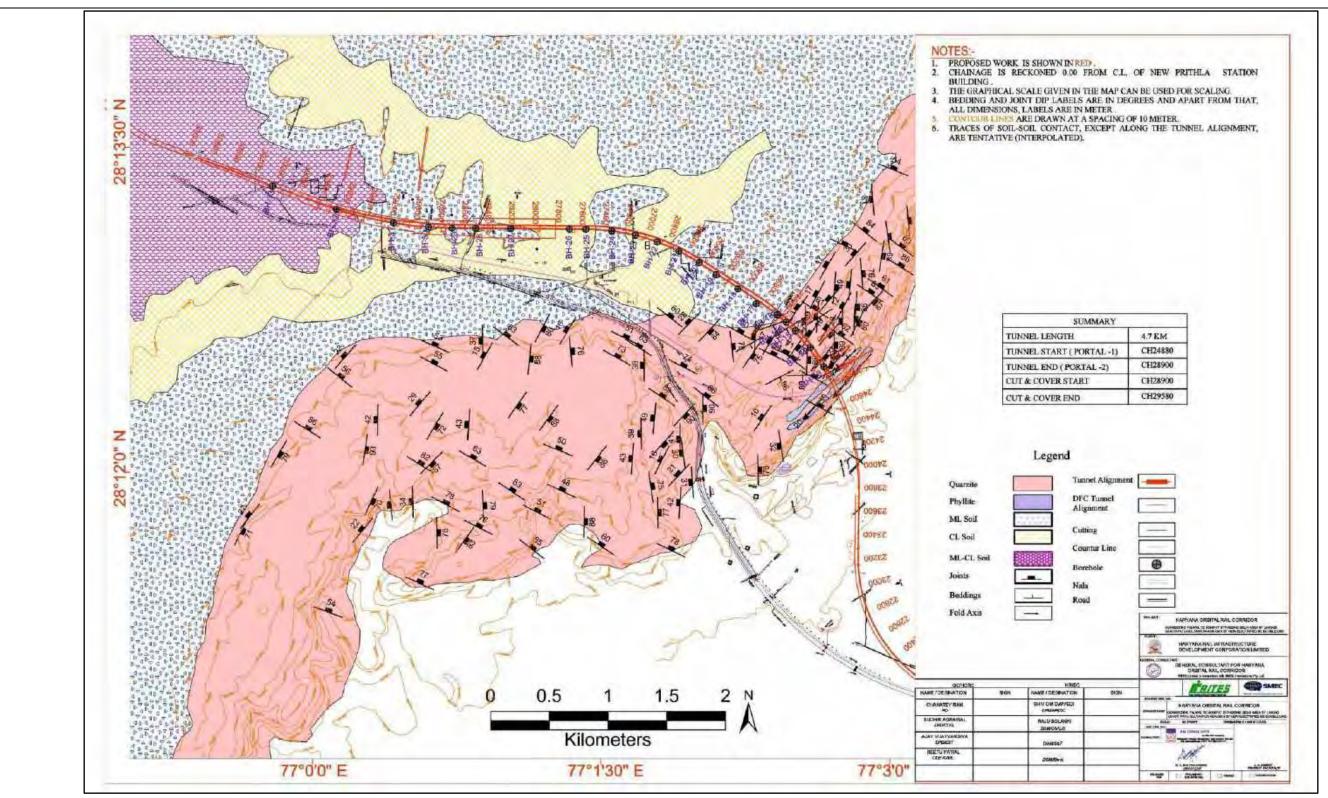


Figure 12: Geological map of the area at 1:25000 scale.

Exploring alternate alignments, final location survey, geological mapping, geo-technical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project"

	Consultant:	Geotech	nnical Investigation Report	Client:
S. M. C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure Development
S M.C.	BHUBANESWAR	Report No.:	SMC/2050	Corporation Ltd

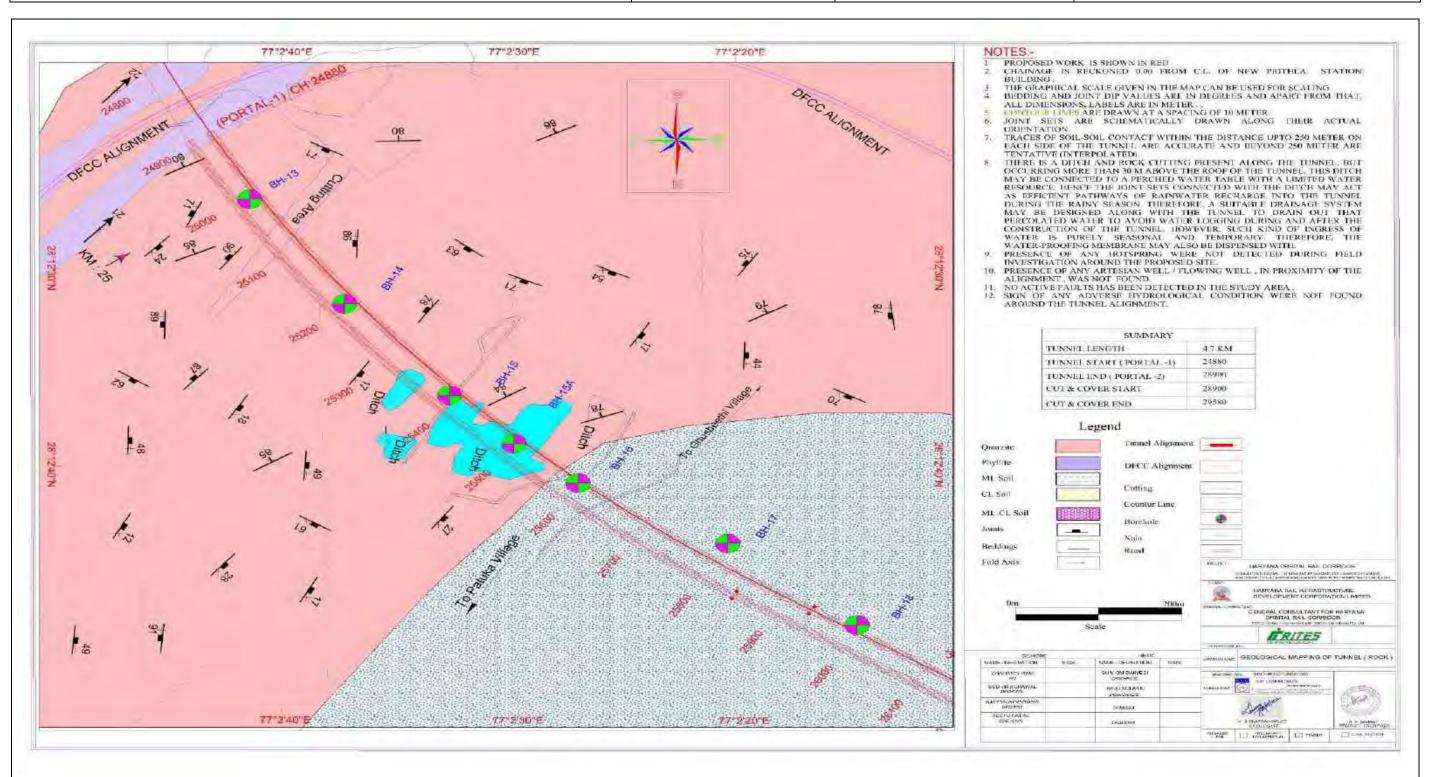
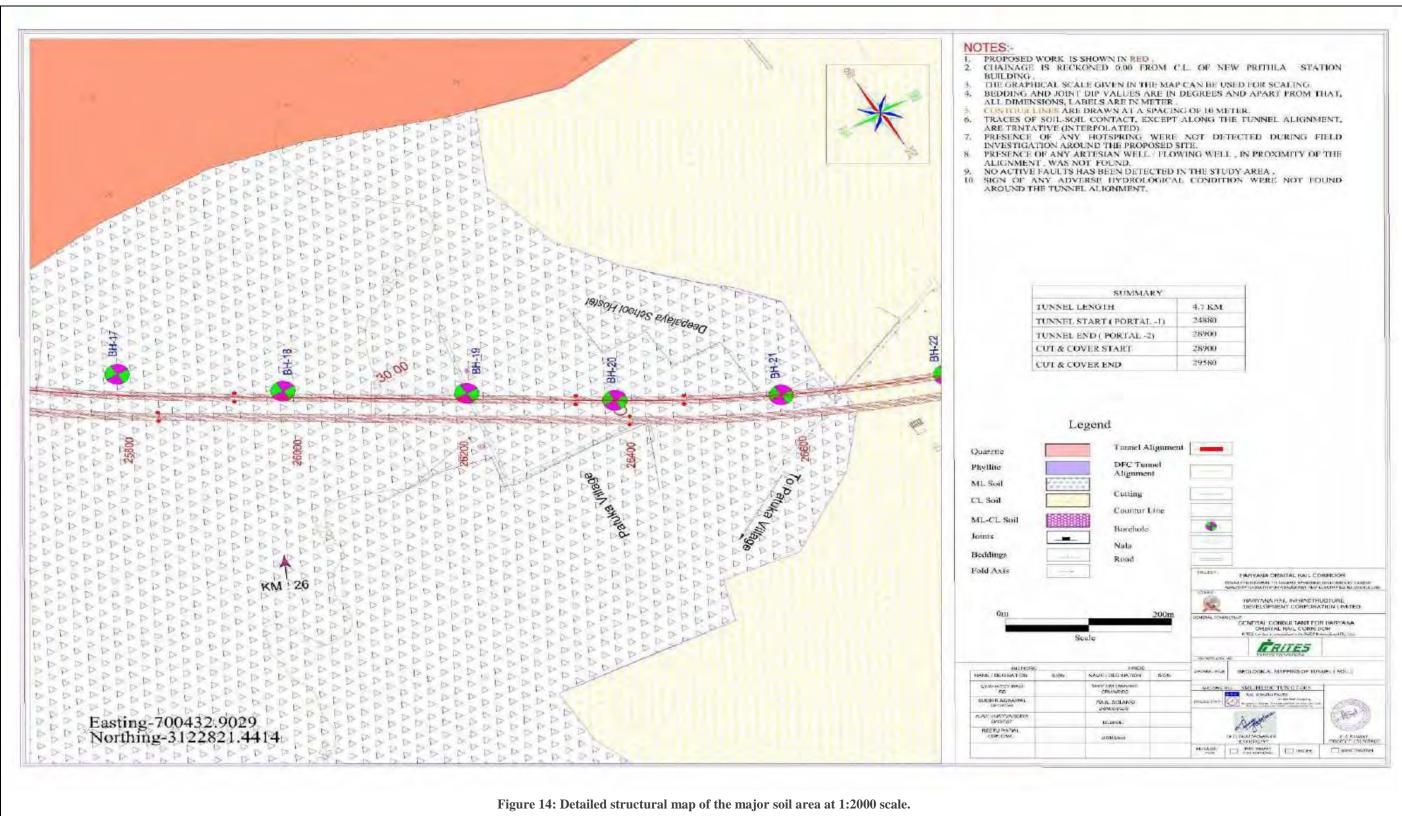



Figure 13: Detailed structural map of the major rocky area at 1:2000 scale. Joint sets are schematically drawn with their actual orientation. Average spacing between the joints are as follows J1: 300 cm, J2:252.78cm, J3:160cm, J4:80cm, J5:32cm, J6:100cm.

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: Report No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.G.	S,M, CONSULTANTS BHUBANESWAR	Job No.: Report No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

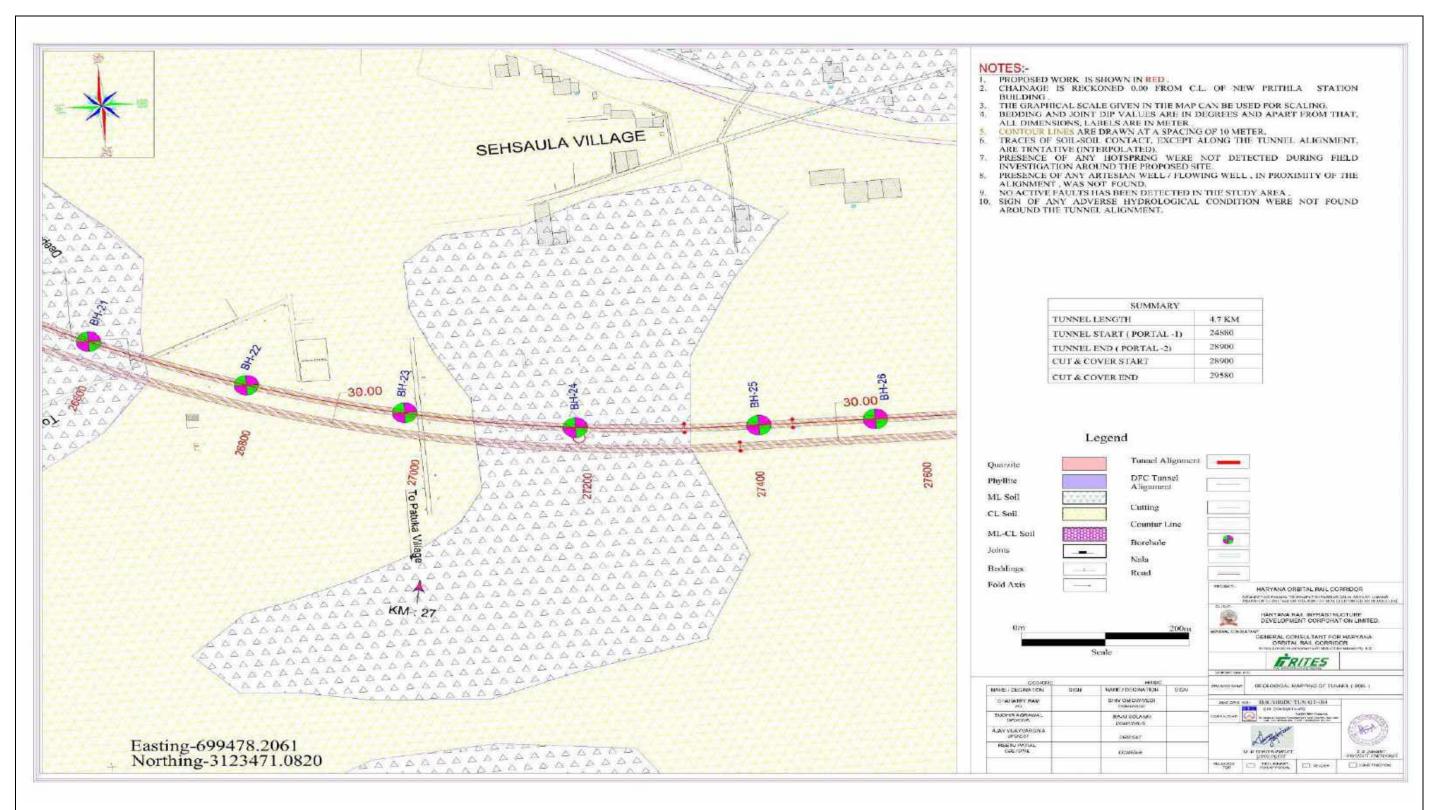


Figure 15: Detailed structural map of the major soil area at 1:2000 scale.

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: Report No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

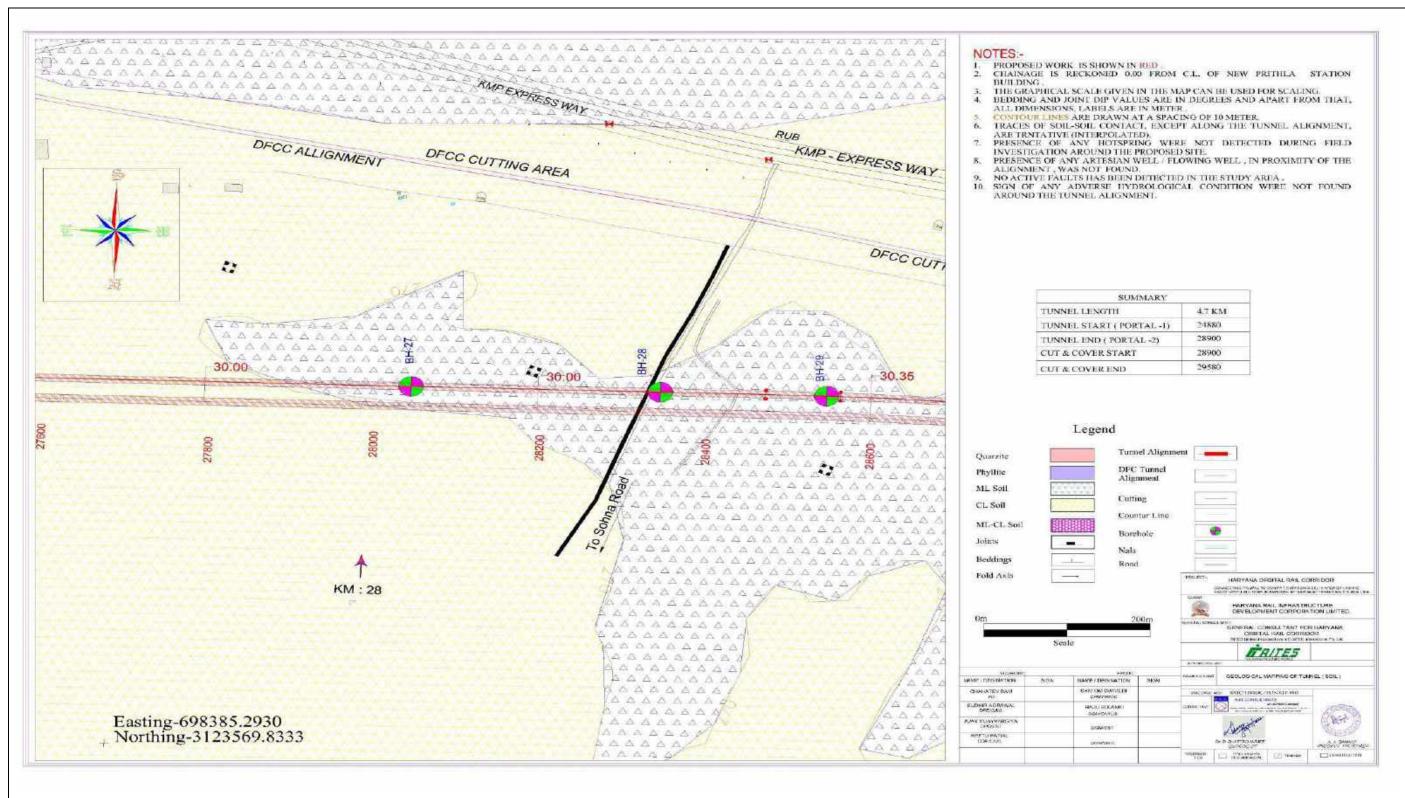


Figure 16: Detailed structural map of the major soil area at 1:2000 scale.

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: Report No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Exploring alternate alignments, final location survey, geological mapping, geo-technical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project"

	Consultant:	Geotech	nnical Investigation Report	Client:
S. M. C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure Development
S M.C.	BHUBANESWAR	Report No.:	SMC/2050	Corporation Ltd

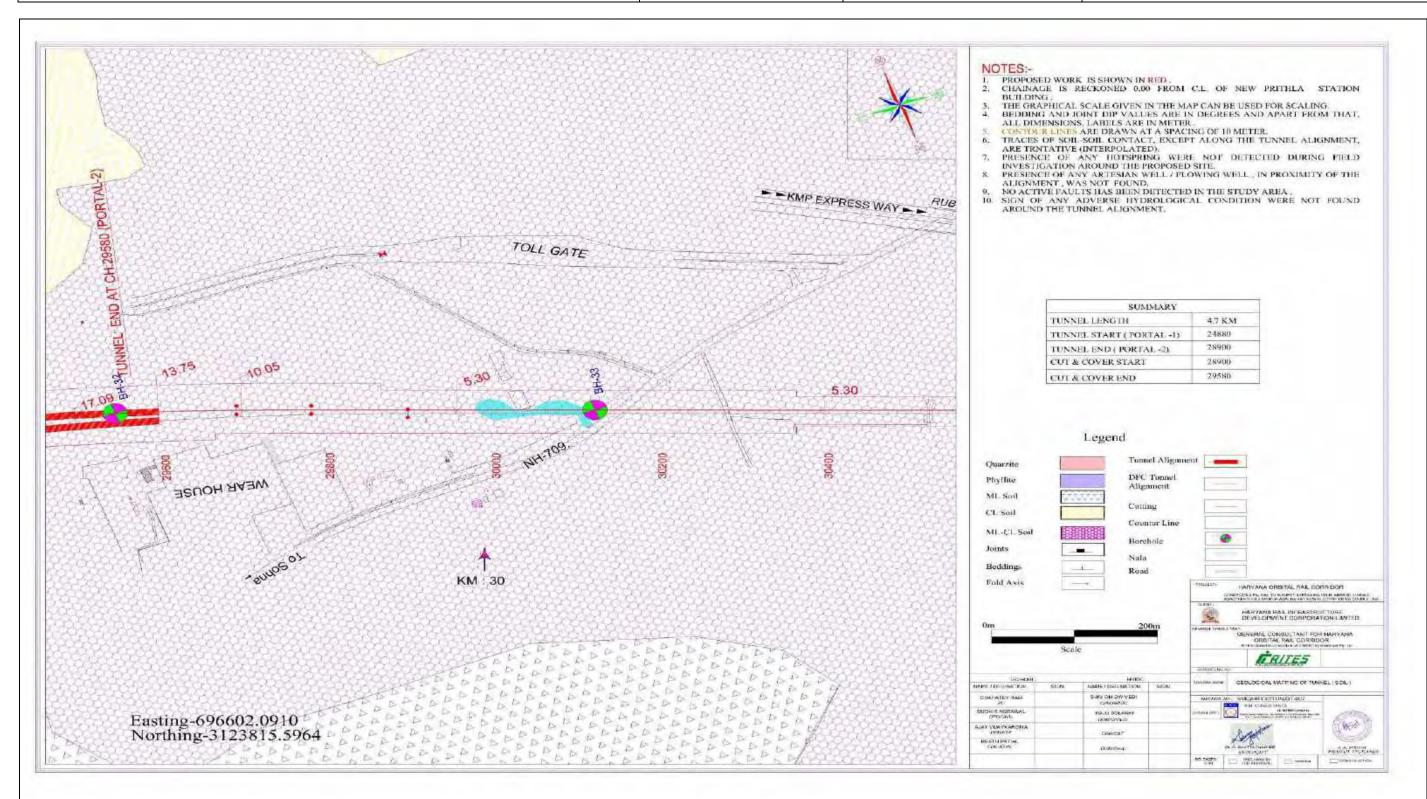
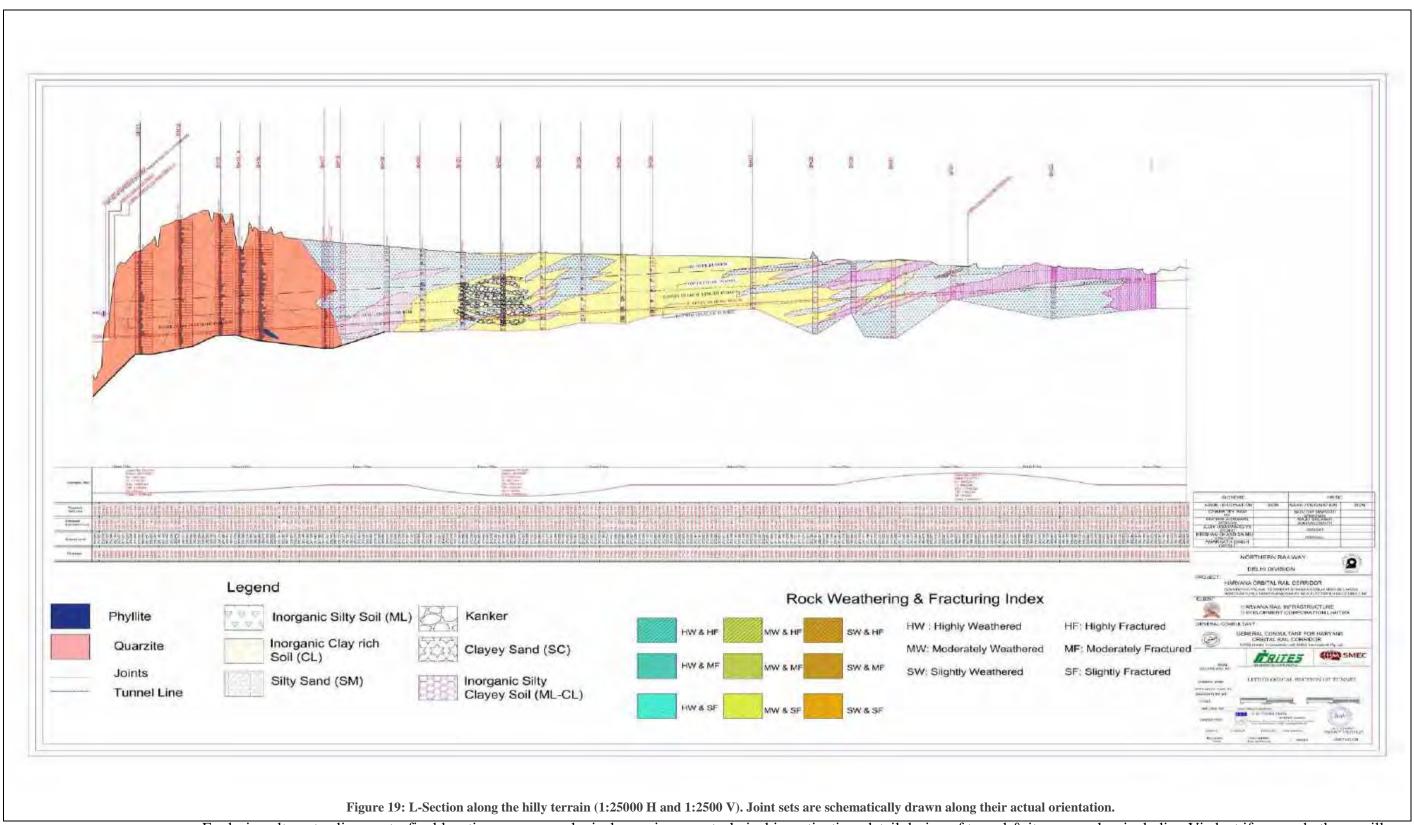
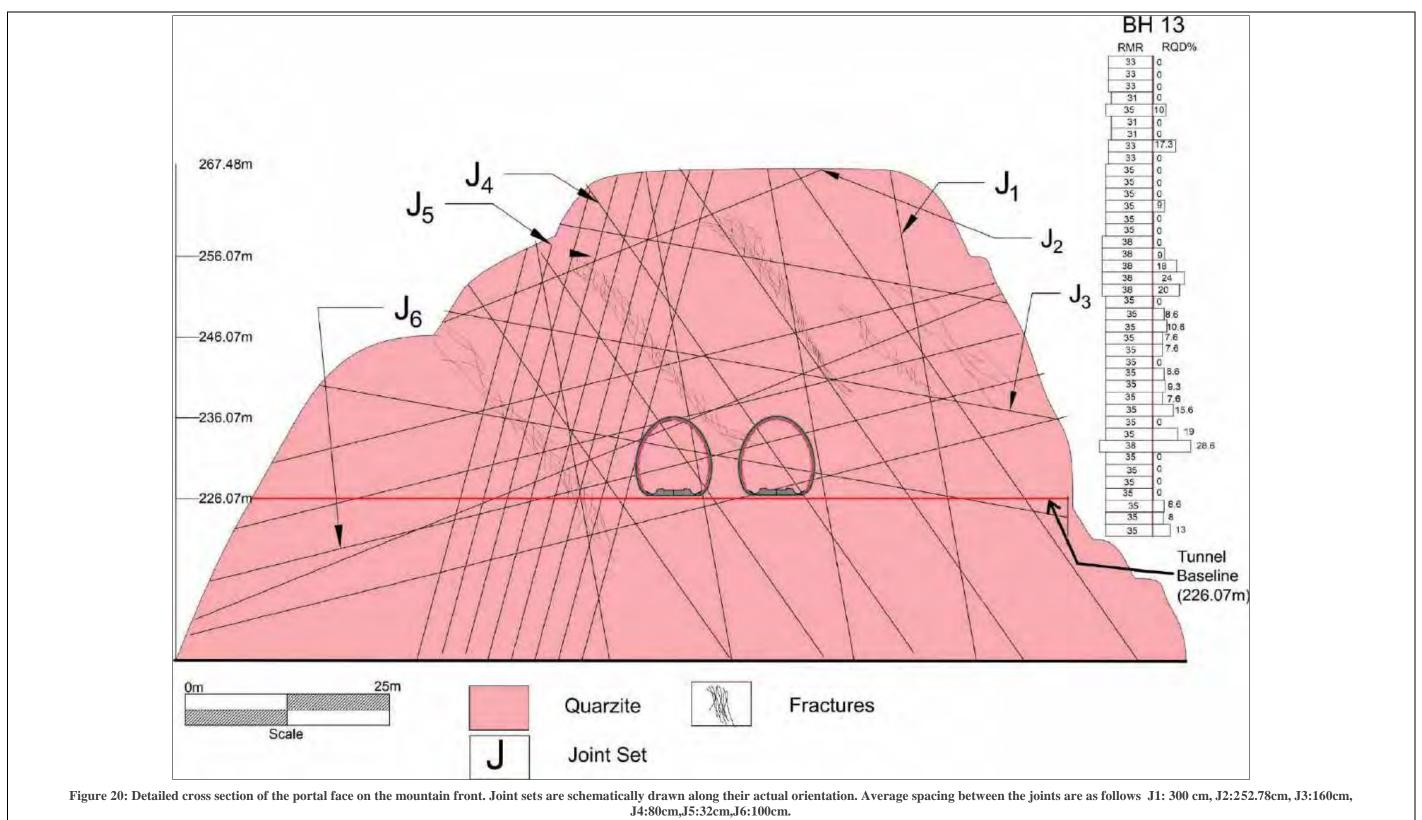




Figure 18: Detailed structural map of the major soil area at 1:2000 scale.

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure Development
	BHUBANESWAR	Report No.:	SMC/2050	Corporation Ltd

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Harris D. H. Carda da D. Da da ara d
	BHUBANESWAR	Report No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

	Consultant:	Geotech	nical Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure Development
S. M. C.	BHUBANESWAR	Report No.:	SMC/2050	Corporation Ltd

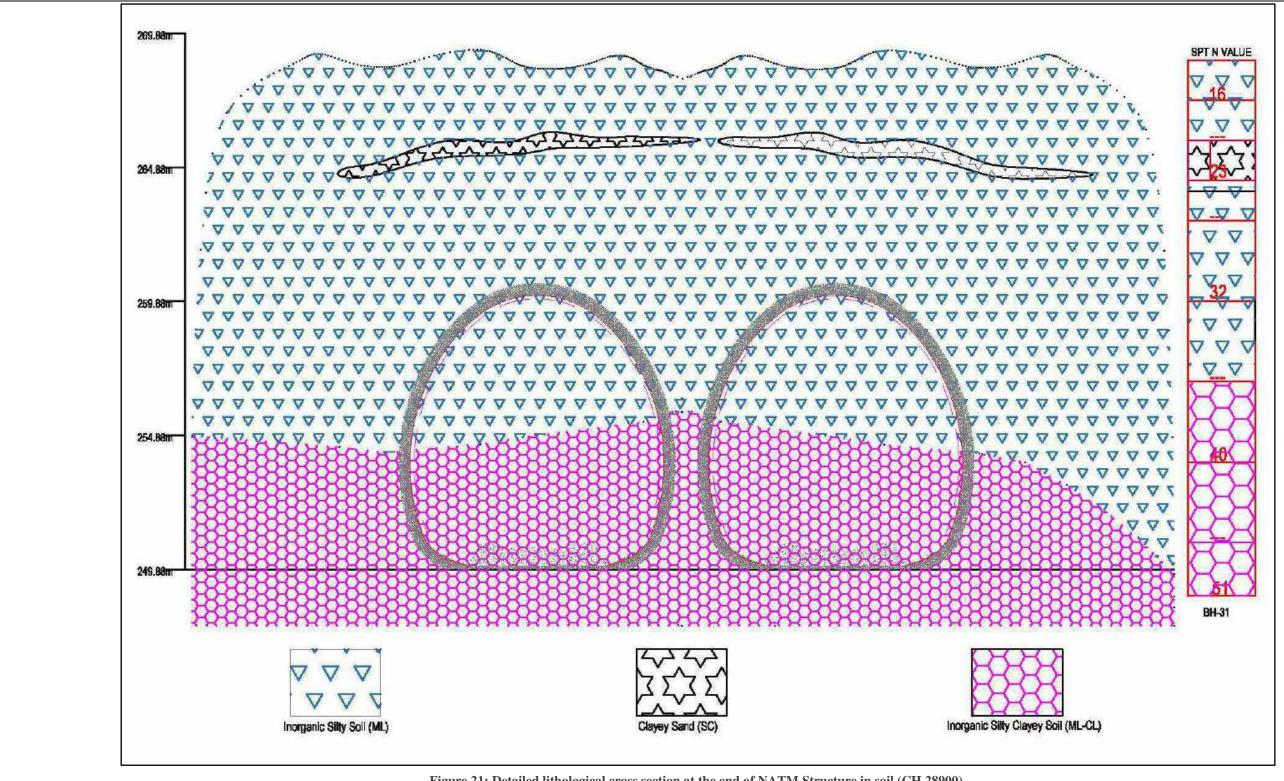


Figure 21: Detailed lithological cross section at the end of NATM Structure in soil (CH 28900).

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure Development
S. M. C.	BHUBANESWAR	Report No.:	SMC/2050	Corporation Ltd

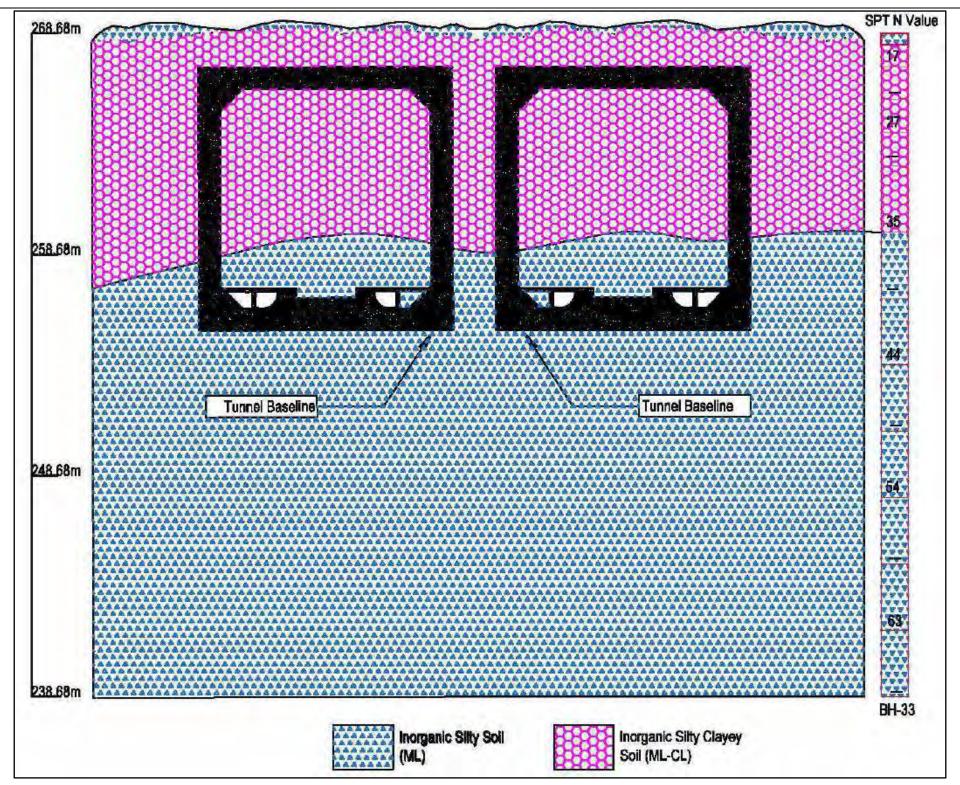


Figure 22: Cut and Cover structure at the end of tunnel – Portal II (CH29600).

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

4 CHAPTER: EXPLORATORY DRILLING

As per the requirement of scope of work outlined in the terms of reference, 20 bore holes were drilled with a cumulative length of 4.6 Km (Approx) at different locations along the proposed alignment. Necessary care has been taken during drilling operations by deploying good quality diamond drill machines to obtain good core recovery to obtain RQD values. The locations of the boreholes were selected in such a way, so that these holes more or less intersect the envisaged ground/ strata conditions at different depths. The location and details of boreholes drilled; total depth of drillings is shown in table below.

Table 4: Boreholes Details

BH No.	Chainage No.	Ground Elevation, RL (m)	Total Depth (m)
BH-13	25000	276.867	60
BH-14	25195	294.218	75
BH-15	25380	295.532	70
BH-15A	25488	276.442	50
BH-16	25586	287.324	62
BH-17	25785	282.461	62
BH-18	25990	280.253	55
BH-19	26210	278.116	50
BH-20	26387	276.795	48
BH-21	26587	274.993	45
BH-22	26787	274.321	45
BH-23	26980	274.85	45
BH-24	27187	274.075	40

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BH-25	27410	273.565	40
BH-26	27550	273.112	35
BH-27	28050	272.210	30
BH-28	28350	272.799	45
BH-29	28550	269.964	30
BH-30	28750	270.808	45
BH-31	29050	267.159	20
BH-32	29550	266.684	30
BH-33	30125	265.581	20

4.1 Borehole Core Details:

4.1.1 Borehole Core details from Rock Region;

The homogenous rock mass of quartzite is found in boreholes from BH13- BH17 upto a maximum depth of 216m MSL. Rocks are weathered in a varying degree in this region. Only in BH16 at below 40m a very small amount of phyllitic rock was found.

4.1.2 Borehole Core details from Soil Region;

BH NO-17

- 1. From N.G.L to 18.0.0 m depth, a low-plastic, stiff to hard consistency Inorganic silty clayey soil stratum exists from which three UDS were collected at 1.50 m, 4.5 m & 9.0 m depth. The field SPT N values were found to be 12,16,26,21,37 and greater than 50 at 3.0 m,6.0 m,12.0 m,15.0 m ,16.50 m & 18.0 m depth respectively
- 2. From 18.0 m to 35.0 m depth, rock stratum was encountered.
- 3. From 35.0 m to 39.50 m depth, a non-plastic, very dense compacted silty sand stratum exists. The field SPT N values were found to be greater than 50 at 36.50 m,38.0 m & 39.50 m depth
- 4. From 39.50 m to 62.0 m (max. explored) depth, rock stratum was encountered.

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

BH NO-18

- From N.G.L to 15.0.0 m depth, a non-plastic, medium compacted clayey silts with none to low plasticity stratum exists from which one DS & three UDS were collected at 0.5 m, 1.5 m, 4.50 m, & 9.0 m depth. The field SPT N values were found to be 11,20 & 24 at 3.0 m,6.0 m, & 12.0 m depth.
- 2. From 15.0 m to 24.0 m depth, low plastic, hard consistency Inorganic silty clayey soil stratum exists. The field SPT N values were found to be 31,35 & 40 at 15.0 m,18.0 m, & 21.0 m depth.
- 3. From 24.0 m to 55.0 m (max. explored) depth, a non-plastic, dense to very dense compacted clayer silts with none to low plasticity stratum exists. The field SPT N values were found to be 47,49,57,64,69,77,84 and greater than 50 at 24.0m,27.0 m,30.0 m,33.0 m,36.0 m,39.0 m,42.0 m,45.0 m,47.0 m,50.0 m,53.0 m & 55.0 m depth

BH NO-19

- 1. From N.G.L to 33.0 m depth, a non-plastic, medium to dense compacted clayey silts with none to low plasticity stratum exists from which one DS & six UDS were collected at 0.5 m, 3.0 m, 6.0 m, 12.0 m, 18.0 m, 24.0 m & 30.0 m depth. The field SPT N values were found to be 17, 23, 30, 35, 35 & 39 at 1.50 m, 4.50 m, 9.0 m, 15.0 m, 21.0 m, & 27.0 m depth.
- 2. From 33.0 m to 50.0 m (max. explored) depth, a non-plastic, dense to very dense compacted Silty sand stratum exists.

BH NO-20

- 1. From N.G.L to 12.0 m depth, a non-plastic, dense compacted clayey silts with none to low plasticity stratum exists from which one DS & two UDS were collected at 0.5 m, 3.0 m & 6.0 m depth. The field SPT N values were found to be 18, 32 & 48 at 1.50 m, 4.50 m & 9.0 m depth.
- 2. From 12.0 m to 15.0 m depth, a non-plastic, Silty sand stratum exists.
- 3. From 15.0 m to 18.0 m depth, a non-plastic, very dense compacted clayey silts with none to low plasticity stratum exists. The Field SPT N values was found to be 60 at 15.0 m Depth.
- 4. From 18.0 m to 21.0 m depth, a non-plastic, Silty sand stratum exists.

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Domont		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

- 5. From 21.0 m to 27.0 m depth, non-plastic, very dense compacted clayey silts with none to low plasticity stratum exist. The Field SPT N values were found to be 67 & 76 at 21.0 m & 24.0 m Depth.
- 6. From 27.0 m to 48.0 m (max. explored) depth, medium-plastic, hard consistency silt & clay with low compressibility stratum exist from which four UDS sample were collected at 27.0 m, 33.0 m,39.0 m & 45.0 m depth. The field SPT N values were found to be 58, 67, 75 & 79 at 30.0 m, 36.0 m, 42.0 m & 48.0 m depth respectively

BH NO-21

- 1. From N.G.L to 18.0 m depth, a non-plastic, medium to dense compacted clayey silts with none to low plasticity stratum exists from which one DS & three UDS were collected at 0.5 m, 3.0 m, 6.0 m & 12.0 m depth. The field SPT N values were found to be 14, 20, 31 & 38 at 1.50 m, 4.50 m 9.0 m & 15.0 m depth.
- 2. From 18.0 m to 39.0 m depth, fragmented rock stratum encountered.
- 3. From 39.0 m to 45.0 m (max. explored) depth, non-plastic, very dense compacted stratum exists from which two DS sample was collected at 39.0 m and 45.0 m depth. The field SPT N values was found to be 77 at 42.0 m depth respectively.

BH NO-22

- 1. From N.G.L to 1.50 m depth, a medium-plastic silt & clay with low compressibility stratum exists from which one DS was collected at 0.5 m depth.
- 2. From 1.50 m to 12.0 m depth, a non-plastic, medium compacted clayey silts with none to low plasticity stratum exists from which two UDS were collected at 3.0 m & 6.0 m depth.
- 3. From 12.0 m to 42.0 m depth Fragmented Rock stratum encountered.
- 4. From 42.0 m to 45.0 m (max. explored) depth, medium-plastic, hard consistency silt & clay with low compressibility stratum exist. from which one DS sample was collected at 42.0 m depth. The field SPT N value was found to be 91 at 45.0 m depth.

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd

BH NO-23

- 1. From N.G.L to 9.0 m depth, a medium-plastic, stiff to very stiff consistency silt & clay with low compressibility stratum exists from which one DS & two UDS were collected at 0.5 m, 3.0 m & 6.0 m depth. The field SPT N values were found to be 16 & 23 at 1.50 m & 4.50 m depth.
- 2. From 9.0 m to 12.0 m depth, a non-plastic, dense compacted clayey silts with none to low plasticity stratum exists. The Field SPT N value was found to be 34 at 9.0 m Depth.
- 3. From 12.0 m to 21.0 m depth, a medium-plastic, hard consistency silt & clay with low compressibility stratum exists. The field SPT N value was found to be 38 at 21.0 m depth.
- 4. From 21.0 m to 24.0 m depth, a non-plastic, dense compacted Silty sand stratum exists. The field SPT N value was found to be 50 at 15.0 m depth.
- 5. From 24.0 m to 27.0 m depth, medium-plastic, silt & clay with low compressibility stratum exist from which one UDS was collected at 24.0 m depth.
- 6. From 27.0 m to 30.0 m depth, a non-plastic, very dense compacted Silty sand stratum exists. The field SPT N value was found to be 63 at 27.0 m depth.
- 7. From 30.0 m to 33.0 m depth, a non-plastic, clayey silts with none to low plasticity stratum exists from which one UDS was collected at 30.0 m depth.
- 8. From 33.0 m to 36.0 m depth, medium-plastic, hard consistency silt & clay with low compressibility stratum exist. The field SPT N value was found to be 73 at 33.0 m depth.
- 9. From 36.0 m to 39.0 m depth, a non-plastic, Silty sand stratum exists from which one UDS was collected at 36.0 m depth.
- 10. From 39.0 m to 45.0 m (max. explored) depth, medium-plastic, hard consistency silt & clay with low compressibility stratum exist from which one UDS sample was collected at 42.0 m depth. The field SPT N values were found to be 77 & 85 at 39.0 m & 45.0 m depth respectively.

BH NO-24

1. From N.G.L to 24.0 m depth, a non-plastic, medium compacted clayey silts with none to low plasticity stratum exists from which one DS & four UDS were collected at 0.5 m, 3.0 m, 6.0 m, 12.0 m & 18.0 m depth. The field SPT N values were found to be 14,21,27,33 & 43 at 1.50 m, 4.50 m, 9.0 m, 15.0 m & 21.0 m depth.

Name of Project:

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

2. From 24.0 m to 40.0 m (max. explored) depth, medium-plastic, hard consistency silt & clay with low compressibility stratum exist from which four UDS sample were collected at 24.0 m,30.0 m,36.0 m & 40.0 m depth. The field SPT N values were found to be 58, 72 & 89 at 27.0 m, 33.0 m & 39.0 m depth respectively.

BH NO-25

- 1. From N.G.L to 40.0 m (max. explored) depth, medium-plastic, stiff to hard consistency silt & clay with low compressibility stratum exist from which one DS & eight UDS sample were collected at 0.5 m,3.0 m,6.0 m,12.0 m,18.0 m,24.0 m,30.0 m,36.0 m & 40.0 m depth. T
- 2. The field SPT N values were found to be 13,20,30,31,33,48,68 & 81 at 1.50 m,4.50 m,9.0 m,15.0 m,21.0 m,27.0 m, 33.0 m & 39.0 m depth respectively.

BH NO-26

- 1. From N.G.L to 35.0 m (max. explored) depth, medium-plastic, stiff to hard consistency silt & clay with low compressibility stratum exist from which one DS & seven UDS sample were collected at 3.0 m,6.0 m,12.0 m,18.0 m,24.0 m,30.0 m & 35.0 m depth.
- 2. The field SPT N values were found to be 11,19,28,34,41,53 & 65 at 1.50 m,4.50 m,9.0 m,15.0 m,21.0 m,27.0 m & 33.0 m depth respectively.

BH NO-27

- 1. From N.G.L to 6.0 m depth, a medium-plastic, stiff to very stiff consistency, silt and clay with low compressibility stratum exists from which one DS & one UDS were collected at 0.5 m & 3.0 m, depth. The field SPT N values were found to be 14 & 24 at 1.50 m, & 4.50 m depth.
- 2. From 6.0 m to 9.0 m depth, non-plastic, clayey silts with none to low plasticity stratum exists from which one UDS was collected at 6.0 m depth,
- 3. From 9.0 m to 18.0 m depth, a medium-plastic, very stiff to hard consistency, silt and clay with low compressibility stratum exists from which one UDS was collected at 12.0 m, depth. The field SPT N values were found to be 27 & 36 & 9.0 m, & 15.0 m depth.
- 4. From 18.0 m to 21.0 m depth, non-plastic, clayey silts with none to low plasticity stratum exists from which one UDS was collected at 18.0 m depth,

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

5. From 21.0 m to 30.0 m (max. explored) depth, medium-plastic, hard consistency silt & clay with low compressibility stratum exist from which two UDS sample were collected at 24.0 m & 30.0 m depth. The field SPT N values were found to be 45 & 54 at 21.0 m & 27.0 m depth respectively.

BH NO-28

- 1. From N.G.L to 1.50 m depth, non-plastic, clayey silts with none to low plasticity stratum exists from which one DS was collected at 0.5 m depth,
- 2. From 1.50 m to 3.0 m depth, a medium-plastic, medium consistency, silt and clay with low compressibility stratum exists. The field SPT N values was found to be 12 at 1.5 m depth.
- 3. From 3.0 to 6.0 m depth, non-plastic, medium compacted clayey silts with none to low plasticity stratum exists from which one UDS was collected at 3.0 m depth. The field SPT N Values Was found to be 21 & 4.50 m depth.
- 4. From 6.0 to 9.0 m depth, non-plastic, silty sand stratum exists from which one UDS was collected at 6.0 m depth.
- 5. From 9.0 to 18.0 m depth, non-plastic, medium to dense compacted clayey silts with none to low plasticity stratum exists from which one UDS was collected at 12.0 m depth. The field SPT N Values Was found to be 28 & 38 at 9.0 & 15.0 m depth.
- 6. From 18.0 m to 30.0 m depth, a medium-plastic, hard consistency, silt and clay with low compressibility stratum exists from which two UDS were collected at 18.0 m & 24.0 m depth. The field SPT N values were found to be 47 & 53 at 21.0 m & 27.0 m depth.
- 7. From 30.0 to 33.0 m depth, non-plastic, very dense compacted clayer silts with none to low plasticity stratum exists from which one UDS was collected at 30.0 m depth.
- 8. From 33.0 m to 39.0 m depth, a medium-plastic, hard consistency, silt and clay with low compressibility stratum exists from which one UDS was collected at 36.0 m depth. The field SPT N values were found to be 70 at 33.0 m depth.
- 9. From 39.0 m to 45.0 m (max. explored) depth, non-plastic very dense compacted clayey silts with none to low plasticity stratum exist from which one UDS sample was collected at 39.0 m depth. The field SPT N values were found to be 81 & 92 at 39.0 m & 45.0 m depth respectively.

Name of Project:

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

BH NO-29

- 1. From N.G.L to 3.0 m depth, non-plastic, medium compacted, clayey silts with none to low plasticity stratum exists from which one DS was collected at 0.5 m depth. The field SPT N value was found to be 12 at 1.5 m depth.
- 2. From 3.0 m to 12.0 m depth, a low-plastic, very stiff consistency, consistency Inorganic silty clayer stratum exists from which two UDS were collected at 3.0 m & 6.0 m depth. The field SPT N values were found to be 14 & 27 at 4.5 m & 9.0 m depth.
- 3. From 12.0 to 15.0 m depth, non-plastic, silty sand stratum exists from which one UDS was collected at 12.0 m depth.
- 4. From 15.0 to 24.0 m depth, non-plastic, dense compacted, clayey silts with none to low plasticity stratum exists from which one UDS was collected at 18.0 m depth. The field SPT N Values were found to be 38 & 47 at 15.0 m & 21.0 m depth respectively.
- 5. From 24.0 to 27.0 m depth, non-plastic, silty sand stratum exists from which one UDS was collected at 24.0 m depth.
- 6. From 27.0 m to 30.0 m (max. explored) depth, a low-plastic, hard consistency Inorganic silty clayer stratum exists from which one UDS was collected at 27.0 m depth. The field SPT N values was found to be 61 at 27.0 m depth.

BH NO-30

- 1. From N.G.L to 4.5 m depth, non-plastic, medium compacted, clayey silts with none to low plasticity stratum exists from which one DS and one UDS was collected at 0.5 m & 3.0 m depth. The field SPT N value was found to be 17 at 1.5 m depth.
- 2. From 4.50 m to 12.0 m depth, a low-plastic, very stiff consistency, Inorganic silty clayey stratum exists from which two UDS were collected at 3.0 m & 6.0 m depth. The field SPT N values were found to be 22 & 30 at 4.5 m & 9.0 m depth.
- 3. From 12.0 to 18.0 m depth, medium-plastic, hard consistency, silt & clay with low compressibility stratum exists from which one UDS was collected at 12.0 m depth. The field SPT N values was found to be 38 at 15.0 m depth.
- 4. From 18.0 to 21.0 m depth, non-plastic, clayey silts with none to low plasticity stratum exists from which one UDS was collected at 18.0 m depth.

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

- 5. From 21.0 to 24.0 m depth, medium-plastic, hard consistency, silt & clay with low compressibility stratum exists. The field SPT N values were found to be 44 at 21.0 m depth.
- 6. From 24.0 to 27.0 m depth, non-plastic, silty sand stratum exists from which one UDS was collected at 24.0 m depth.
- 7. From 27.0 to 45.0 m depth, non-plastic, very dense compacted, clayey silts with none to low plasticity stratum exists from which three UDS were collected at 30.0 m,36.0 m & 42.0 m depth respectively.
- 8. From 45.0 m (max. explored) depth, a low-plastic, hard consistency Inorganic silty clayey stratum exists. The field SPT N values were found to be 84 at 45.0 m depth.

BH NO-31

- 1. From N.G.L to 3.0 m depth, medium-plastic, stiff consistency, silt and clay with low compressibility stratum exists from which one DS was collected at 0.5 m depth. The field SPT N value was found to be 16 at 1.5 m depth.
- 2. From 3.0 to 4.50 m depth, non-plastic, silty sand stratum exists from which one UDS was collected at 3.0 m depth.
- 3. From 4.50 m to 12.0 m depth, a non-plastic, medium to dense compacted, clayey silts with none to low plasticity stratum exists from which one UDS was collected at 6.0 m depth. The field SPT N values were found to be 23 & 32 at 4.5 m & 9.0 m depth.
- 4. From 12.0 m to 20.0 m (max. explored) depth, a low-plastic, hard consistency Inorganic silty clayey stratum exists from which two UDS were collected at 12.0 m & 18.0 m The field SPT N values were found to be 40 & 51 at 15.0 m & 20.0 m depth respectively.

BH NO-32

- 1. From N.G.L to 30 m depth, a low-plastic, hard consistency Inorganic silty clayey stratum exists from which one DS was collected at 0.5 m depth and six UDS were collected at 3.0 m, 6.0 m, 12.0 m, 18.0 m, 24.0 m & 30.0 m.
- 2. The field SPT N values were found to be 17, 27, 35, 44, 54 & 63 at 1.5m, 4.5m, 9.0m, 15.0m, 21.0m & 27.0 m depth respectively.
- 3. The plasticity index of the soil throughout the borehole is ranging between 10% 12%.
- 4. The plastic limit of the soil throughout the borehole is ranging between 19% 22%.

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

	Consultant:	Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donaut		Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development
		110.:		Corporation Ltd

BH NO-33

- 1. From N.G.L to 30 m depth, a low-plastic, hard consistency Inorganic silty clayey stratum exists from which one DS was collected at 0.5 m depth and four UDS were collected at 3.0 m, 6.0 m, 12.0 m & 18.0 m.
- 2. The field SPT N values were found to be 11, 28, 39, 50 & 63 at 1.5m, 4.5m, 9.0m, 15.0m & 20.0m depth respectively.
- 3. The plasticity index of the soil throughout the borehole is ranging between 9% 13%.
- 4. The plastic limit of the soil throughout the borehole is ranging between 18% 20%.

4.2 Permeability Test in Bed Rock

The packer test method was carried out as per IS 5529 (Part 2): 2006 to determine the permeability of the rock strata at site.

4.2.1 Packer test method:

In the packer method, water is pumped under pressure into the test section of bedrock through drill hole. The single and double packer methods are normally conducted in exploratory holes.

Single packer method:

In this method, one packer is used in the drill hole. The test section is between the bottom of the bore hole and the packer.

Double packer method:

In this method, two packers are used in the drill hole. The test section is between the two packers.

Procedure:

The procedure adopted consists of pumping water into the 'test section' and is therefore called 'pumping-in type'. Packers are employed for conducting these tests and depending upon the use of one packer or two packers the method is designated as single or

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

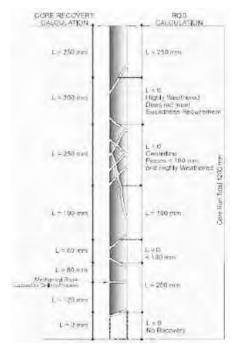
double packer method respectively. Examination of the drill cores and the results of water tests, obtained during drilling will usually indicate whether a double packer test in any isolated section or sections of the drill hole is required. The tests are based on measuring the amount of water accepted by the 'test section' (of the hole) confined by a packer/packer while water is pumped into it.

After completion of the full arrangement for the test, the water pumped in to the section under pressure. The pressure should be maintained until the readings of water intake at intervals of 5 min show a nearly constant reading of water intake for one particular pressure at the collar. The constant rate of water intake should be noted. It is recommended that the tests to be commenced with a low pressure at the collar and increased limited to the availability of suitable rock cover to prevent uplift or till a maximum pressure equivalent to H + x (where H is the hydraulic head to which the strata would be subjected to due to the contemplated structure and x is the loss due to the friction) is achieved. In our case, 1, 2 and 3 kg/cm2 pressure were applied in every case.

The water loss (due to permeability inside the rock) is expressed in Lugeons. A Lugeon is defined as the water loss in litre/min./m of the drill hole under is pressure of 10 atmospheres maintained for 10 min in a drill hole of 46 mm to 76 mm diameter.

Table 5 Parker test results

BH No.	Packer te	st section 1	n a	Packer test section 2		u e
	Upper part (m)	Lower part (m)	Lugeon	Upper part (m)	Lower part (m)	Lugeon Value
BH-13	36	39	30.20	48	51	25.62
BH-14	54	57	24.46	63	66	21.88
BG-15	55	58	24.34	64	67	18.42
BH-16	44	47	27.38	56	59	21.14
BH-17	41	44	24.52	50	53	22.78


Name of Project:

Consultant:		Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donaut		Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development
		110.:		Corporation Ltd

5 CHAPTER: GEOMECHANICAL CLASSIFICATION OF GEOLOGICAL UNITS

5.1 Rock Quality Designation (RQD)

Rock Quality Designation (RQD) is a measure of quality of rock core taken from a borehole. RQD signifies the degree of jointing or fracture in a rock mass measured in percentage, where RQD of 75% or more shows good quality hard rock and less than 50% show low quality weathered rocks. RFQ is calculated by taking a rock core sample from a borehole and lengths of all sound rock pieces which are minimum 100 mm long are summed up and are divided by the length of the core run. Only those pieces of rocks are considered which are hard and good quality. Weathered rocks which do not meet soundness requirements and whose lengths are not greater than 100mm are not considered for calculation of RQD. The length of core pieces is measured along center line of the pieces. RFQ test provides assessment of soundness of the rock and damages caused due to

Rock Quality	RQD (%)
Very poor (Completely	<25%
weathered rock)	
Poor (weathered rocks)	25 to 50%
Fair (Moderately weathered	51 to 75%
rocks)	
Good (Hard Rock)	76 to 90%
Very Good (Fresh rocks)	91 to
	100%

weathering.

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

5.1.1 Rocks Core Recovery and RQD Calculations:

Core recovery (CR) is calculated by following formula:

$$CR = \left[\frac{total\ length\ of\ rock\ recovered}{Total\ core\ run\ length} \times 100\right]\%$$

$$RQD = \left[\frac{Length\ of\ core\ pieces > 10cm}{Total\ core\ run\ length} \times 100\right]\%$$

ROCK CLASSIFICATION BASED ON RQD		Joint Frequency	RQD (%)
A	VERY POOR ROCK	>27 joints per m ³	0-25
В	POOR	20-27 joints per m ³	25-50
С	FAIR	13-19 joints per m ³	50-75
D	GOOD	8-12 joints per m ³	75-90
Е	EXCELLENT	0-7 joints per m ³	90-100

Note:

5.1.2 Methodology:

The drill cores (NX & NQ size) were properly logged and stored in the GI core boxes specifically designed as per the standard specifications. The cores are aligned systematically according to the core run and all the relevant information regarding the core recovery, Rock Quality Designation (RQD), fracture pattern was observed from the geotechnical logging of

Name
of
Project

i) Where RQD is reported or measured as \leq 10 (including 0) the value 10 is used to evaluate the Q-value

ii) RQD-intervals of 5, i.e. 100, 95, 90, etc., are sufficiently accurate.

Consultant:			technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

the drilled holes. The details of the rock type obtained from each drill hole runs were systematically recorded and summarized in the standard Geotechnical logging format. Table, given below, summarized the percentage of RQD as obtained during the drilling of bore holes. For detail table refer Annexure.

Table 7: Average, Minimum & Maximum Value of RQD.

BH NO.	AVERAGE RQD, %	MINIMUM RQD, %	MAXIMUM RQD, %
BH-13	6.5	0	28.6
BH-14	5.9	0	24.0
BH-15	5.9	0	27.0
BH-15A	10.7	0	32.0
BH-16	16.0	0	51.3
BH-17	10.9	0	41.5

Core samples were collected from the drill holes at different depth intervals to represent the envisaged strata conditions of the proposed crown and invert portion of different tunnel types. These samples were sent to IIT, Banaras Hindu University (BHU) and NABL accredited Laboratory at New Delhi for testing the Physico-mechanical properties.

The assessment of rock mass has been carried out based on the geotechnical investigation, observation of the core logs, joint orientation with reference to the proposed tunnel orientation and physico -mechanical properties of rock cores. The rock mass is classified in to Q-classification system (Q tunnelling index) developed by Barton. N. (1976), Norwegian Geotechnical Institute and RMR Geo-mechanics Classification system.

The data, thus obtained from geotechnical inputs has been analysed by using both the standard Rock Mass Classification systems. Pre-investigations for underground excavations often include core-logging. The Q-parameters were evaluated with a relatively high degree of accuracy.

Name of Project:

Consultant:			technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

However, special attention has been addressed to the following aspects:

Only a small section of each joint surface will usually be available, particularly for joints intersecting the borehole at an obtuse angle. Evaluation of the roughness coefficient (Jr) may therefore be difficult. Particularly the large and medium scale undulation may be difficult to estimate. As water is used during drilling, fillings like clay minerals may be washed out, making it difficult to evaluate in some cases.

The drilling direction of the borehole influences the number of joints that are intersected by the borehole. Sub-parallel joints to the borehole will be under represented in the cores, and this will give too high RQD-values and too low Jn values. Whereas, RQD is often calculated for every meter, Jn must usually be estimated for sections of several meters.

In massive rock it is impossible to estimate SRF (Stress Reduction Factor) from drill cores. However, in rock intersected by weakness zones, it may be possible to give some suggestions about SRF. In massive rock, SRF can be estimated partially based on the overburden, height of a mountain side, stress measurements carried out in the borehole, or experiences from nearby construction sites.

In general, a core log should only contain data obtained from the cores or measurements carried out in the borehole itself. However, by using the log data combined with estimates of J_w and SRF, it will be possible to get a rough impression of the Q-values of the cores, and these could be helpful during planning phase. Water-loss tests are often carried out during core drilling. The results are normally given in Lugeon (Lugeon = the loss of water in litters per minute and per meter borehole at an over-pressure of 1 MPa), and form the basis for evaluation of the J_w -value. One also has to take into account whether the rock mass is going to be grouted or not in order to estimate the Q-value as a basis for rock support after excavation.

It is always important to evaluate how representative the cores are. Boreholes are often drilled just in order to investigate particular zones. It is then imperative to consider how much of the total rock masses these zones represent. If a borehole is orientated along a fracture zone, the parameter values for this zone will be determined.

Name
of
Project

Consultant:			technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

5.2 Rock Mass Rating Index (RMR):

Bieniawski (1976) published the details of a rock mass classification called the Geomechanics Classification or the Rock Mass Rating (RMR) system. Over the years, this system has been successively re- fined as more case records have been examined and the reader should be aware that Bieniawski has made significant changes in the ratings assigned to different parameters. The discussion which follows is based upon the 1989 version of the classification (Bieniawski, 1989). The following six parameters are used to classify a rock mass using the RMR system:

- i) Uniaxial compressive strength of rock material.
- ii) Rock Quality Designation (RQD).
- iii) Spacing of discontinuities.
- iv) Condition of discontinuities.
 - a) Length, persistence
 - b) Separation
 - c) Smoothness
 - d) Infilling
 - e) Alteration / weathering
- v) Groundwater conditions.
- vi) Orientation of discontinuities.

All of these are measurable in the field and can also be obtained from borehole data. The rating of each of these parameters is summarized to give a value of RMR. All parameters are measurable in the field and some of them may also be obtained from borehole data.

To apply the RMR classification, the rock mass along a tunnel route is divided into a number of structural regions, i.e., zones in which certain geological feature are more or less uniform. The above six classification parameters are determined for each structural region from measurements in the field. Once the classification parameters are determined, the ratings are assigned to each parameter according to Table 7.

Name
of
Project .

Consultant:			technical ation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 8: RMR Classification Parameters and Their Ratings

		PARAMETER		Ra	ange of values /	/ ratings				
	Strength of intact	Point-load strength index	> 10 MPa	4 - 10 MPa	2 - 4 MPa	1 - 2 MPa	Uni	For this low range Uniaxial compr. strength is preferred		
1	rock material	Uniaxial com- pressive strength	> 250 MPa	100 - 250 MPa	50 - 100 MPa	25 - 50 MPa	5 - 25 MPa	1 -5 MPa	< 1 MPa	
		RATING	15	12	7	4	2	1	0	
	Dri	ill core quality RQD	90 - 100%	75 - 90%	50 - 75%	25 - 50%		< 25%		
2		RATING	20	17	13	8		5		
	Spac	eing of discontinuities	> 2 m	0.6 - 2 m	200 - 600 mm	60 - 200 mm		< 60	mm	
3		RATING	20	15	10	8		5		
		Length, persistence	< 1 m	1 - 3 m	3 - 10 m	10 - 20 m		> 20 m		
	Condition of discontinuities	Rating	6	4	2	1		0		
		S	Separation	None	< 0.1 mm	0.1 - 1 mm	1 - 5 mm		> 5	mm
		Rating	6	5	4	1		0		
		Roughness	very rough	Rough	slightly rough	smooth		Slicken	sided	
		lisco	Rating	6	5	3	1		0	
		I. filling (comp.)	None		ard ling	í	Soft filling			
4	∑ondi	Infilling (gouge)	-	< 5 mm	> 5 mm	< 5 mm		> 5	mm	
4)	Rating	6	4	2	2		0		
		Weathering	unweathered	slightly w.	moderately w.	highly w.		Decomp	osed	
		Rating	6	5	3	1		0		
	G :	Inflow per 10 m tunnel length	None	< 10 litres/min	10 - 25 litres/min	25 - 125 litres/min	> 1	125 litre	s /min	
	Ground	p _w / l	0	0 - 0.1	0.1 - 0.2	0.2 - 0.5		> 0.5		
5	water	General conditions	completely dry	Damp	Wet	dripping]	Flowing		
		RATING	15	10	7	4		0		
	p_w = joint water pressure; -1 = major principal stress									

In this respect the typical, rather than the worst conditions, are evaluated. Furthermore, it should be noted that the ratings, which are given for discontinuity spacing, apply to rock masses having three sets of discontinuities. Thus, when only two sets of discontinuities are present, a conservative assessment is obtained.

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	S.W. CONSOCIATIO	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 9: Rating Adjustment for Discontinuity Orientations						
		Very favorable	Favorable	Fair	Unfavorable	Very unfavorable
	Tunnels	0	-2	-5	-10	-12
RATINGS	Foundations	0	-2	-7	-15	-25
	Slopes	0	-5	-25	-50	-60

Table 10: Rock Mass Classes Determined from Total Ratings

Rating	100 - 81	80 – 61	60 – 41	40 - 21	< 20
Class No.	I	II	III	IV	V
Description	VERY GOOD	GOOD	FAIR	POOR	VERY POOR

Table 10: Significance of Rock Mass Classes

Class No.	I	II	III	IV	V
Average stand-up time	10 years for 15 m span	6 months for 8 m span	1 week for 5 m span	10 hours for 2.5 m span	30 minutes for 1 m span
Cohesion of the rock mass	> 400 kPa	300 - 400 kPa	200 - 300 kPa	100 - 200 kPa	< 100 kPa
Friction angle of the rock mass	< 45°	35 - 45°	25 - 35°	15 - 25°	< 15°

Table 11: RMR Classification Guide for Excavation and Support in Rock Tunnels

		Support			
Rock mass class	Excavation	Rock bolts (20 mm diam., fully bonded)	Shotcrete	Steel sets	
1. Very good rock RMR: 81-100	Full face: 3 m advance	Generally, no support required except for occasional spe bolting			
2. Good rock RMR: 61-80	Full face: 1.0-1.5 m advance; Complete support 20 m from face	Locally bolts in crown, 3 m long, spaced 2.5 m with occasional wire mesh	50 mm in crown where required	None	
3. Fair rock RMR: 41-60	Top heading and bench: 1.5-3 m advance in top heading; Commence support after each blast; Commence support 10 m from face	Systematic bolts 4 m long, spaced 1.5-2 m in crown and walls with wire mesh in crown	50-100 mm in crown, and 30 mm in sides	None	

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: Report No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

		Support			
Rock mass class	Excavation	Rock bolts (20 mm diam., fully bonded)	Shotcrete	Steel sets	
4. Poor rock	Top heading and bench: 1.0-1.5 m	Systematic bolts 4-5	100-150 mm	Light ribs spaced	
RMR: 21-40	advance in top heading;	m long, spaced 1-1.5	in	1.5 m	
	Install support concurrently with	m in crown and walls	crown and	where	
	excavation - 10 m from face	with wire mesh	100 mm in	required	
			sides		
5. Very poor rock	Multiple drifts:	Systematic bolts 5-6	150-200 mm	Medium to heavy	
RMR < 21	0.5-1.5 m advance in top heading;	m long, spaced 1-1.5	in	ribs spaced 0.75	
	Install support concurrently with	m in crown and walls	crown, 150	m with steel	
	excavation; shotcrete as soon as	with wire mesh. Bolt	mm in	lagging and fore	
	possible after blasting	invert	sides, and	poling if required.	
			50 mm on	Close invert	
			face		

In applying this classification system, the rock mass is divided into a number of structural regions and each region is classified separately. The boundaries of the structural regions usually coincide with a major structural feature such as a fault or with a change in rock type. In some cases, significant changes in discontinuity spacing or characteristics, within the same rock type, may necessitate the division of the rock mass into a number of small structural regions or domains. The Rock Mass Rating system is presented in Table 12, giving the ratings for each of the six parameters listed above. These ratings are summed to give a value of RMR.

For detail table refer Annexure

Name of Project:

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 12 Average, Maximum, Minimum RMR of borehole (Follow Annexure -A for detailed information)

BH	AVERAGE RMR	MAXIMUM RMR	MINIMUM RMR
NO.	VALUE	VALUE	VALUE
BH-13	34.95	40	31
BH-14	34.18	38	31
BG-15	33.23404	40	24
BH- 15A	29.47059	43	27
BH-16	37.61905	48	30
BH-17	41.2	47	32

Based on the average RMR value of the rock mass it falls into "Poor" category

5.3 The Unified Soil Classification System (USCS):

Though RMR classification provide great insight to classify the different types hard rocks of with reference to the tunnel designing, but it loses its reliability in classification soil or highly weathered rock. The main problem with using RMR for weak rock mass classification is that ratings are not sensitive to changes in rock quality designation (RQD) when RQD <25% and and fracture spacing is <2.4 inch (60 mm). For example, the RQD and fracture frequency ratings for sound rock with 24 % RQD and fracture spacing of 2.3 in. (59 mm) would receive the same Bin-RMR89 ratings as clay, 3 and 5, respectively. Hence classification of soil is provided using The Unified Soil Classification System (USCS) [ASTM (2011, 2009) D2487 and D2488].

The USCS provides good insight into behavior of material especially in the presence of water; however, it gives no indication of the relative strength of the material. In addition to USCS soil classification, civil-geotechnical engineering investigations usually include

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

relative density or consistency estimates which are considered in the design process. (Parker 1996). However, in contrast to RMR system, USCS system uses letters to classify soil like material for general engineering purposes.

Figure 23: USCS Classification of coarse-grained soil.

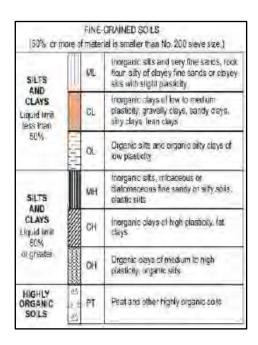


Figure 24: USCS Classification of fine-grained soil

Name of Project:

Consultant:		Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donaut		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

Soils are broadly classified into three divisions:

- i. **Coarse grained soils:** 50% or more of the total material by weight is larger than 75 micron IS sieve size.
- ii. **Fine grained soils:** 50% or more of the total material by weight is smaller than 75 micron IS sieve size.
- ii. **Highly organic soils and other miscellaneous soil materials:** These soils contain large percentage of fibrous organic matter, such as peat, and the particles of decomposed vegetation. In addition, certain soils containing shells, cinders and other non-soil materials in sufficient quantities are also grouped in this division.

5.3.1 Coarse grained Soils

Coarse grained soils are further divided into two sub-divisions:

- a) **Gravels** (**G**): In these soils more than 50% of the coarse fraction (+75 micron) is larger than 4.75 mm sieve size. This sub-division includes gravels and gravelly soil, and is designated by symbol G.
- b) **Sands** (**S**): In these soils, more than 50% of the coarse fraction is smaller than 4.75mm IS sieve size. This sub-division includes sands and sandy soils.

Each of the above sub-divisions are further divided into four groups depending upon grading and inclusion of other materials.

1. W: Well Graded

2. C: Clay binder

3. P: Poorly graded

4. M: Containing fine materials not covered in other groups.

These symbols used in combination to designate the type of grained soils.

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

Example, GC: Clayey Gravels.

5.3.2 Fine grained soils

Fine grained soils are further divided into three sub-divisions:

- a) Inorganic silts and very fine sands: M
- b) Inorganic clays: C
- c) Organic silts and clays and organic matter: O.

The fine-grained soils are further divided into the following groups on the basis of the following arbitrarily selected values of liquid limit which is a good index of compressibility:

i) Silts and clays of low compressibility:

Having a liquid limit less than 35 and represented by symbol L.

ii) Silts and clays of medium compressibility:

Having a liquid limit greater than 35 and less than 50 and represented by symbol I.

iii) Silts and clays of high compressibility:

Having a liquid limit greater than 50 and represented by a symbol H.

Combination of these symbols indicates the type of fine-grained soil. For example, ML means inorganic silt with low to medium compressibility.

PLASTICITY INDEX (P!) [%] 50 60 LIQUID LIMIT (LL) (%) Figure 25 Relation between Liquid Limit and Plasticity Index of soil for USCS

PLASTICITY CHART

MHACH

5.4 USCS & RMR Correlation:

In spite of being an advantageous classification system, USCS also have some disadvantages due to its descriptive format of classification using letters. Any numerical and statistical analysis of materials classified in USCS using spreadsheets are really

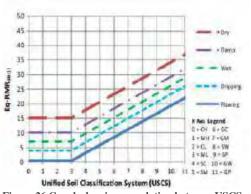


Figure 26 Graph showing correlation between USCS classification and RMR Classification. (Warren, 2016)

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

difficult. Warren (2016) gives a numerical correlation between USCS and RMR which have been used to calculate equivalent RMR of soil in this report. Equivalent RMR is determined only by taking USCS Classification and ground water conditions of the soil material.

Table 11: Avg., Maximum, minimum of Eq-RMR for soil.

BH	A E DMD 1	Maximum Eq-RMR	Minimum Eq-RMR	
NO.	Average Eq-RMR value	value	value	
BH-18	16.5	20	15	
BH-19	16.75	20	15	
BH-20	15.26	20	15	
BH-21	15.6	20	15	
BH-22	15.64	20	15	
BH-23	15.789	20	15	
BH-24	15	15	15	
BH-25	15	15	15	
BH-26	15	15	15	
BH-27	15	15 15		
BH-28	15.34	20	15	
BH-29	15	15	15	
BH-30	15	15	15	
BH-31	15.34	20 15		
BH-32	15	15 15		
BH-33	15	15	15	

Figure 26 Graph showing correlation between USCS classification and RMR Classification. (Warren, 2016)

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

For other detailed soil properties like S.P.T N Value, Atterberg's Limit, Field Moisture Content, Natural density, Dry density, Cohesion, Angle of shearing resistance, Specific gravity, Void ratio along with results of Hydrometer Analysis, Grain size analysis, Triaxial test, Consolidation test please refer ANNEXURE –G.

5.5 Q System (NGI Tunneling Index):

The Q-system is developed to classify rock masses around an underground opening, as well as for field mapping. Based on estimation of six rock mass parameters, a Q-value for a rock mass can be calculated. This value gives a description of the rock mass quality. The Q-value depends on the underground opening and its geometry, and is therefore not an independent characterization of the rock mass. The Q-value in an undisturbed rock mass may be different.

The different Q-values are related to different types of permanent support by means of a schematic support chart. This means that by calculating the Q-value it is possible to find the type and quantity of support that has been applied previously in rock masses of the similar qualities. The Q-system can therefore be used as a guideline in rock support design decisions and for documentation of rock mass quality.

The Q-system was developed at NGI between 1971 and `74 (Barton et al. 1974). Since the introduction of the Q-system in 1974 there has been a considerable development within support philosophy and technology in underground excavations. Several new types of rock bolts have been introduced, and the continuous development of fibre reinforced technology has in many ways changed the support procedure. Application of sprayed concrete has gained acceptance even for good quality rocks masses due to demands for a higher level of safety during the recent years. Reinforced ribs of sprayed concrete have replaced cast concrete structures to a large extent.

Since the introduction of the system in 1974, two revisions of the support chart have been carried out and published in conference proceedings. An extensive updating in 1993 was based on 1050 examples mainly from Norwegian underground excavations (Grimstad and Barton, 1993). In 2002, an updating was made based on more than 900 new examples from

Name
of
Project.

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

underground excavations in Norway, Switzerland and India. This update also included analytical research with respect to the thickness, spacing and reinforcement of reinforced ribs of sprayed concrete (RRS) as a function of the load and the rock mass quality (Grimstad et al. 2002).

Calculation of Q value:

Q index value can be calculated from RMR using different empirical equation proposed by different author (Bieniawski;1984, Rutledge and Preston;1978, Moreno Tallon; 1980, Cameron-Clarke and Budavari;1981, Abad J et all;1987). These equations provide rapid determination of Q index from RMR index of corresponding rock. In reference with these equations, Q index shares logarithmic relation with RMR index value

$$"RMR = a . LnQ + b"$$

The value of 'a' and 'b' are different for different equation purposed by different author and they vary over a range of value.

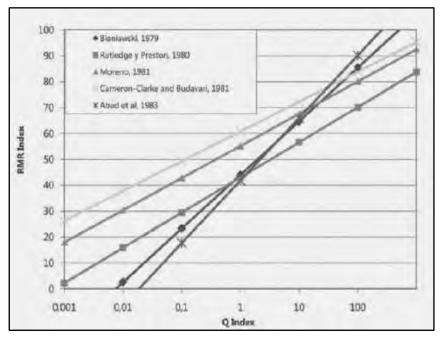


Figure 27: Graph showing correlation between different empirical equation for conversion between Q Index and RMR Index (adopted from Castro-fresno)

"*RMR* = **9** *LnQ* + **44**" Bieniawski;1984

Name of Project:

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

"RMR = 5.9 LnQ + 43" Rutledge and Preston;1978

"RMR = 5.4 LnQ + 55.2" Moreno Tallon; 1980

"RMR = 10.5 LnQ + 41" Cameron-Clarke and Budavari;1981

"RMR = 5 LnQ + 60.8" Abad J et all;1987

All of these equations tend to give similar result for conversion between Q and RMR for a median value of respective indexes, but at extreme end of the values of indexes, the conversion by these empirical equations is not reliable due to variation.

The true Q-value at the level of underground excavation can only be observed in the excavation itself, and Q-values obtained by above methods will be more uncertain. The number of joint sets may be underestimated from drill cores and estimations of the parameters Jw and SRF may be cumbersome without actual observations on site. From surface mapping it may be uncertain as joint filling may be washed out at the surface, and other joint parameters may be difficult to observe. In such cases it may be an advantage to use histograms to visualize variations in the data by using maximum and minimum values for

LnQ	Classification			
0-0.01	Exceptionally Poor			
0.01-0.1	Extremely Poor			
0.1-1	Very Poor			
1-7	Poor			
7-10	Fair			
10-70	Good			
70-100	Very Good			
100-700	Extremely Good			
700-1000	Exceptionally Good			

Table 12: Rock Mass classification based on their Q Value on logarithm scale (after Bieniawski,1976) each parameter.

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Absolute value of Q index is determined based on a numerical assessment of the rock mass quality using six different parameters;

- 1. RQD.
- 2. Number of joint sets.
- 3. Roughness of the most unfavorable joint or discontinuity.
- 4. Degree of alteration or filling along the weakest joint.
- 5. Water inflow.
- 6. Stress condition.

These six parameters are grouped into three quotients to give the overall rock mass quality Q as follows:

$$Q = \frac{RQD}{j_n} \times \frac{j_r}{j_a} \times \frac{j_w}{SRF}$$

Where

RQD = Rock Quality Designation

 $j_n = Joint set number$

 $j_r = Joint roughness number$

 j_a = Joint alteration number

 $\mathbf{RQD/J_n}$ = Degree of jointing (or block size)

 J_r/J_a =Joint Friction (inter block shear strength)

J_w/**SRF**=Active Stress

The rock quality can range from Q = 0.001 to Q = 1000 on a logarithmic rock mass quality scale. The above equation gives absolute value of Q index for a rock mass by taking abovesaid 6 parameters in account.

Name	
of	
Project:	

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 13: Description & Rating for Jn

	2. Joint Set Number (J _n)	Rating
A	Massive, no or few joints	0.5-1.0
В	One joint set	2
С	One joint set plus random joint	3
D	Two joint sets	4
Е	Two joint sets plus random joints	6
F	Three joint sets	9
G	Three joint sets plus random joints	12
Н	Four or more joint sets, random heavily jointed "sugar cube", etc	15
J	Crushed rock, earth like	20

Note: i) For tunnel intersections, use 3 x Jn

ii) For portals, use 2 x Jn

Table 14 Description & Rating for J_r

3. Joint Roughness Number (J _r)				
Rock-wal	Rock-wall contact, and Rock-wall contact before 10 cm of shear movement			
A	Discontinuous joints	4		
В	Rough or irregular, undulating	3		
С	Smooth, undulating	2		
D	Slickensided, undulating	1.5		
Е	Rough, irregular, planar	1.5		

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: Report No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

F	Smooth, planar	1		
G	Slickensided, planar	0.5		
Note: i) D	Note: i) Description refers to small scale features and intermediate scale features, in that order			
No rock-w	vall contact when sheared			
Н	Zone containing clay minerals thick enough to prevent rock-	1		
	wall contact when sheared			
Note: ii) A	add 1 if the mean spacing of the relevant joint set is greater than 3 m (dependent	on the		
size of the	underground opening)			
iii) $Jr = 0.3$	5 can be used for planar slickensided joints having lineation, provided the lineation	on are		

Table 15 Description & Rating for Ja

oriented in the estimated sliding direction

	Rating	
Rock-v	wall contact (no mineral fillings, only coatings)	
A	Tightly healed, hard, non-softening, impermeable filling,	0.75
	i.e., quartz or epidote.	
В	Unaltered joint walls, surface staining only.	1
С	Slightly altered joint walls. Non-softening mineral	2
	coatings; sandy particles, clay-free disintegrated rock, etc.	
D	Silty or sandy clay coatings, small clay fraction (non-	3
	softening).	
	Softening or low friction clay mineral coatings, i.e., kaolinite	
E	or mica.	4
	Also chlorite, talc gypsum, graphite, etc., and small quantities	
	of swelling clays.	
Rock-	wall contact before 10 cm shear (thin mineral fillings)	

Name
of
Project.

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Domont		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

	Rating	
F	Sandy particles, clay-free disintegrated rock, etc.	4
G	G Strongly over-consolidated, non-softening, clay mineral fillings (continuous, but <5 mm thickness).	
Н	Medium or low over-consolidation, softening, clay mineral fillings (continuous, but <5 mm thickness).	8
J	Swelling-clay fillings, i.e., montmorillonite (continuous, but <5 mm thickness). Value of Ja depends on percent of swelling clay-size particles.	8-12
e) No roc	ck-wall contact when sheared (thick mineral fillings)	
K	Zones or bands of disintegrated or crushed rock. Strongly over-consolidated.	6
L	Zones or bands of clay, disintegrated or crushed rock. Medium or low over-consolidation or softening fillings.	8
М	Zones or bands of clay, disintegrated or crushed rock. Swelling clay. Ja depends on percent of swelling clay-size particles.	8-12
N	Thick continuous zones or bands of clay. Strongly over-consolidated.	10
О	Thick, continuous zones or bands of clay. Medium to low over-consolidation.	13

Table 16 Description & Rating for $J_{\rm w}$

Joint Water Reduction Factor J _w	Rating
A Dry excavations or minor inflow (humid or a few drips)	1.0

Name of Project:

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Domont		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

В	Medium inflow, occasional out wash of joint fillings (many drips/"rain")	
		0.66
С	Jet inflow or high pressure in competent rock with unfilled joints	0.5
D	Large inflow or high pressure, considerable out wash of joint fillings	0.33
Е	Exceptionally high inflow or water pressure decaying with time. Causes out wash of	
	material and perhaps cave in.	0.2-0.1
F	Exceptionally high inflow or water pressure continuing without noticeable decay.	
	Causes out wash of material and perhaps cave in.	0.1-
		0.05

Note: i) Factors C to F are crude estimates. Increase Jw if the rock is drained or grouting is carried out ii) Special problems caused by ice formation are not considered

Table 17 Description & Rating for Stress Reducing Factor (SRF)

	Stress Reduction Factor	SRF				
ı) We) Weak zones intersecting the underground opening, which may cause loosening of rock mass					
	Multiple occurrences of weak zones within a short section containing					
	clay or chemically disintegrated, very loose surrounding rock (any					
A	depth), or long sections within competent (weak) rock (any depth). For Squeezing conditions,	10				
В	Multiple shear zones within a short section in competent clay-free	7.5				
	rock with loose surrounding rock (any depth)					
С	Single weak zones with or without clay or chemical disintegrated rock	5				
	$(depth \le 50m)$					
D	Loose, open joints, heavily jointed or "sugar cube", etc. (any depth)	5				
Е	Single weak zones with or without clay or chemical disintegrated rock	2.5				
	(depth > 50m)					
lote:	i) Reduce these values of SRF by 25-50% if the weak zones only influence	e but do not intersec				

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	S.W. CONSOCIAITIS	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

the un	derground opening.			
b) Coi	mpetent, mainly massive rock, stress problems	σ_c/σ_1	$\sigma_{\rm c}/\sigma_2$	SRF
F	Low stress, near surface, open joints	>200	< 0.01	2.5
G	Medium stress, favourable stress condition	200-10	0.01-0.3	1
Н	High stress, very tight structure. Usually favourable to stability. May also be unfavorable to stability dependent on the orientation of stresses compared to jointing / weakness planes*	10-5	0.3-0.4	0.5-2 2-5*
J	Moderate spalling and/or slabbing after > 1 hour in massive rock	5-3	0.5-0.65	5-50
K	Spalling or rock burst after a few minutes in massive rock	3-2	0.65-1	50-200
L	Heavy rock burst and immediate dynamic deformation in massive rock	<2	>1	200-400

Note: For strongly anisotropic virgin stress field (if measured): when $5 \le \sigma 1 / \sigma 3 \le 10$, reduce σc to 0.75 σc . When $\sigma 1 / \sigma 3 > 10$, reduce σc to 0.5 σc , where $\sigma c = c$ unconfined compression strength, $\sigma 1$ and $\sigma 3$ are the major and minor principal stresses, and $\sigma 1 \sigma 2 = c$ maximum tangential stress (estimated from elastic theory)

When the depth of the crown below the surface is less than the span; suggest SRF increase from 2.5 to 5 for such cases (see F)

c) Sque	ezing rock: plastic deformation in incompetent rock under the	σc	
influen	ce of high pressure		SRF
M	Mild squeezing rock pressure	1-5	5-10
N	Heavy squeezing rock pressure	>5	10-20

Note: iv) Determination of squeezing rock conditions must be made according to relevant literature (i.e., Singh et al., 1992 and Bhasin and Grimstad, 1996)

Name of Project:

Consultant:		Geotechnical		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	713	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

d) Swe	d) Swelling rock: chemical swelling activity depending on the presence of SRF			
water				
О	Mild swelling rock pressure	5-10		
P	Heavy swelling rock pressure	10-15		

The individual parameters are determined during geological mapping using tables that give numerical values to be assigned to a described situation. Paired, the six parameters express the three main factors which describe the stability in underground openings

The Q values for the samples are given in table below. For detail table refer Annexure.

Table 18 Average, Maximum, and Minimum Q-Value from Borehole (Follow annexure A for detailed information)

BH NO.	AVERAGE Q VALUE	MAXIMUM Q VALUE	MINIMUM Q VALUE
BH-13	4.54	6.69	1.5
BH-14	1.74	3.6	1.5
BG-15	1.7	4.05	1.5
BH-			
15A	2.17	4.8	1.5
BH-16	2.7	7.69	1.5
BH-17	0.2	0.83	0.2

Based on the average Q value of the rock mass it falls into "Very Poor" to "Poor" category

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

6 CHAPTER: Engineering properties of the rock / soil

6.1 Laboratory Testing of Rock Mass

Laboratory tests were also carried out on rock samples, the details of different laboratory tests conducted as part of the project are given in the table below

Table 19: The laboratory tests conducted for rock.

	1. Unconfined Compressive Strength,
	2. Point Load Index Test
	3. Tensile Strength
	4. Specific Gravity
Laboratory tests conducted for rock	5. Modulus of elasticity
Laboratory tests conducted for fock	6. Water absorption
	7. Poisons' ratio
	8. Triaxial Test
	9. Hardness test
	10. Abrasive test

6.1.1 Selection of Core Sample

Representative core samples (NX and NQ size) are collected for covering the crown and invert section and other portions above the crown. The samples were properly labelled and packed carefully and sent NABL accredited Bhubaneswar laboratory for determining the physico-mechanical properties.

The physico-mechanical properties like unit weight, water absorption, porosity, specific gravity, point load index, uniaxial compressive strength (UCS), tri-axial compressive strength, tensile strength (TS), modulus of elasticity, Poisson's ratio is determined. Simultaneously, the specific heat, thermal diffusivity, thermal conductivity, hydraulic conductivity and petrography tests are also conducted on the rock samples representing to the tunnel influence zone. The following laboratory tests have been conducted to determine intact rock properties.

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

6.1.2 Tensile Strength

Brazilian test is intended to measure the tensile strength of a rock sample in the form of specimens of regular geometry. The test is mainly intended for strength classification and characterization of intact rock. The test specimens are right circular cylinders having a length to diameter (L: D) ratio approximately equal to 0.5 and a diameter shall not be less than 45 mm. This method of determining tensile strength is an indirect method, and is popularly known as Brazilian method. The indirect tensile strength is calculated as follows:

$$\sigma_t = \frac{2P}{\pi Dt}$$

Where:

 σ_t = Brazilian tensile strength (MPa); D = Diameter of the core sample (mm);

 $P = \text{Maximum failure load (N)}; \ t = \text{Thickness or Length of the sample (mm)}$

Figure 28 and Table 20 below provides a summary of Tensile strength for the all the core samples from different boreholes.

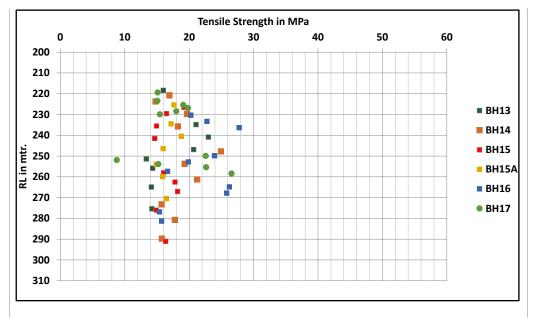


Figure 28: Tensile Strength of rock mass from entire borehole length vs RL. (Refer to Annexure B in Geotechnical Report for detail).

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 20: Result of Tensile strength (Follow annexure B for detailed information)

BH NO.	Minimum tensile strength value (MPa)	Maximum tensile strength value (MPa)	Average tensile strength value (MPa)
BH-13	13.34	22.99	17.10
BH-14	14.78	24.93	18.44
BG-15	14.66	19.2	16.51
BH-15A	14.91	18.78	16.70
BH-16	15.39	27.77	21.67
BH-17	8.77	26.58	18.03

6.1.3 <u>Unconfined Compressive Strength</u>

UCS test is intended to determine the unconfined compressive strength of a rock sample in the form of specimens of regular geometry. The length to diameter ratio of cylindrical specimen shall preferably be 2 to 3. If the ratio is less than 2, usual correction shall be applied taking standard slenderness ratio as 2. Load on the specimen shall be applied continuously at a constant stress rate such that failure will take place in about 5 to 15 minutes of loading. Alternatively, the stress rate shall be within the limits of 0.5 MPa/s to 1 MPa/s. The unconfined compressive strength of the specimen has been calculated by dividing the maximum load carried by the specimen during the test, by the average original cross-sectional area.

Figure 29 and Table 21 below provides a summary of UCS values for the all the samples. For detail table refer Annexure.

Name of Project:

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

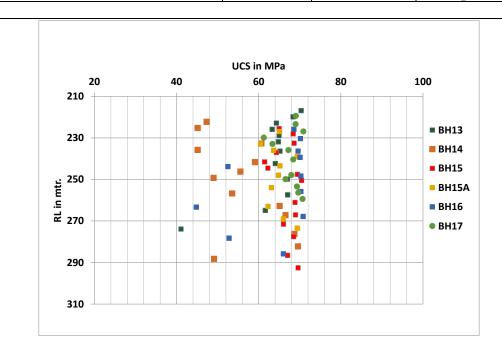


Figure 29: Unconfined Compressive Strength (UCS) of rock mass from entire borehole length vs RL (Refer to Annexure C in Geotechnical Report for detail).

Table 21: Result of UCS Test (Follow annexure C for detailed information)

BH NO.	Minimum UCS value (MPa)	Maximum UCS value (MPa)	Average UCS value (MPa)
BH-13	41.06	70.33	63.49
BH-14	45.15	69.54	56.49
BG-15	61.45	70.44	67.05
BH-15A	60.42	69.38	65.12
BH-16	44.8	70.8	64.16
BH-17	61.24	70.85	67.76

Name of Project:

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.1.4 Density, Specific Gravity, Water Absorption

These tests are performed as per relevant standard. The Bulk volume is obtained by buoyancy technique and the pore volume is obtained by water saturation. It may also be applied to a sample in the form of specimen of irregular geometry.

Based on the tests conducted, the unit weight has been calculated

Specific gravity has been estimated for core samples picked up from different borehole. The true specific gravity has been expressed as a numerical value and shall be based on average of three determinations.

The table below provides set of values calculated for Density, specific gravity, water absorption. For detail table refer Annexure.

Table 22: Result of Density, Specific Gravity, Water absorption (Follow annexure D for detailed information).

BH NO.	Minimum Density value (kN/m³)	Maximum Density value (kN/m³)	Average Density value (kN/m³)
BH-13	24.31	25.73	25.31
BH-14	25.67	26.09	25.88
BG-15	25.07	25.74	25.43
BH-15A	24.81	25.69	25.30
BH-16	25.3	26.52	25.97
BH-17	24.23	26.21	25.42

Table 23: Result of Specific Gravity (Follow annexure D for detailed information).

BH NO.	Minimum Specific gravity value	Maximum Specific gravity value	Average Specific gravity value
BH-13	2.47	2.61	2.57
BH-14	2.61	2.65	2.63

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BH NO.	Minimum Specific gravity value	Maximum Specific gravity value	Average Specific gravity value
BG-15	2.54	2.61	2.58
BH-15A	2.52	2.60	2.57
BH-16	2.56	2.69	2.64
BH-17	2.45	2.67	2.58

Table 24: Result of Water absorption (Follow annexure D for detailed information).

BH NO.	Minimum Water absorption value %	Maximum Water absorption value %	Average Water absorption value %
BH-13	0.14	0.51	0.39
BH-14	0.15	0.57	0.32
BG-15	0.46	0.63	0.52
BH-15A	0.16	0.75	0.47
BH-16	0.25	0.70	0.50
BH-17	0	1.18	0.56

6.1.5 Point Load Strength Index

Point Load test is intended to determine the diametrical and axial point load strength index of rock core. The core specimens with length to diameter ratio of 0.3 to 1 are suitable for axial testing. The point load strength index shall be calculated from the following formula:

$$I_l(50) = \frac{P}{(Dd)^{0.75} \times \sqrt{D_{50}}}$$

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Where: $I_1(50) = Point Load strength Index (MPa); D = Distance between the platen (mm);$

P = Maximum failure load (N); d = Diameter of test specimen (mm);

 $D_{50} = Standard core diameter (mm)$

Figure 30 and table below provides point load index value, for detail table refer Annexure.

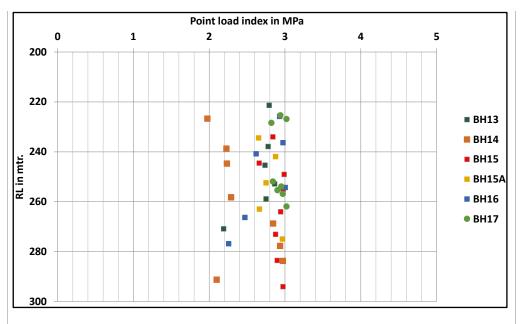


Figure 30: Point Load Index (PLI) of rock mass from entire borehole length vs RL. (Refer to Annexure E in Geotechnical Report for detail).

Table 25: Result of point load index test (Follow annexure E for detailed information).

BH NO.	Minimum Point load index value (MPa)	Maximum Point load index value (MPa)	Average Point load index value (MPa)
BH-13	1.01	3.20	2.18
BH-14	2.27	3.62	2.99
BG-15	2.53	3.85	3.37
BH-15A	2.86	3.40	3.14
BH-16	2.06	3.84	3.07

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BH NO.	Minimum Point load index value (MPa)	Maximum Point load index value (MPa)	Average Point load index value (MPa)
BH-17	2.82	3.02	2.93

6.1.6 Modulus of Elasticity and Poisson's Ratio

This test is intended to determine the Modulus of Elasticity & Poisson's Ratio of cylindrical rock specimen in compression. Circumferential and axial deformations or strains may be determined from data obtained by electrical resistance strain gauges, compress meters, optical devices or other suitable means. The design of the measuring device shall be such that the average of at least two circumferential and two axial strain measurements can be determined for each increment of load. Measuring positions shall be equally spaced around the circumference of the specimens close to the mid height. They should not fall within D/2 of the specimen ends, where D is the diameter.

6.1.6.1 Calculation

The axial strain (Ea) and the diametric strain (Ed) may be recorded directly from strain indicating equipment or may be calculated from the measured deformation depending upon the type of apparatus or instrument used.

The axial (Ea) and diametric (Ed) strains shall be calculated as follows:

$$\varepsilon a = \Delta I/I$$

$$\varepsilon d = \Delta d/d$$

Where l = original axial length before deformation,

d = original diameter before the deformation,

 Δl = change in measured axial length (positive for a decrease in length), and

 Δd = change in diameter (positive for an in increase in diameter).

*NOTE - It may be noted that circumferentially applied electrical resistance strain gauges also reflect diametric strain, the value necessary for computing Poisson's ratio.

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

	Consultant:	Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donaut		Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development
		110.:		Corporation Ltd

Since,

$$C = \pi d$$

$$\Delta c = \pi \Delta d$$

The circumferential and diametric strains are related as follows:

$$\varepsilon c = \Delta c/c$$

$$= \pi \Delta d/\pi d$$

$$= \Delta d/d$$

$$= \varepsilon d$$

Where, c and d are circumference and diameter of the specimen respectively. The compressive stress in the test specimen σ shall be calculated from compressive load P and the θ initially computed cross-sectional area A, as follows:

$$\sigma = \frac{P}{A}$$

The stress versus axial and lateral strain shall be plotted as a curve.

Figure 31 and table below shows Modulus of Elasticity values for all samples from boreholes.

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

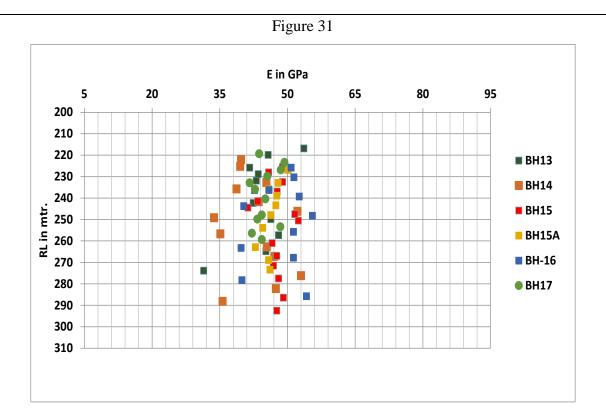


Figure 31: Modulus of Elasticity (E) of rock mass from entire borehole length vs RL. (Refer to Annexure F in Geotechnical Report for detail).

Table 26: Modulus of elasticity (Follow annexure F for detailed information).

BH NO.	Minimum Modulus of elasticity value (GPa)	Maximum Modulus of elasticity value (GPa)	Average Modulus of elasticity value (GPa)
BH-13	31.4	53.6	43.9
BH-14	33.7	53.0	42.8
BG-15	41.2	52.4	47.5
BH-15A	42.9	50.1	46.7
BH-16	39.7	55.5	48.4
BH-17	41.6	49.3	44.9

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

Poisson's Ratio (v) -

Poisson's ratio shall be calculated as the ratio of the total diametric strain εd to the total axial strain εa at any given stress level.

NOTE - When the terms 'Modulus' and 'Poisson's Ratio' are used without any qualification, they shall be taken to mean as the tangent modulus and the Poisson's ratio at 50percent of the ultimate stress.

Based on the tests conducted on core samples, the average Poisson's Ratio and Modulus of Elasticity has been estimated to be 0.13 and 45.89 GPa. Figure 32 and table below shows Poisson's ratio values for all samples, for detail table refer Annexure

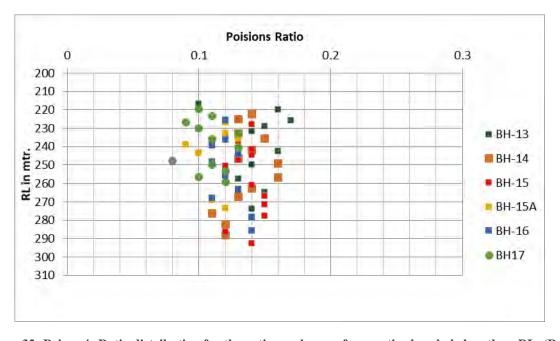


Figure 32: Poisson's Ratio distribution for the entire rock mass from entire borehole length vs RL. (Refer to Annexure F in Geotechnical Report for detail).

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 27: Poisson's ratio (Follow annexure E for detailed information).

BH NO.	Minimum Poisson's ratio value	Maximum Poisson's ratio value	Average Poisson's ratio value
BH-13	0.10	0.17	0.14
BH-14	0.11	0.16	0.14
BG-15	0.12	0.15	0.14
BH-15A	0.09	0.13	0.11
BH-16	0.10	0.14	0.12
BH-17	0.08	0.13	0.11

6.1.7 Triaxial Test

Triaxial test is intended to determine the Cohesion and angle of internal friction of a rock sample in the form of specimens of regular geometry. The length to diameter ratio of cylindrical specimen shall preferably be 2 to 3. Load on the specimen shall be applied continuously at a constant stress rate such that failure will take place in about 5 to 15 minutes of loading. Alternatively, the stress rate shall be within the limits of 0.5 MPa/s to 1 MPa/s.

6.1.7.1 <u>Calculation</u>

Using Parameter m and b, the angle of internal friction Ø and a value for the apparent cohesion C may be calculated using following formula.

$$\emptyset = \sin^{-1} \frac{m-1}{m+1}$$

$$C = b \times \frac{1 - \sin \emptyset}{2 \cos \emptyset}$$

Figure 33 and Table 28 below provides a summary of Triaxial Cohesion values for the all the samples. Figure 34 and Table 29 below provides a summary of phi values.

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

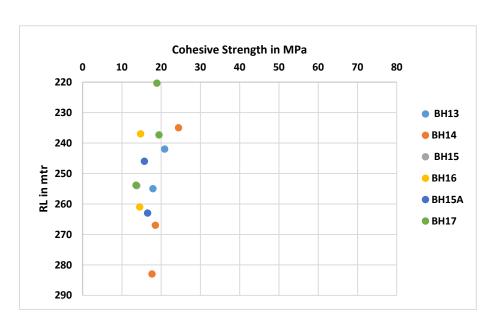


Figure 33: Cohesive strength of rock mass from entire borehole length vs RL (Refer to Annexure F in Geotechnical Report for detail).

Table 28: Result of Cohesive Strength test (Follow annexure F for detailed information)

BH NO.	Minimum C value	Maximum C value	Average C value
DII I (O.	(MPa)	(MPa)	(MPa)
BH-13	15.13	20.88	17.97
BH-14	17.66	24.39	20.19
BH-15	13.78	13.78	13.78
BH-15A	15.71	16.54	16.13
BH-16	14.50	14.75	14.63
BH-17	13.58	19.44	17.30

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

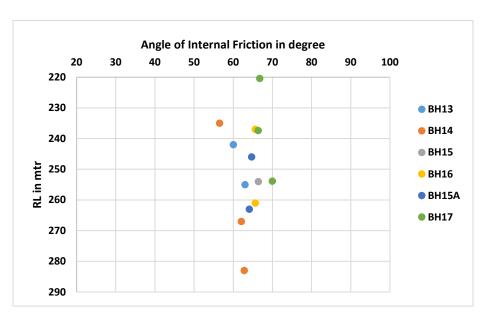


Figure 34: Angle of internal friction of rock mass from entire borehole length vs RL (Refer to Annexure G in Geotechnical Report for detail).

Table 29: Result of angle of internal friction (Ø) Test (Follow annexure F for detailed information)

BH NO.	Minimum Ø value in	Minimum Ø value in Maximum Ø value in	
BII NO.	degree	degree	degree
BH-13	60.02	65.23	62.75
BH-14	56.48	62.80	60.45
BH-15	66.39	66.39	66.39
BH-15A	64.08	64.67	64.38
BH-16	65.63	65.63	65.63
BH-17	66.36	69.96	67.69

Consultant:		Geotechnical Investigation Report		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Domont		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.1.8 <u>Hardness Test</u>

Hardness test is intended to determine the hardness number of a rock sample. The length of the sample should be at least 60 mm. Test locations shall be separated by at least twice the diameter of the plunger.

6.1.8.1 <u>Calculation</u>

The correction factor is calculated as: Correction factor=

Specified standard value of the anvil Average of 10 reading on calibration anvil

The measured test values for the sample should be tabulated in descending order. The lower 50 percent of the values should be discarded and the average obtained of the upper 50 percent values. This average shall be multiplied by the correction factor

Figure 35 and Table 30 below provides a summary of Triaxial Cohesion values for the all the samples.

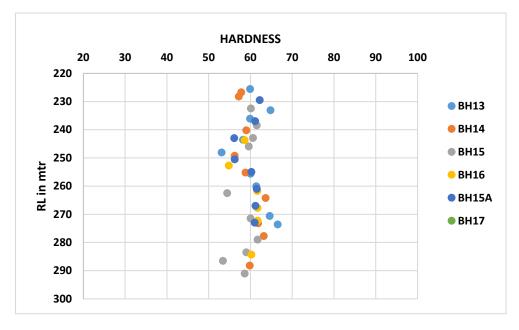


Figure 35: Hardness of rock mass from entire borehole length vs RL. (Refer to Annexure H in Geotechnical Report for detail).

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Table 30: Result of Hardness Test (Follow Annexure G for detailed information).

BH NO.	Minimum Hardness value in Numbers	Maximum Hardness value in Numbers	Average Hardness value in Numbers
BH-13	53.1	66.5	60.9
BH-14	56.2	63.6	59.7
BH-15	53.4	61.7	58.9
BH-15A	56.1	62.2	59.9
BH-16	54.8	61.7	59.8
BH-17	22.1	50.6	32.6

6.1.9 Abrasiveness Test

Abrasiveness test is intended to determine the wear or loss of material which the rock produces on contact with another material.

6.1.9.1 Calculation

Abrasiveness is calculated by following formula

CAI or CAIs=
$$\frac{1}{10\epsilon}\sum_{1}^{10} di$$

CAI or CAIs = Cerchar index for natural or saw cut surface respectively and d_i is diameter of the abraded flat area measured in units of 0.1 mm.

If Saw cut specimen is tested, then calculated CAIs of Eq. 1 it is advised to be normalized using Eq.2

$$CAI = 0.99 \ CAIs + 0.48$$

CAI = Cerchar index for natural surface; CAIs= Cerchar index for smooth surface

Table 31 and Figure 36below provides a summary of Triaxial Cohesion values for the all the samples

Name	Exploring alternate alignments, final location survey, geological mapping, geo-
	technical investigation, detail design of tunnel & its approaches including
of	Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC
Project:	project"

Consultant:		Geotechnical		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donaut		Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development
		110.:		Corporation Ltd

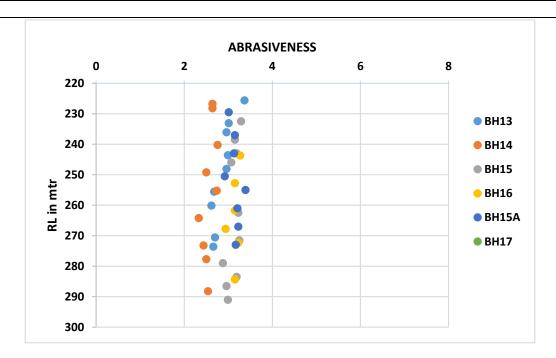


Figure 36: Abrasiveness of rock mass from entire borehole length vs RL. (Refer to Annexure I in Geotechnical Report for detail).

Table 31: Result of Abrasiveness test (Follow annexure G for detailed information)

BH NO.	Minimum Abrasiveness	Maximum Minimum Abrasiveness	Average Minimum Abrasiveness	Classification (HRC=55)
BH-13	2.62	3.37	2.88	High Abrasiveness
BH-14	2.33	2.76	2.55	High Abrasiveness
BH-15	2.88	3.43	3.15	High Abrasiveness
BH-15A	2.92	3.39	3.15	High Abrasiveness
BH-16	2.94	3.31	3.17	High Abrasiveness
BH-17	1.91	2.58	2.21	High Abrasiveness

Consultant:		Geotechnical Investigation Report		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Domont		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.1.10 Petrography Test

This test is performed to study the mineralogical, textural and micro-structural property of rock. The rock samples are cut up to 30-micron size and their optical properties are observed.

In the present test Grain size analysis is done to study the textural property of rock and the relative abundance of minerals are calculated to study the chemical and mineralogical property of the rock.

In order to get a holistic view, the samples are collected from different depth from each borehole as follows:

Table 32: Borehole wise details of collected sample for thin section.

BH ID	DEPTH
	6
	10.5
	18
	24
BH13	31.5
	39
	46.5
	52.5
	55.5
	3
	10.5
	16.5
BH14	25.5
	36
	49
	55.5

Name of Project:

	Consultant:		technical ation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	BH ID	DEPTH
		67.5
		1.5
		12
		22.5
	D1115	31.5
	BH15	40.5
		51
		61.5
		67.5
		6
		10.5
		18
		22.5
	BH15A	27
	- 	33
		34.5
		45
		10.5
		21
	DILLO	33
	BH16	40.5
		46.5
		52
		20.5
	D1117	25.0
	BH17	30.0
		31.5

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BH ID	DEPTH
	45.5
	51.5
	53.0
	61.0
	62.0

As per the grain size analysis of the rock the entire strata was found to be formed of Quartzite containing 80-90% quartz, only ≥20% of feldspar and very little mica, representing a mineralogically matured parent rock. This rock is almost equigranular with an average grain diameter of 0.25mm, indicating the textural maturity of its provenance. Only in BH16 at below 40m a very small amount of mica rich garnetiferrous phyllite was found. Photomicrographs of the thin sections and the results of the respective grain size and mineralogical analyses are presented below.

Name of Project:

Consultant:		Geo	technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Donaut		Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development
		110.:		Corporation Ltd

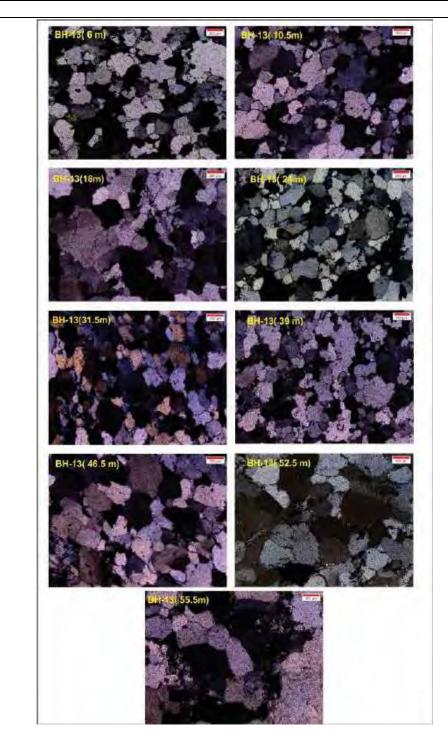


Figure 37: Borehole 13 sample under optical microscope (Cross polarized 5X)

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	- Mark	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

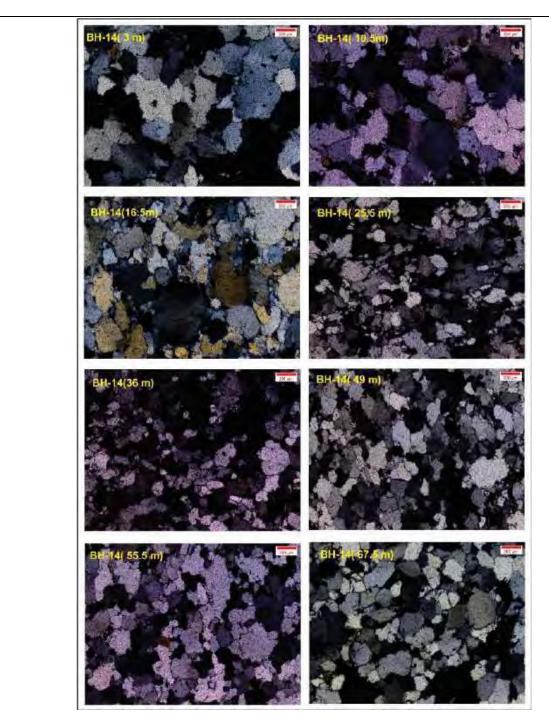


Figure 38: Borehole 14 samples under optical microscope (Cross polarized 5X)

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

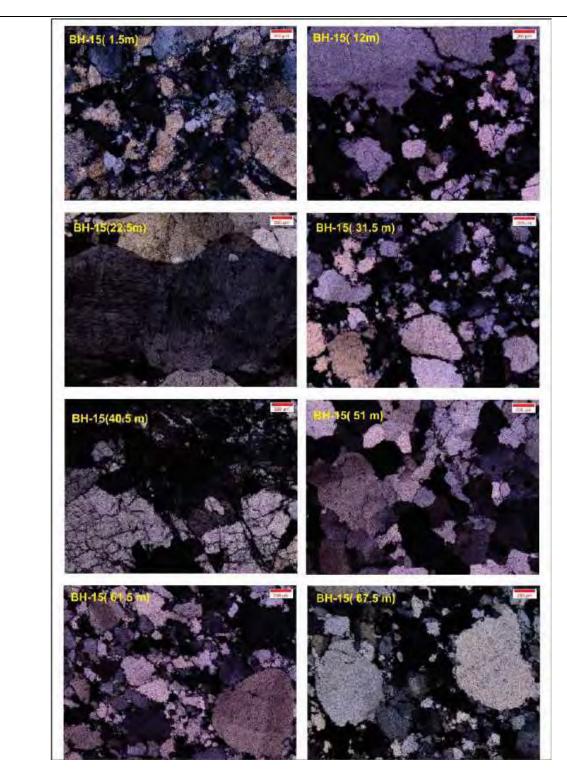


Figure 39: Borehole 15 Samples under optical microscope (cross polarized 5X).

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

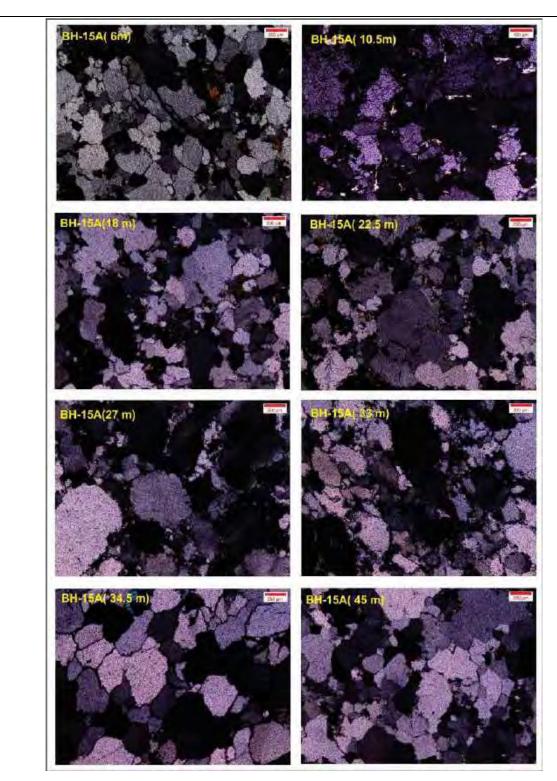


Figure 40: Borehole 15(A) Samples under optical microscope (cross polarized 5X).

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

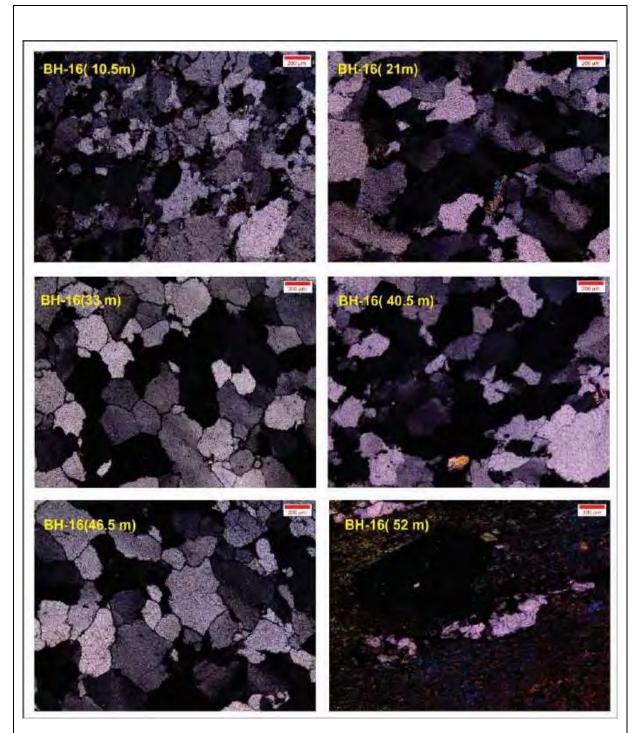


Figure 41: Borehole 16 sample under optical microscope (cross polarized 5X).

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	- Mark	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

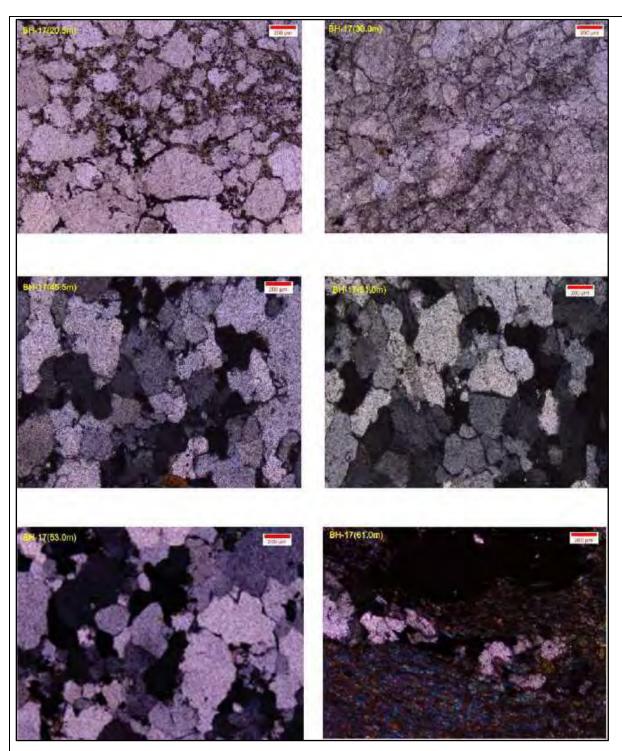


Figure 42: Borehole 17 sample under optical microscope

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.1.11 Grain size analysis

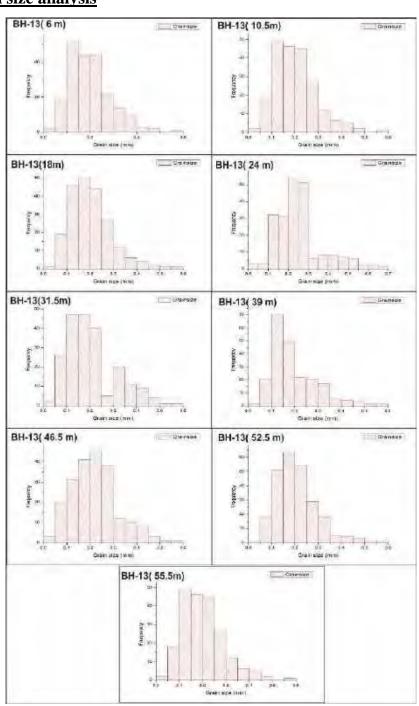


Figure 43: Borehole 13 Grain size analysis histogram.

Name of Project:

	Consultant:		technical ation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

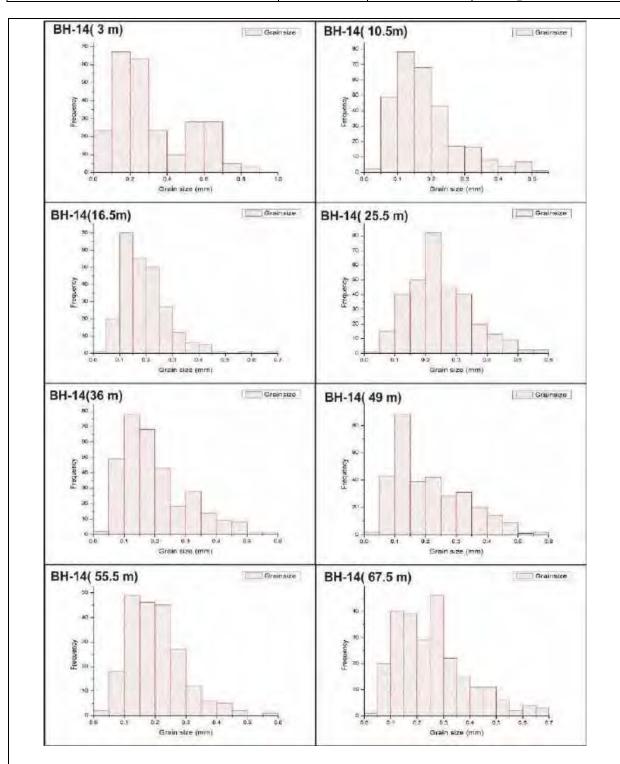


Figure 44: Borehole 14 Grain size analysis histogram

	Consultant:		technical ation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

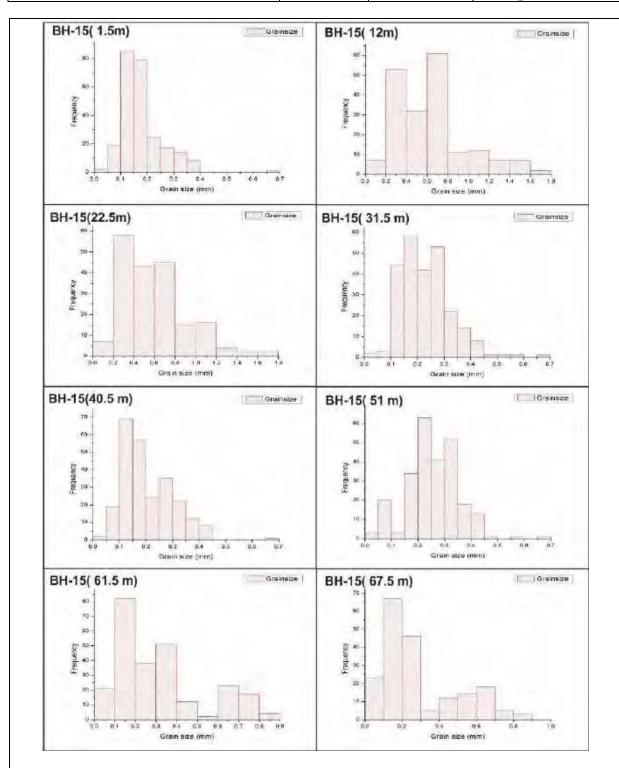
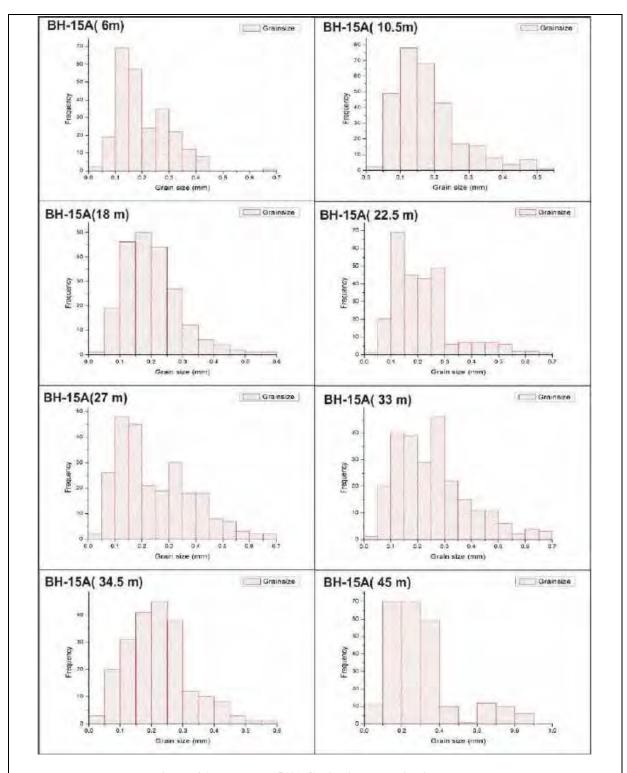
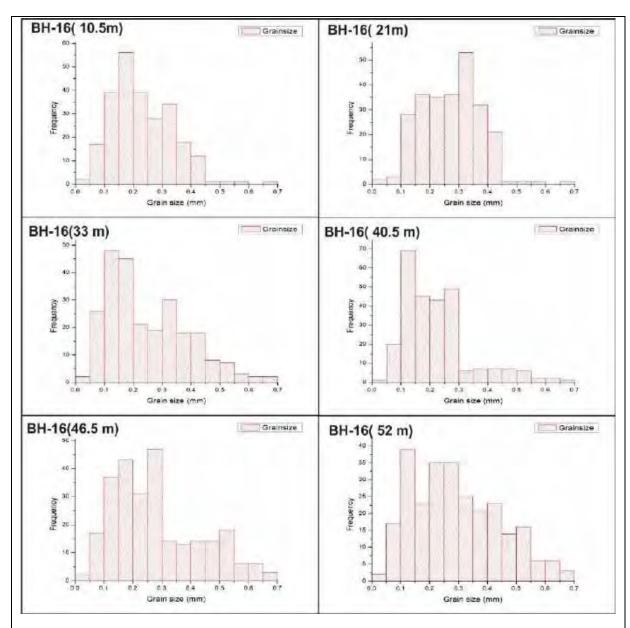
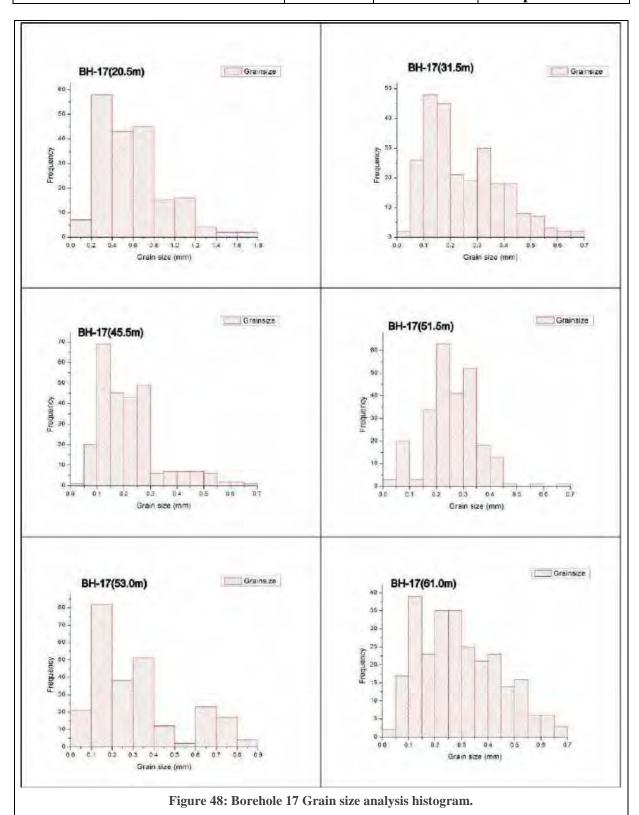


Figure 45: Borehole 15 Grain size analysis histogram

	Consultant:		technical ation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd


Figure 46: Borehole 15(A) Grain size analysis histogram.

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

 ${\bf Figure~47:~Borehole~16~Grain~size~analysis~histogram.}$

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	Consultant:		technical ation Report	Client:
S. M. C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd

Table 33: Mean, Median, Mode value of grain size analysis

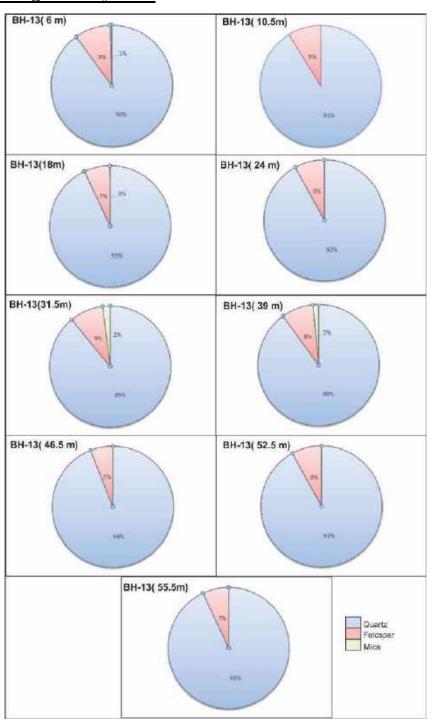
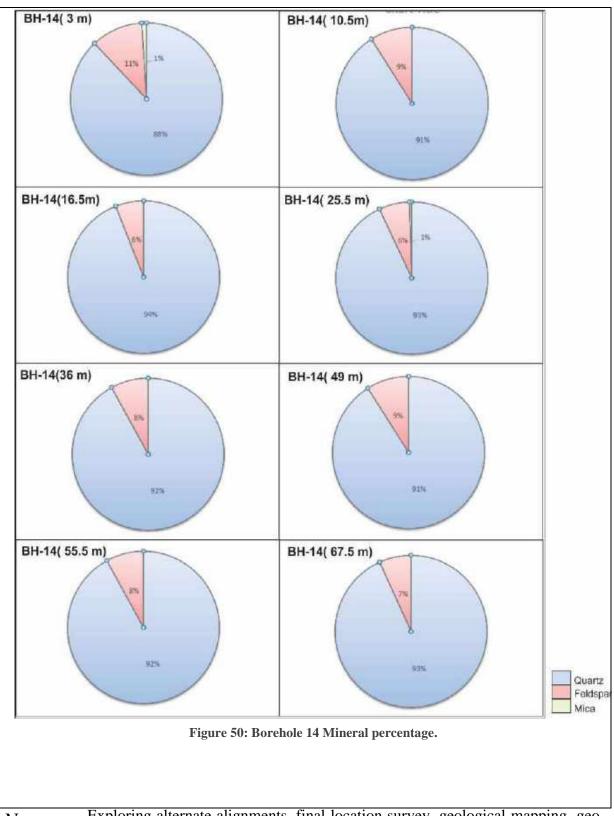
ВПШ	Depth(m)		Grain size(mm)	
BH.ID	Deptii(III)	Mean	Median	Mode
	4.50-6.00	0.199803	0.19	0.12
	9.00-10.50	0.201959	0.193	0.085
	16.50-18.00	0.205468	0.1915	0.129
	22.50-24.00	0.258223	0.241	0.273
BH13	30.00-31.50	0.206205	0.182	0.093
-	37.50-39.00	0.16483	0.1515	0.129
-	45.00-46.50	0.206281	0.205	0.203
	51.00-52.50	0.212493	0.209	0.273
	54.00-52.50	0.201959	0.205	0.273
	1.50-3.00	0.18256	0.17	0.12
	9.00-10.50	0.2053	0.193	0.128
	15.00-16.50	0.203155	0.183	0.12
BH14	24.00-25.50	0.256	0.239	0.23
ВН14	34.50-36.00	0.26	0.23	0.129
-	48.00-49.50	0.21	0.25	0.129
-	54.00-55.50	0.25	0.26	0.11
	66.00-67.50	0.316289	0.26	0.26
	0-1.5	0.177933	0.16	0.12
	10.50-12.0	0.708647	0.6635	0.203
-	21.00-22.50	0.568245	0.436	0.375
DII15	30.00-31.50	0.246856	0.25	0.273
BH15	39.00-40.50	0.203155	0.183	0.12
-	49.50-51.00	0.236961	0.23	0.191
-	60.00-61.50	0.316289	0.1835	0.12
	66.00-67.50	0.311211	0.246	0.252
BH15A	4.50-6.00	0.201959	0.193	0.1

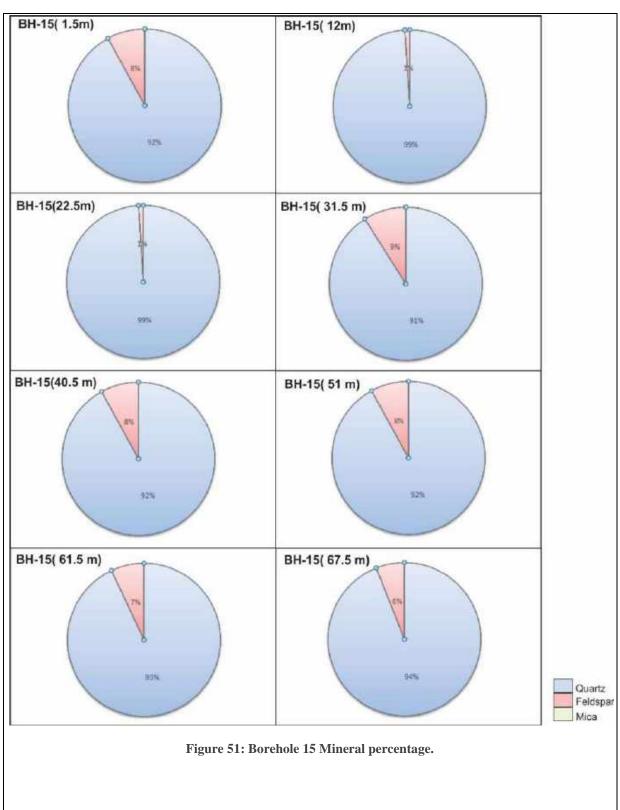
Consultant:		Geotechnical		Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	713	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

BH.ID	Depth(m)	Grain size(mm)			
BII.ID	Depth(m)	Mean	Median	Mode	
	9.00-10.50	0.203155	0.183	0.12	
	16.50-18.00	0.204089	0.2	0.23	
	21.00-22.50	0.238725	0.222	0.129	
	25.50-27.00	0.25	0.26	0.15	
	31.50-33.00	0.213	0.224	0.23	
	33.00-34.50	0.246253	0.243	0.222	
	43.50-45.00	0.266062	0.2245	0.129	
	9.00-10.50	0.204089	0.1915	0.085	
	19.50-21.00	0.238725	0.222	0.129	
BH16	31.50-33.00	0.219092	0.184	0.093	
Billo	39.00-40.50	0.218842	0.197	0.129	
	45.00-46.50	0.246253	0.2	0.222	
	52.00-53.50	0.316289	0.26	0.16	
	20.50-22.00	0.238725	0.224	0.23	
	25.00-26.50	0.21	0.25	0.129	
BH-17	30.00-31.50	0.2456	0.23	0.191	
51,	45.50-47.00	0.236961	0.23	0.191	
	51.50-53.00	0.389	0.286	0.146	
	61.00-62.00	0.311211	0.26	0.252	

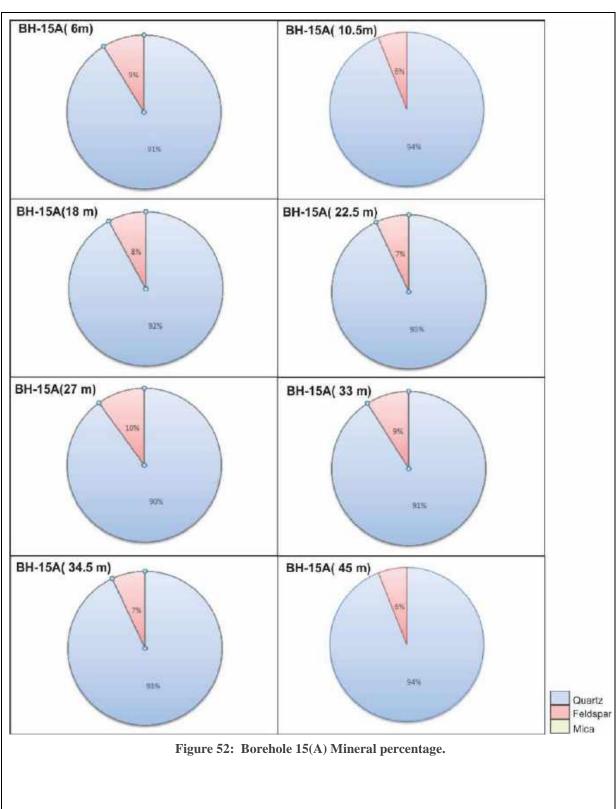
Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

6.1.12 Mineralogical analysis


Figure 49: Borehole 13 Mineral percentage

Name of Project:


Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Consultant:		Geotechnical Investigation Report		Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

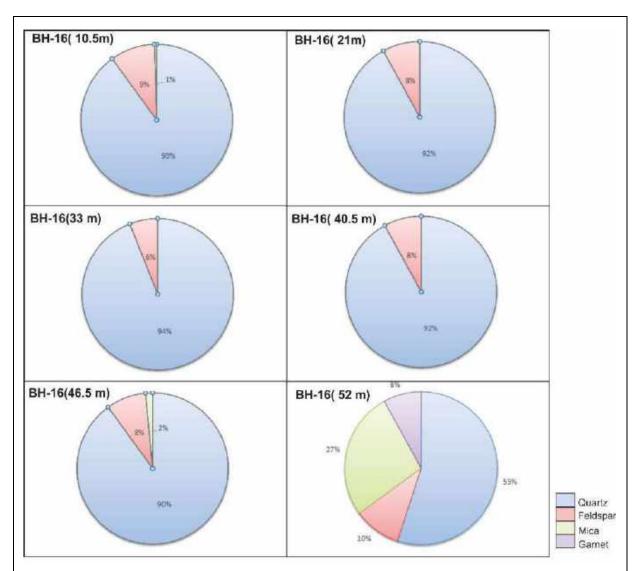
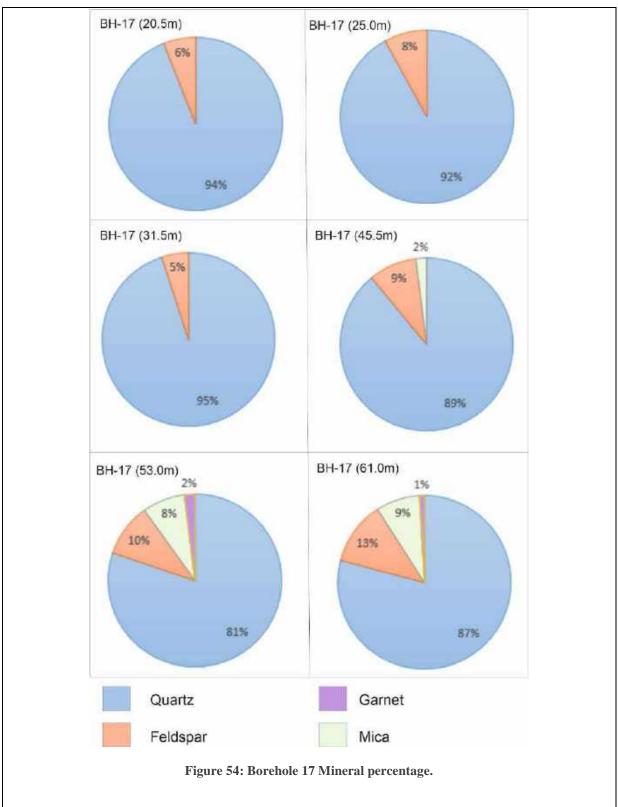



Figure 53: Borehole 16 Mineral percentage.

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.2 Soil Laboratory Test:

Laboratory tests were also carried out on soil samples taken from borehole BH18-BH33, the details of different laboratory tests conducted as part of the project are given in the table below.

Sl. No.	Laboratory tests	IS Codes	
1	Preparation of soil sample	IS: 2720(part-1)-1983 (Reaffirmed 2015)	
2	Moisture Content	IS: 2720(part-2)-1973 (Reaffirmed 2015)	
3	Specific Gravity	IS: 2720(part-3)(sec-1)-1980 (Reaffirmed 2016)	
4	Grain Size Analysis	IS: 2720(part-4)-1985 (Reaffirmed 2015)	
5	Atterberg's Limits	IS: 2720(part-5)-1985 (Reaffirmed 2015)	
6	Bulk Density		
7	Triaxial Shear Strength	IS: 2720(part-11)-1993 (Reaffirmed 2016)	
8	Direct Shear Strength	IS: 2720(part-13)-1986 (Reaffirmed 2016)	
9	Consolidation Test	IS: 2720(part-15)-1986 (Reaffirmed 2016)	

6.2.1 Soil Types:

Soil mass encountered along the tunnel alignment has been categorised in two group i.e., 1) Noncohesive Soil comprising Silty Sand (SM) and Inorganic Silt (ML) and 2) Cohesive Soil comprising Inorganic clay (CL).

Name of Project:

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure
				Development
				Corporation Ltd

6.2.2 Cohesion Test:

Cohesion values from all the all kinds of soil are found to 2 group. As shown in Figure 55 CL type soil mass has higher cohesion value (clustered green dots in graph) ranging between 25-35 kPa and other 3 types of soil are comprised of another group with values ranging from 4-12 kPa.

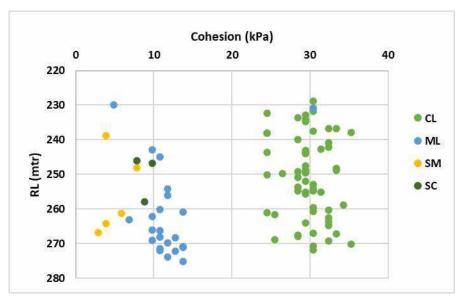


Figure 55: Variation in cohesion value of soil with RL.

Table 34: Summery of cohesion test results for soil.

Soil Types	Minimum Cohesion value	Maximum Cohesion value	Average Cohesion value
CL	23.54 kPa	35.30 kPa	25 kPa
ML	1.96 kPa	18.63 kPa	3 kPa
SC	7.85 kPa	19.61 kPa	3 kPa
SM	1.96 kPa	3.92 kPa	3 kPa

Name of Project:

	Consultant:		technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure
				Development
				Corporation Ltd

6.2.3 Angle of Internal Friction:

The figure below provides the summarized results of test conducted to determine the angle of internal friction of the soil sample taken from the boreholes.

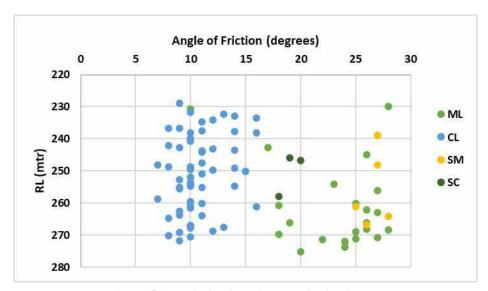


Figure 56: Variation in phi value of soil with RL

Table 35: Summery of angle of internal friction test results for soil.

Soil Types	Minimum Phi value	Maximum Phi value	Average Phi value
CL	9°	16°	12°
ML	28°	36°	32°
SC	29°	34°	32°
SM	29°	32°	32°

Name of Project:

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
		Domont		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.2.4 Natural Weight:

Density of all kind of soil found to be linearly increasing with depth. The trend of variation with depth is shown below in Figure 57.

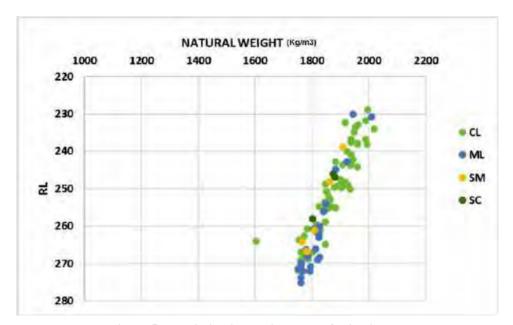


Figure 57: Variation in density value of soil with RL

Table 36: Summery of density test results for soil

Soil Types	Minimum Density value	Maximum Density value	Average Density value
CL	1604 kg/m ³	2018 kg/m ³	1852 kg/m^3
ML	1752 kg/m ³	2009 kg/m ³	1765 kg/m^3
SC	1802 kg/m ³	1879 kg/m ³	1851 kg/m^3
SM	1765 kg/m ³	1906 kg/m ³	1824 kg/m^3

Name of Project:

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	- Prov	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

6.2.5 Modulus of Elasticity (E):

The drained modulus (E') values are determined based on the corrected SPT N value $-N_{60}$ as per CIRIA Report 143 for granular as well as cohesive soils. For cohesive soil– $E' = 1.2 \times N_{60}$ (MPa), and for cohesionless soil– $E' = 1.0 \times N_{60}$ (MPa). Modulus of elasticity was found to be increasing from 10 MPa to 15 MPa with depth up-to first 15 meter from the surface, after which it falls within a constant range of value around 30 ± 1 MPa up-to the floor of the tunnel.

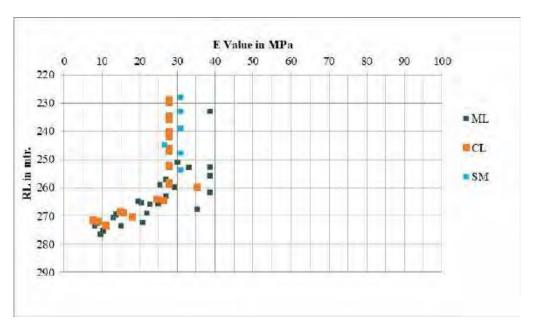


Figure 58: graph for Modulus of elasticity for soil vs RL.

Table 37: Summery of Modulus of E values for soil

Soil Types	Minimum E value	Maximum E value	Average E value
CL	7.64 MPa	35.19 MPa	24.10 MPa
ML	6.94 MPa	38.58 MPa	24.67 MPa
SM	26.54 MPa	30.87 MPa	30.14 MPa

Name of Project:

	Consultant:		technical ation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

7 CHAPTER: SUMMARY

The Geotechnical investigation is an integral part of the assessment of subsurface strata conditions before the commencement of underground excavation and design methodology. For this purpose, 20 nos. of bore holes (BH-13 to BH-33) were drilled at the site covering the entire area. The bore holes were planned in such a way to intersect the proposed tunnel layouts throughout its proposed alignment. Geological mapping has been carried out based on the surface exposure of different rock types. The attitude (strike and dip) of these different formations were measured in the field at appropriate places.

7.1 Structure

Based on the available surface information and close observation of the drilled cores from the litho-logs, it has been observed that after crossing the soil the tunnel will enter into a folded rock mass where the axis of the tunnel will be perpendicular to the fold axis, thus favourably oriented with respect to the folded bedding planes. However, the folded rock layer has suffered extreme level of later brittle fracturing, which has been testified by the presence of 6 sets of joints of different orientation and a few late brittle discrete shear zones (which is certainly not active in nature). These joints and the fractures have significantly reduced the strength of the otherwise sufficiently cohesive metamorphic rock mass.

7.2 Lithology

Out of 4.26 km length of the tunnel it was found that 1.1 km of tunnel will be within the quartzite rock mass of Delhi Supergroup and rest of the 3.16 km will run through soil.

7.2.1 Rock Mass

The rock core samples extracted from the drilled holes, at regular intervals along depth, were utilized for the estimation of strength parameters, rock mass characterization, basic support design, and prediction of envisaged strata conditions. The testing of cores for

	Consultant:		technical ation Report	Client:
S. M. C.	S,M, CONSULTANTS	Job No.:	830	Haryana Rail Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd

the determination of strength properties performed at NABL recognized laboratories. The tests include uniaxial compressive test, triaxial strength test, tensile strength, permeability, porosity, Point Load strength index, hardness, abrasiveness, petrographic analysis. The test results regarding the engineering properties for the rock mass are given in Annexures.

7.2.2 Soil

Geotechnical Investigation were carried out by drilling 15 no of boreholes i.e., BH No-18 to 33. The subsoil predominantly consists of silt of low plasticity to clay of low plasticity. The ranges of engineering properties such as, cohesive strength, phi value, natural weight, Modulus of elasticity for **CL** type soil is 23.54-35.30 kPa, 9°-16°, 1604-2018 kg/m3, 7.64 MPa; for **ML** type Soil is 1.96-18.36 kPa, 28°-36°, 1752-2009 kg/m3, 6,94-38.58 MPa; for **SM** type soil is 1.96-3.92 kPa, 29°-32°, 1765-1906 kg/m3, 26.54-30.87 MPa respectively

7.3 <u>Hydrogeological Conditions</u>

None of the boreholes reached the ground water table. Therefore, based on the preliminary survey, it can be predicted that the tunnel will not face any difficulty due to encounter of ground water table during the construction. However, the overlying rock strata having significant nos. of joint set is quite capable of percolating rain waters during the rainy seasons. There is also a ditch around CH 24800, which is situated almost 31.87m above the roof of the tunnel. This ditch may be connected to a perched water table with a limited water resource. The joint sets and the ditch could act as efficient path ways of rainwater recharge into the tunnel during the rainy season. Therefore, it is recommended that suitable drainage system should be designed along with the tunnel to drain out that percolated water to avoid water logging during and after the construction of the tunnel.

Name of Project:

	Consultant:		technical ation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

8 REFERENCES

Battaglia, M., Cervelli, P. F., & Murray, J. R. (2013). *Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models and modeling approaches* (No. 13-B1). US Geological Survey.

Bieniawski, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons.

Castro-Fresno, D., Diego-Carrera, R., Ballester-Muñoz, F., & Álvarez-García, J. (2010). Correlation between Bieniawski's RMR and Barton's Q index in low-quality soils. *Revista de la Construcción*, 9(1), 107-119.

Clark, C., Collins, A. S., Timms, N. E., Kinny, P. D., Chetty, T. R. K., & Santosh, M. (2009). SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. *Gondwana Research*, *16*(1), 27-36.

Jiang, Y., & González, P. J. (2020). Bayesian inversion of wrapped satellite interferometric phase to estimate fault and volcano surface ground deformation models. *Journal of Geophysical Research: Solid Earth*, 125(5), e2019JB018313.

Warren, S. N., Kallu, R. R., & Barnard, C. K. (2015, June). Correlation of the rock mass rating system (RMR) to the unified soil classification system (USCS) for geotechnical characterization of very weak rock masses. In 49th US Rock Mechanics/Geomechanics Symposium. OnePetro.

GSI Report entitles Geological and Geo hydrological investigation in Sohana area, Gurgaon district, Haryana with special reference to geothermal activity in the area., 1973-74

GSI Report on the geophysical investigation in the western bloc of Shona geothermal area, district Gurgaon, Haryana. 1978-79

Name of Project:

Consultant:			technical	Client:
		Investig	ation Report	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	713	Donout		Infrastructure
	BHUBANESWAR	Report	SMC/2050	Development
		No.:		Corporation Ltd

9 ANNEXURES

Name of Project:

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –A Geological Log, RQD, Q value

	Consultant:		Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

BH No.	Chainage No.	Ground Elevation, RL (m)	Total Depth (m)
BH-13	25000	276.867	60
BH-14	25195	294.218	75
BH-15	25380	295.532	70
BH-15A	25488	276.442	50
BH-16	25586	287.324	62
BH-17	25785	282.461	62
BH-18	25990	280.253	55
BH-19	26210	278.116	50
BH-20	26387	276.795	48
BH-21	26587	274.993	45
BH-22	26787	274.321	45
BH-23	26980	274.85	45
BH-24	27187	274.075	40
BH-25	27410	273.565	40
BH-26	27550	273.112	35
BH-27	28050	272.210	30
BH-28	28350	272.799	45
BH-29	28550	269.964	30
BH-30	28750	270.808	45
BH-31	29050	267.159	20
BH-32	29550	266.684	30
BH-33	30125	265.581	20

Consultant:		Geotechnical I	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BORE HOLE ID:	13	LONGIT UDE	77°2 97''	2'41.3 E	LOCATION:	Sohna	STRUCTU	Tunnel	
CHAINAG E (Km)	25000	LATTIT UDE	28°2 991	12'25. ''N	TOTAL DEPTH:	60m	RE		
START DATE	25-08-2021	GROUND ELEVATI MSL :		276.8 67	TYPE OF CORE BARREL:	Double Tube Core Barrel	TYPE OF BIT	Diamond Bit	
COMPLET ED DATE	06-09-2021	ANGLE W HORIZON		00	DEPTH OF WATER TABLE	Not Found	CASING	NX up to 3.0 m	
BORING TYPE&SIZ E:		DRILLI AGENC			WATER TABLE RECORD DATE	07-09-2021			
		S.M Con	sulta	nts	NAME OF GEOLOGIST	Gaurav Chunekar			

				Bh	-13; To	tal D	epth	60m			
Elevation (m)		oth n)	Lithological	Structural conditions	% of Core-Recovery	RQD		R R R	Samı	oles	Q VALUE
Elevati	Тор	Bottom	Description	Structural	% Core-Re	% R	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	QVA
28 0	0	1.5	Slightly Weathered, Light Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	18	0	33	CLASS 3(FAIR ROCK)	0.00-1.50	Core Rock	1.5
27 8	1.5	3	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Moderat ely Fractured and Jointed	28.6	0	33	CLASS 3(FAIR ROCK)	1.50-3.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

				Bh	-13; To	tal D	epth	60m			
Elevation (m)		pth n)	Lithological	Structural conditions	% of Core-Recovery	% RQD		RMR	Samı	oles	Q VALUE
Elevati	Тор	Bottom	Description	Structural	% Core-Re	% R	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	αV
27 7	3	4.5	Slightly Weathered, Light Grey to Light Brown,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	44.6	0	33	CLASS 3(FAIR ROCK)	3.00-4.50	Core Rock	6.69
27 5	4.5	6	Highly Weathered, Light Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	21.3	0	31	CLASS 3(FAIR ROCK)	4.50-6.00	Core Rock	3.199
27 4	6	7.5	Slightly Weathered, Light Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	25.3 3	10	35	CLASS 3(FAIR ROCK)	6.00-7.50	Core Rock	3.799 5
27 2	7.5	9	Highly Weathered, Highly Fractured, Highly Jointed, White to Light	Highly Fractured and Jointed	37.3 3	0	31	CLASS 3(FAIR ROCK)	7.50-9.00	Core Rock	5.599 5
27 1	9	11	Brown,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	34	0	31	CLASS 3(FAIR ROCK)	9.00- 10.50	Core Rock	5.1

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

				Bh	-13; To	tal D	epth	60m			
Elevation (m)		pth n)	Lithological	Structural conditions	% of Core-Recovery	% RQD		RMR	Samı	oles	2 VALUE
Elevati	Тор	Bottom	Description	Structural	% Core-Re	8 %	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	QΛ
26 9	11	12	Moderately Weathered, Highly Fractured, Highly Jointed, Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	28	17	33	CLASS 3(FAIR ROCK)	10.50- 12.00	Core Rock	4.2
26 8	12	14	Highly Weathered, White to Light Grey,Fine Grained,	Highly Fractured and Jointed	21.3	0	33	CLASS 3(FAIR ROCK)	12.00- 13.50	Core Rock	3.199 5
26 6	14	15	Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	34	0	35	CLASS 3(FAIR ROCK)	13.50- 15.00	Core Rock	5.1
26 5	15	17	Slightly Weathered, Reddish Brown to Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	32	0	35	CLASS 3(FAIR ROCK)	15.00- 16.50	Core Rock	4.2
26 3	17	18	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	32.8 5	0	35	CLASS 3(FAIR ROCK)	16.50- 18.00	Core Rock	3.199 5
26 2	18	20	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron	Highly Fractured and Jointed	30	9	35	CLASS 3(FAIR ROCK)	18.00- 19.50	Core Rock	5.1

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

				Bh	-13; To	tal D	epth	60m			
Elevation (m)	De (n		Lithological	Structural conditions	% of Core-Recovery	% RQD		RMR	Samı	oles	Q VALUE
Elevati	Тор	Bottom	Description	Structural	% Core-Re	В %	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	Q VA
26 0	20	21	Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	39.3 3	0	35	CLASS 3(FAIR ROCK)	19.50- 21.00	Core Rock	4.8
25 9	21	23		Highly Fractured and Jointed	33.3	0	35	CLASS 3(FAIR ROCK)	21.00- 22.50	Core Rock	4.927 5
25 7	23	24		Highly Fractured and Jointed	39.3 3	0	38	CLASS 3(FAIR ROCK)	22.50- 24.00	Core Rock	4.5
25 6	24	26		Highly Fractured and Jointed	28.6	9	38	CLASS 3(FAIR ROCK)	24.00- 25.50	Core Rock	5.899 5
25 4	26	27	Slightly	Highly Fractured and Jointed	34	18	38	CLASS 3(FAIR ROCK)	25.50- 27.00	Core Rock	4.999 5
25 3	27	29	Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very	Highly Fractured and Jointed	34	24	38	CLASS 3(FAIR ROCK)	27.00- 28.50	Core Rock	5.899 5
25 1	29	30	Hard, Quartzite	Highly Fractured and Jointed	40	20	38	CLASS 3(FAIR ROCK)	28.50- 30.00	Core Rock	4.299
25 0	30	32		Highly Fractured and Jointed	31.3	0	35	CLASS 3(FAIR ROCK)	30.00- 31.50	Core Rock	5.1

	Consultant:	Geotechnical I	Geotechnical Investigation Report			
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail		
				Infrastructure		
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation		
				Ltd		

				Bh	-13; To	tal D	epth	60m			
Elevation (m)	De _l (n		Lithological	Structural conditions	% of Core-Recovery	% RQD		R R R	Sam	oles	Q VALUE
Elevati	Тор	Bottom	Description	Structural	% Core-Re	% R	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	Q VA
24 8	32	33		Highly Fractured and Jointed	33.3 3	9	35	CLASS 3(FAIR ROCK)	31.50- 33.00	Core Rock	5.1
24 7	33	35		Highly Fractured and Jointed	24	11	35	CLASS 3(FAIR ROCK)	33.00- 34.50	Core Rock	6
24 5	35	36	Slightly Weathered, Grey, Fine Grained,	Highly Fractured and Jointed	35.3 3	8	35	CLASS 3(FAIR ROCK)	34.50- 36.00	Core Rock	4.699 5
24 4	36	38	Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	32.6	8	35	CLASS 3(FAIR ROCK)	36.00- 37.50	Core Rock	4.999 5
24 2	38	39		Highly Fractured and Jointed	26.6 6	0	35	CLASS 3(FAIR ROCK)	37.50- 39.00	Core Rock	3.6
24 1	39	41	Cliabtly	Highly Fractured and Jointed	32	9	35	CLASS 3(FAIR ROCK)	39.00- 40.50	Core Rock	5.299 5
23 9	41	42	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron	Highly Fractured and Jointed	43.3	9	35	CLASS 3(FAIR ROCK)	40.50- 42.00	Core Rock	4.89
23 8	42	44	Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	26	8	35	CLASS 3(FAIR ROCK)	42.00- 43.50	Core Rock	3.999

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

				Bh	-13; To	tal D	epth	60m			
Elevation (m)	De (n		Lithological	Structural conditions	% of Core-Recovery	% RQD		RMR	Samı	oles	Q VALUE
Elevati	Тор	Bottom	Description	Structural	% Core-Re	% R	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	αv
23 6	44	45		Highly Fractured and Jointed	33.3	16	35	CLASS 3(FAIR ROCK)	43.50- 45.00	Core Rock	4.8
23 5	45	47		Highly Fractured and Jointed	30	0	35	CLASS 3(FAIR ROCK)	45.00- 46.50	Core Rock	6.499 5
23	47	48	Slightly	Highly Fractured and Jointed	22.6 6	19	35	CLASS 3(FAIR ROCK)	46.50- 48.00	Core Rock	3.9
23	48	50	Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very	Highly Fractured and Jointed	34	29	40	CLASS 3(FAIR ROCK)	48.00- 49.50	Core Rock	4.999 5
23	50	51	Hard, Quartzite	Highly Fractured and Jointed	27.3	0	35	CLASS 3(FAIR ROCK)	49.50- 51.00	Core Rock	4.5
22 9	51	53		Highly Fractured and Jointed	26	0	35	CLASS 3(FAIR ROCK)	51.00- 52.50	Core Rock	3.399
22 7	53	54		Highly Fractured and Jointed	34	0	35	CLASS 3(FAIR ROCK)	52.50- 54.00	Core Rock	5.1
22 6	54	56		Highly Fractured and Jointed	34	0	35	CLASS 3(FAIR ROCK)	54.00- 55.50	Core Rock	4.099 5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Bh-13; Total Depth 60m													
Elevation (m)		pth n)	Lithological	Structural conditions	% of Core-Recovery	% RQD		R R R	Samı	oles	Q VALUE		
Elevati	Тор	Bottom	Description	Structural	% Core-Re	8 %	Rating	Class	Depth of sample (m)	Type of Sample Collecte d	ΔV		
22	56	57		Highly Fractured and Jointed	26.6 6	9	35	CLASS 3(FAIR ROCK)	55.50- 57.00	Core Rock	3.9		
22	57	59		Highly Fractured and Jointed	28	8	35	CLASS 3(FAIR ROCK)	57.00- 58.50	Core Rock	5.1		
22 1	59	60	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	22	13	35	CLASS 3(FAIR ROCK)	58.50- 60.00	Core Rock	5.1		

	Consultant:	Geotechnical I	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BORE HOLE ID:	14	LONGIT UDE	77°2'. 27''E		LOCATION:	Sohna	STRUCTU	Tunnel	
CHAINAG E (Km)	25195	LATTIT UDE	28°12 483'']		TOTAL DEPTH:	75m	RE	Tumer	
START DATE	11-08-2021	GROUND ELEVATI MSL :	ON	294.2 18	TYPE OF CORE BARREL:	Double Tube Core Barrel	TYPE OF BIT	Diamond Bit	
COMPLET ED DATE	23-08-2021	ANGLE W HORIZON		1	DEPTH OF WATER TABLE	Not found	CASING	NX up to 3.0 m	
BORING TYPE&SIZ E:			DRILLING		WATER TABLE RECORD DATE	24-08-2021			
			GENCY M Consultants		NAME OF GEOLOGIST	Gaurav Chunekar			

Elevati on (m)	Dep To p	Botto m	Lithology	Structura I conditio ns	% of Core- Recove ry	% RQ D	Rati ng	RMR Class	Samp Depth of sample (m)	Type of Sample Collecte d	Q VAL UE
294.21 8	0.0	1.5	Moderat ely Weather ed, , Light Grey, Fine	Highly Fracture d and Jointed	30	0	33	CLASS 3(FAIR ROCK)	0.00-1.50	Core Rock	1.5
292.71 8	1.5	3.0	Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	48	0	33	CLASS 3(FAIR ROCK)	1.50-3.00	Core Rock	1.5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevati	Dep	oth (m)		Structura I	% of Core-	% RQ		RMR	Samı	oles	Q VAL
on (m)	To p	Botto m	Lithology	conditio ns	Recove ry	D	Rati ng	Class	Depth of sample (m)	Type of Sample Collecte d	UE
291.21 8	3.0	4.5	Highly Weather ed Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Moderat ely Fracture d and Jointed	38	0	33	CLASS 3(FAIR ROCK)	3.00-4.50	Core Rock	1.5
289.71 8	4.5	6.0	Quartz vein Slightly Weather ed, Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	66	24	33	CLASS 3(FAIR ROCK)	4.50-6.00	Core Rock	3.6
288.21 8	6.0	7.5	Highly Weather ed Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Moderatl ey Fracture d and Jointed	45	0	35	CLASS 3(FAIR ROCK)	6.00-7.50	Core Rock	1.5

	Consultant:	Geotechnical I	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

Elevati on (m)	Der To p	Botto m	Lithology	Structura I conditio ns	% of Core- Recove ry	% RQ D	Rati ng	RMR Class	Sample (m)	Type of Sample Collecte d	Q VAL UE
286.71 8	7.5	9.0	Slightly Weather d, Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard, Quartzite (fine grain muscovit e)	Highly Fracture d and Jointed	50	18	35	CLASS 3(FAIR ROCK)	7.50-9.00	Core Rock	2.7
285.21 8	9.0	10.5	Slightly to Moderat ely Weather d, Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Moderat ely Fracture d and Jointed	51	0	33	CLASS 3(FAIR ROCK)	9.00- 10.50	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Elevati on (m)	Der To p	Botto m	Lithology	Structura I conditio ns	% of Core- Recove ry	% RQ D	Rati ng	RMR Class	Sam Depth of sample (m)	Type of Sample Collecte d	Q VAL UE
283.71 8	10. 5	12.0	Moderat ely Weather d, Light	Highly Fracture d and Jointed	40	21	38	CLASS 3(FAIR ROCK)	10.50- 12.00	Core Rock	3.15
282.21 8	12. 0	13.5	Grey, Fine Grained, Interlocki ng	Highly Fracture d and Jointed	34	15	33	CLASS 3(FAIR ROCK)	12.00- 13.50	Core Rock	2.25
280.71 8	13. 5	15.0	Texture, Iron Leaching , Very Hard	Highly Fracture d and Jointed	21	0	31	CLASS 3(FAIR ROCK)	13.50- 15.00	Core Rock	1.5
279.21 8	15. 0	16.5	Quartzite	Highly Fracture d and Jointed	29	0	31	CLASS 3(FAIR ROCK)	15.00- 16.50	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevati on (m)	Der To p	Botto m	Lithology	Structura I conditio ns	% of Core- Recove ry	% RQ D	Rati ng	RMR Class	Samp Depth of sample (m)	Type of Sample Collecte d	Q VAL UE
277.71 8	16. 5	18.0	Moderat ely Weather d, Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	28	9	31	CLASS 3(FAIR ROCK)	16.50- 18.00	Core Rock	1.5
276.21 8	18. 0	19.5		Highly Fracture d and Jointed	34	6	35	CLASS 3(FAIR ROCK)	18.00- 19.50	Core Rock	1.5
274.71 8	19. 5	21.0	Slightly Weather ed, Light Grey, Fine	Highly Fracture d and Jointed	23	0	35	CLASS 3(FAIR ROCK)	19.50- 21.00	Core Rock	1.5
273.21 8	21. 0	22.5	Grained, Interlocki ng Texture,	Highly Fracture d and Jointed	28	13	35	CLASS 3(FAIR ROCK)	21.00- 22.50	Core Rock	1.95

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevati on (m)	Dep To p	oth (m) Botto m	Lithology	Structura conditio ns	% of Core- Recove ry	% RQ D	Rati ng	RMR Class	Sample (m)	Type of Sample Collecte d	Q VAL UE
271.71 8	22. 5	24.0	Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	23	6	35	CLASS 3(FAIR ROCK)	22.50- 24.00	Core Rock	1.5
270.21 8	24. 0	25.5		Highly Fracture d and Jointed	20	0	35	CLASS 3(FAIR ROCK)	24.00- 25.50	Core Rock	1.5
268.71 8	25. 5	27.0		Highly Fracture d and Jointed	25	9	35	CLASS 3(FAIR ROCK)	25.50- 27.00	Core Rock	1.5
267.21 8	27. 0	28.5		Highly Fracture d and Jointed	28	0	38	CLASS 3(FAIR ROCK)	27.00- 28.50	Core Rock	1.5
265.71 8	28. 5	30.0		Highly Fracture d and Jointed	25	18	35	CLASS 3(FAIR ROCK)	28.50- 30.00	Core Rock	2.7
264.21 8	30. 0	31.5	Slightly Weather ed, Light Grey, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	28	14	35	CLASS 3(FAIR ROCK)	30.00- 31.50	Core Rock	2.1

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevati	Dep	oth (m)		Structura I	% of Core-	% RQ	RMR		Samı	oles	Q VAL
on (m)	To p	Botto m	Lithology	conditio ns	Recove ry	D	Rati ng	Class	Depth of sample (m)	Type of Sample Collecte d	UE
262.71 8	31.	33.0	Moderat ely Weather ed, , Gery, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Moderat ely Fracture d and Jointed	28	18	33	CLASS 3(FAIR ROCK)	31.50- 33.00	Core Rock	2.7
261.21 8	33. 0	34.5	- Moderat	Highly Fracture d and Jointed	22	6	31	CLASS 3(FAIR ROCK)	33.00- 34.50	Core Rock	1.5
259.71 8	34. 5	36.0	ely Weather ed, Grey, Fine Grained,	Highly Fracture d and Jointed	25	0	31	CLASS 3(FAIR ROCK)	34.50- 36.00	Core Rock	1.5
258.21 8	36. 0	37.5	Interlocki ng Texture, Iron Leaching	Highly Fracture d and Jointed	29	10	31	CLASS 3(FAIR ROCK)	36.00- 37.50	Core Rock	1.5
256.71 8	37. 5	39.0	, Very Hard Quartzite	Highly Fracture d and Jointed	28	7	31	CLASS 3(FAIR ROCK)	37.50- 39.00	Core Rock	1.5
255.21 8	39. 0	40.5		Highly Fracture d and Jointed	30	0	31	CLASS 3(FAIR ROCK)	39.00- 40.50	Core Rock	1.5
253.71 8	40. 5	42.0	Moderat ely	Highly Fracture d and Jointed	28	7	31	CLASS 3(FAIR ROCK)	40.50- 42.00	Core Rock	1.5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Elevati	Dep	oth (m)		Structura 	% of Core-	% RQ	RMR		Samı		Q VAL
on (m)	To p	Botto m	Lithology	conditio ns	Recove ry	D	Rati ng	Class	Depth of sample (m)	Type of Sample Collecte d	UE
252.21 8	42. 0	43.5	Weather ed, Gery, Fine Grained, Interlocki ng Texture, Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	25	0	35	CLASS 3(FAIR ROCK)	42.00- 43.50	Core Rock	1.5
250.71 8	43. 5	45.0		Highly Fracture d and Jointed	26	6	35	CLASS 3(FAIR ROCK)	43.50- 45.00	Core Rock	1.5
249.21 8	45. 0	46.5	Slightly Weather ed, Grey,	Highly Fracture d and Jointed	24	0	35	CLASS 3(FAIR ROCK)	45.00- 46.50	Core Rock	1.5
247.71 8	46. 5	48.0	Fine Grained, Interlocki ng Texture,	Highly Fracture d and Jointed	26	0	35	CLASS 3(FAIR ROCK)	46.50- 48.00	Core Rock	1.5
246.21 8	48. 0	49.5	Iron Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	27	18	35	CLASS 3(FAIR ROCK)	48.00- 49.50	Core Rock	2.7
244.71 8	49. 5	51.0		Highly Fracture d and Jointed	22	0	35	CLASS 3(FAIR ROCK)	49.50- 51.00	Core Rock	1.5
243.21 8	51. 0	52.5		Highly Fracture d and Jointed	22	0	35	CLASS 3(FAIR ROCK)	51.00- 52.50	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd

Elevati on (m)	Depth (m) To Botto p m Lithology		Lithology	Structura conditio ns	% of Core- Recove ry	% RQ D	RMR Rati ng Class		Sample (m)	sample Collecte	
241.71 8	52. 5	54.0		Highly Fracture d and Jointed	22	0	35	CLASS 3(FAIR ROCK)	52.50- 54.00	Core Rock	1.5
240.21 8	54. 0	55.5		Highly Fracture d and Jointed	26	0	35	CLASS 3(FAIR ROCK)	54.00- 55.50	Core Rock	1.5
238.71 8	55. 5	57.0		Highly Fracture d and Jointed	26	0	35	CLASS 3(FAIR ROCK)	55.50- 57.00	Core Rock	1.5
237.21 8	57. 0	58.5	Slightly Weather ed, Grey, Fine	Highly Fracture d and Jointed	22	10	35	CLASS 3(FAIR ROCK)	57.00- 58.50	Core Rock	1.5
235.71 8	58. 5	60.0	Grained, Interlocki ng Texture, Iron	Highly Fracture d and Jointed	21	0	35	CLASS 3(FAIR ROCK)	58.50- 60.00	Core Rock	1.5
234.21 8	60. 0	61.5	Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	22	0	35	CLASS 3(FAIR ROCK)	60.00- 61.50		1.5
232.71	61. 5	63.0		Highly Fracture d and Jointed	22	0	35	CLASS 3(FAIR ROCK)	61.50- 63.00		1.5
231.21 8	63. 0	64.5		Highly Fracture d and Jointed	25	13	35	CLASS 3(FAIR ROCK)	63.05- 64.55		1.95
229.71 8	64. 5	66.0		Highly Fracture d and Jointed	28	11	35	CLASS 3(FAIR ROCK)	64.50- 66.00		1.65

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevati	Dep	oth (m)		Structura I	% of Core-	% RQ	RMR		Samı	Samples	
on (m)	To p	Botto m	Lithology	conditio ns	Recove ry	D	Rati ng	Class	Depth of sample (m)	Type of Sample Collecte d	VAL UE
228.21 8	66. 0	67.5		Highly Fracture d and Jointed	28	0	35	CLASS 3(FAIR ROCK)	66.05- 67.55		1.5
226.71 8	67. 5	69.0		Highly Fracture d and Jointed	28	0	35	CLASS 3(FAIR ROCK)	67.50- 69.00		1.5
225.21 8	69. 0	70.5		Highly Fracture d and Jointed	26	8	35	CLASS 3(FAIR ROCK)	69.05- 70.55		1.5
223.71 8	70. 5	72.0	Slightly Weather ed, Grey, Fine	Highly Fracture d and Jointed	27	14	35	CLASS 3(FAIR ROCK)	70.50- 72.00		2.1
222.21 8	72. 0	73.5	Grained, Interlocki ng Texture, Iron	Highly Fracture d and Jointed	26	14	38	CLASS 3(FAIR ROCK)	72.05- 73.55		2.1
220.71 8	73. 5	75.0	Leaching , Very Hard Quartzite	Highly Fracture d and Jointed	22	0	35	CLASS 3(FAIR ROCK)	73.50- 75.00		1.5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BORE HOLE ID:	15	LONGIT UDE	77°2 78''	2'32.8 E	LOCATION:	Sohna	STRUCTU	Toursel	
CHAINAG E (Km)	25380	LATTIT UDE	28°1 141'	12'36. ''N	TOTAL DEPTH:	70m	RE	Tunnel	
START DATE	12-08-2021	GROUND ELEVATI MSL :		295.5 32	TYPE OF CORE BARREL:	Double Tube Core Barrel	TYPE OF BIT	Diamond Bit	
COMPLET ED DATE	28-08-2021	ANGLE W HORIZON		00	DEPTH OF WATER TABLE	61.0m	CASING	NX up to 3.0 m	
BORING TYPE&SIZ E:			DRILLING		WATER TABLE RECORD DATE	29-08-2021			
		S.M Con	nsultants		NAME OF GEOLOGIST	Gaurav Chunekar			

Elevation (m)	Dept do L	Bottom (m) u	Lithology	Structural conditions	% of Core-Recovery	% RQD	Rating	NMR Class	Depth of sample (m)	Sample Collected Samples	Q VALUE
295.532	0.0	1.5	HighlyWeathered, Highly Fractured,	Highly Fractured and Jointed	26	0	33	CLASS 4 (POOR ROCK)	0.00-1.50	Core Rock	1.5
294.03	1.5	3.0	Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very	Highly Fractured and Jointed	28	7	33	CLASS 4 (POOR ROCK)	1.50-3.00	Core Rock	1.5
292.528	3.0	4.5	Hard, Quartzite	Highly Fractured and Jointed	42	7	33	CLASS 4 (POOR ROCK)	3.00-4.50	Core Rock	1.5
291.026	4.5	6.0	SightlyWeathered, Highly Fractured, Jointed, Light Grey, Fine Grained,	Highly Fractured and Jointed	36	0	33	CLASS 4 (POOR ROCK)	4.50-6.00	Core Rock	1.5
289.524	6.0	7.5	Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	46	0	33	CLASS 4 (POOR ROCK)	6.00-7.50	Core Rock	1.5

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

tion (m)	Elevation (m) Top ded hyddod mac a contom (m)			Structural conditions	% of Core-Recovery	% RQD	50	RMR S	ا ر (و	d Samples	Q VALUE
Eleva	To	Bottom	Lithology	Structura	ر 9 Core	%	Rating	Class	Depth of sample (m)	sample Collected	۵۱
288.022	7.5	9.0		Highly Fractured and Jointed	24	7	33	CLASS 4 (POOR ROCK)	7.50-9.00	Core Rock	1.5
286.52	9.0	10.5		Highly Fractured and Jointed	34	14	33	CLASS 4 (POOR ROCK)	9.00-10.50	Core Rock	2.1
285.018	10.5	12.0	SightlyWeathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very Hard, Quartzite (Quartz vein)	Highly Fractured and Jointed	20	0	33	CLASS 4 (POOR ROCK)	10.50-12.00	Core Rock	1.5
283.516	12.0	13.5	HighlyWeathered, Highly Fractured,	Highly Fractured and Jointed	23	0	33	CLASS 4 (POOR ROCK)	12.00-13.50	Core Rock	1.5
282.014	13.5	15.0	Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	16	0	33	CLASS 4 (POOR ROCK)	13.50-15.00	Core Rock	1.5

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevation (m) Top add (m) ottom (m)				Structural conditions	% of Core-Recovery	% RQD		RMR		Samples	Q VALUE
Elevat	Тор	Bottom	Lithology	Structura	% Core-R	 %	Rating	Class	Depth of sample (m)	Sample	ďΛ
280.512	15.0	16.5	SightlyWeathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very Hard, Quartzite (Quartz vein)	Highly Fractured and Jointed	16	0	35	CLASS 4 (POOR ROCK)	15.00-16.50	Core Rock	1.5
279.01	16.5	18.0	HighlyWeathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	22	0	35	CLASS 4 (POOR ROCK)	16.50-18.00	Core Rock	1.5
277.508	18.0	19.5	HighlyWeathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	41	17	35	CLASS 4 (POOR ROCK)	18.00-19.50	Core Rock	2.55

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevation (m)	Dept do OL	:h (m) E		Structural conditions	% of Core-Recovery	% RQD		RMR S	o of ple (m)	ed Samples	Q VALUE
Elev	ĭ	Bottom	Lithology	Structur	Core	6	Rating	Class	Depth of sample (m)	Sample	Q
276.006	19.5	21.0	Slightly Weathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	28	0	35	CLASS 4 (POOR ROCK)	19.50-21.00	Core Rock	1.5
274.504	21.0	22.5	Slightly Weathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking	Highly Fractured and Jointed	26	0	35	CLASS 4 (POOR ROCK)	21.00-22.50	Core Rock	1.5
273.002	22.5	24.0	Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	36	18	35	CLASS 4 (POOR ROCK)	22.50-24.00	Core Rock	2.7
271.5	24.0	25.5		Highly Fractured and Jointed	27	0	35	CLASS 4 (POOR ROCK)	24.00-25.50	Core Rock	1.5
269.998	25.5	27.0		Highly Fractured and Jointed	36	0	35	CLASS 4 (POOR ROCK)	25.50-27.00	Core Rock	1.5
268.496	27.0	28.5		Highly Fractured and Jointed	33	8	35	CLASS 4 (POOR ROCK)	27.00-28.50	Core Rock	1.5
266.994	28.5	30.0		Highly Fractured and Jointed	20	0	35	CLASS 4 (POOR ROCK)	28.50-30.00	Core Rock	1.5
265.492	30.0	31.5		Highly Fractured and Jointed	23	0	35	CLASS 4 (POOR ROCK)	30.00-31.50	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

ion (m)	Top Top (m) (m) ottom (m)		Structural conditions	% of Core-Recovery	% RQD		RMR		Samples	Q VALUE	
Elevat	Тор	Bottom	Lithology	Structural	% Core-R	ч %	Rating	Class	Depth of sample (m)	sample Collected	Q V,
263.99	31.5	33.0		Moderately Fractured and Jointed	21	0	35	CLASS 4 (POOR ROCK)	31.50-33.00	Core Rock	1.5
262.488	33.0	34.5		Highly Fractured and Jointed	30	7	35	CLASS 4 (POOR ROCK)	33.00-34.50	Core Rock	1.5
260.986	34.5	36.0		Highly Fractured and Jointed	32	0	35	CLASS 4 (POOR ROCK)	34.50-36.00	Core Rock	1.5
259.484	36.0	37.5	Slightly Weathered, Highly Fractured, Jointed, Light Grey, Fine Grained,	Highly Fractured and Jointed	31	0	35	CLASS 4 (POOR ROCK)	36.00-37.50	Core Rock	1.5
257.982	37.5	39.0	Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	30	6	35	CLASS 4 (POOR ROCK)	37.50-39.00	Core Rock	1.5
256.48	39.0	40.5		Highly Fractured and Jointed	25	0	38	CLASS 4 (POOR ROCK)	39.00-40.50	Core Rock	1.5
254.978	40.5	42.0		Highly Fractured and Jointed	40	22	38	CLASS 4 (POOR ROCK)	40.50-42.00	Core Rock	3.3
253.476	42.0	43.5		Highly Fractured and Jointed	28	8	38	CLASS 4 (POOR ROCK)	42.00-43.50	Core Rock	1.5
251.974	43.5	45.0		Highly Fractured and Jointed	30	6	35	CLASS 4 (POOR ROCK)	43.50-45.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Elevation (m)		epth (m)		Structural conditions	% of Core-Recovery	% RQD		RMR 8	of e ()	d Samples	Q VALUE
Eleva	Тор	Bottom	Lithology	Structura	Core-	%	Rating	Class	Depth of sample (m)	sample Collected	۵
250.472	45.0	46.5		Highly Fractured and Jointed	26	0	35	CLASS 4 (POOR ROCK)	45.00-46.50	Core Rock	1.5
248.97	46.5	48.0		Highly Fractured and Jointed	38	27	40	CLASS 4 (POOR ROCK)	46.50-48.00	Core Rock	4.05
247.468	48.0	49.5		Highly Fractured and Jointed	29	10	35	CLASS 4 (POOR ROCK)	48.00-49.50	Core Rock	1.5
245.966	49.5	51.0	Slightly Weathered,	Highly Fractured and Jointed	22	0	35	CLASS 4 (POOR ROCK)	49.50-51.00	Core Rock	1.5
244.464	51.0	52.5	Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron	Highly Fractured and Jointed	26	15	35	CLASS 4 (POOR ROCK)	51.00-52.50	Core Rock	2.25
242.962	52.5	54.0	Leaching, very Hard, Quartzite	Highly Fractured and Jointed	20	10	35	CLASS 4 (POOR ROCK)	52.50-54.00	Core Rock	1.5
241.46	54.0	55.5		Highly Fractured and Jointed	26	0	35	CLASS 4 (POOR ROCK)	54.00-55.50	Core Rock	1.5
239.958	55.5	57.0		Highly Fractured and Jointed	20	0	35	CLASS 4 (POOR ROCK)	55.50-57.00	Core Rock	1.5
238.456	57.0	58.5		Highly Fractured and Jointed	25	0	35	CLASS 4 (POOR ROCK)	57.00-58.50	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

Elevation (m)		:h (m)		Structural conditions	% of Core-Recovery	RQD		RMR		Samples	Q VALUE
Elevat	Тор	Bottom	Lithology	Structura	% Core-F	%	Rating	Class	Depth of sample (m)	sample Collected	ďΛ
236.954	58.5	60.0		Highly Fractured and Jointed	34	0	35	CLASS 4 (POOR ROCK)	58.50-60.00	Core Rock	1.5
235.452	60.0	61.5		Highly Fractured and Jointed	28	24	24	CLASS 4 (POOR ROCK)	60.00-61.50		3.6
233.95	61.5	63.0		Highly Fractured and Jointed	20	8	24	CLASS 4 (POOR ROCK)	61.50-63.00		1.5
232.448	63.0	64.5	Slightly Weathered, Highly Fractured, Jointed, Light Grey, Fine Grained,	Highly Fractured and Jointed	32	16	24	CLASS 4 (POOR ROCK)	63.00-64.50		2.4
230.946	64.5	66.0	Interlocking Texture, Iron Leaching, very Hard, Quartzite	Highly Fractured and Jointed	31	14	24	CLASS 4 (POOR ROCK)	64.50-66.00		2.1
229.444	66.0	67.5		Highly Fractured and Jointed	27	9	24	CLASS 4 (POOR ROCK)	66.00-67.50		1.5
227.942	67.5	69.0		Highly Fractured and Jointed	28	8	24	CLASS 4 (POOR ROCK)	67.50-69.00		1.5
226.44	69.0	70.0		Highly Fractured and Jointed	57	10	24	CLASS 4 (POOR ROCK)	69.00-70.00		1.5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BORE HOLE ID:	15(A)	LONGIT UDE	77°2 32''	E		LOCATION:	Sohna	STRUCTU	Tunnel	
CHAINAG E (Km)	25488	LATTIT UDE	28°1 555'	12'38. ''N		TOTAL DEPTH:	50.0m	RE	Tunnei	
START DATE	15-09-2021	GROUND ELEVATI MSL :				TYPE OF CORE BARREL:	Double Tube Core Barrel	TYPE OF BIT	Diamond Bit	
COMPLET ED DATE	01-10-2021		NGLE WITH ORIZONT: 90°			DEPTH OF WATER TABLE	10.0 m	CASING		
BORING TYPE&SIZ E:		DRILLI AGENC				WATER TABLE RECORD DATE	02-10-2021			
		1	.M Consultants			NAME OF GEOLOGIST	Gaurav Chunekar			

				Bh-15(A)	Ch. No. 2	24820	Tota	l Depth 50m			
	Dept	h (m)			/			RMR	Samples		
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	QDN %	Rating	Class	Depth of sample (m)	Collected	QVALUE
276.442	0.0	1.5		Highly Fractured and Jointed	28	0	36	CLASS 3(FAIR ROCK)	0.00-1.50	Core Rock	1.5
274.94	1.5	3.0	Moderately Weathered, Grey, Fine Grained, Interlocking	Highly Fractured and Jointed	39	10	36	CLASS 3(FAIR ROCK)	1.50-3.00	Core Rock	1.5
273.438	3.0	4.5	Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	32	21	36	CLASS 3(FAIR ROCK)	3.00-4.50	Core Rock	3.15
271.936	4.5	6.0		Highly Fractured and Jointed	35	0	36	CLASS 3(FAIR ROCK)	4.50-6.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	Bh-15(A) Ch. No. 24820 Total Depth 50m										
_	Dept	h (m)			>			RMR	Samples		
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Collected	Q VALUE
270.434	6.0	7.5		Highly Fractured and Jointed	45	28	43	CLASS 3(FAIR ROCK)	6.00-7.50	Core Rock	4.2
268.932	7.5	9.0		Highly Fractured and Jointed	21	0	38	CLASS 3(FAIR ROCK)	7.50-9.00	Core Rock	1.5
267.43	9.0	10.5		Highly Fractured and Jointed	50	30	43	CLASS 3(FAIR ROCK)	9.00-10.50	Core Rock	4.5
265.928	10.5	12.0	Slightly Weathered, Grey, Fine Grained,	Highly Fractured and Jointed	35	22	27	CLASS 3(FAIR ROCK)	10.50-12.00	Core Rock	3.3
264.426	12.0	13.5	Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	32	8	27	CLASS 3(FAIR ROCK)	12.00-13.50	Core Rock	1.5
262.924	13.5	15.0	Quartzite	Highly Fractured and Jointed	47	32	32	CLASS 3(FAIR ROCK)	13.50-15.00	Core Rock	4.8
261.422	15.0	16.5		Highly Fractured and Jointed	28	8	27	CLASS 3(FAIR ROCK)	15.00-16.50	Core Rock	1.5
259.92	16.5	18.0		Highly Fractured and Jointed	41	7	27	CLASS 3(FAIR ROCK)	16.50-18.00	Core Rock	1.5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	Bh-15(A) Ch. No. 24820 Total Depth 50m										
	Dept	h (m)			>			RMR	Samples		
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Collected	Q VALUE
258.418	18.0	19.5		Highly Fractured and Jointed	36	16	27	CLASS 3(FAIR ROCK)	18.00-19.50	Core Rock	2.4
256.916	19.5	21.0		Highly Fractured and Jointed	45	20	27	CLASS 3(FAIR ROCK)	19.50-21.00	Core Rock	3
255.414	21.0	22.5		Highly Fractured and Jointed	30	15	27	CLASS 3(FAIR ROCK)	21.00-22.50	Core Rock	2.25
253.912	22.5	24.0	Slightly	Highly Fractured and Jointed	36	0	27	CLASS 3(FAIR ROCK)	22.50-24.00	Core Rock	1.5
252.41	24.0	25.5	Weathered, Grey, Fine Grained, Interlocking Texture,	Highly Fractured and Jointed	27	0	27	CLASS 3(FAIR ROCK)	24.00-25.50	Core Rock	1.5
250.908	25.5	27.0	Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	40	15	27	CLASS 3(FAIR ROCK)	25.50-27.00	Core Rock	2.25
249.406	27.0	28.5		Highly Fractured and Jointed	32	23	27	CLASS 3(FAIR ROCK)	27.00-28.50	Core Rock	3.45
247.904	28.5	30.0		Highly Fractured and Jointed	34	0	27	CLASS 3(FAIR ROCK)	28.50-30.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

	Bh-15(A) Ch. No. 24820 Total Depth 50m										
	Dept	h (m)						RMR	Samples		
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Collected	Q VALUE
246.402	30.0	31.5		Highly Fractured and Jointed	34	22	27	CLASS 3(FAIR ROCK)	30.00-31.50	Core Rock	3.3
244.9	31.5	33.0	Slightly Weathered, Grey, Fine Grained, Interlocking Texture,	Highly Fractured and Jointed	30	15	27	CLASS 3(FAIR ROCK)	31.50-33.00	Core Rock	2.25
243.398	33.0	34.5	Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	30	8	27	CLASS 3(FAIR ROCK)	33.00-34.50	Core Rock	1.5
241.896	34.5	36.0		Highly Fractured and Jointed	36	0	27	CLASS 3(FAIR ROCK)	34.50-36.00	Core Rock	1.5
240.394	36.0	37.5		Highly Fractured and Jointed	37	23	27	CLASS 3(FAIR ROCK)	36.00-37.50	Core Rock	3.45
238.892	37.5	39.0		Highly Fractured and Jointed	40	7	27	CLASS 3(FAIR ROCK)	37.50-39.00	Core Rock	1.5
237.39	39.0	40.5		Highly Fractured and Jointed	50	10	27	CLASS 3(FAIR ROCK)	39.00-40.50	Core Rock	1.5
235.888	40.5	42.0		Highly Fractured and Jointed	34	0	27	CLASS 3(FAIR ROCK)	40.50-42.00	Core Rock	1.5

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

				Bh-15(A)	Ch. No. 2	24820	Tota	l Depth 50m			
	Dept	h (m)			>			RMR	Samples		
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Collected	Q VALUE
234.386	42.0	43.5	Slightly Weathered, Grey, Fine Grained,	Highly Fractured and Jointed	32	8	27	CLASS 3(FAIR ROCK)	42.00-43.50	Core Rock	1.5
232.884	43.5	45.0	Interlocking Texture, Iron Leaching, Very Hard, Quartzite	Highly Fractured and Jointed	35	0	27	CLASS 3(FAIR ROCK)	43.50-45.00	Core Rock	1.5
231.382	45.0	46.5	Quartzite	Highly Fractured and Jointed	30	0	27	CLASS 3(FAIR ROCK)	45.00-46.50	Core Rock	1.5
229.88	46.5	48.0		Highly Fractured and Jointed	36	7	27	CLASS 3(FAIR ROCK)	46.50-48.00	Core Rock	1.5
228.378	48.0	49.5		Highly Fractured and Jointed	40	8	27	CLASS 3(FAIR ROCK)	48.00-49.50	Core Rock	1.5
226.876	49.5	50.0		Highly Fractured and Jointed	40	0	27	CLASS 3(FAIR ROCK)	49.50-50.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

nments, final location survey, geological mapping, geo-technical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project.

BORE HOLE ID:	16	LONGIT UDE	77°2 39''	2'27.2 E	LOCATION:	Sohna	STRUCTU	Tunnel	
CHAINAG E (Km)	25586	LATTIT UDE	28°1 66''	12'40. N	TOTAL DEPTH:	62m	RE		
START DATE	26-08-2021	GROUND ELEVATI MSL :		287.3 24	TYPE OF CORE BARREL:	Double Tube Core Barrel	TYPE OF BIT	Diamond Bit	
COMPLET ED DATE	10-09-2021	ANGLE W HORIZON)0	DEPTH OF WATER TABLE	50.0m	CASING	NX up to 3.0 m	
BORING TYPE&SIZ E:		DRILLI AGENC	. –		WATER TABLE RECORD DATE	11-09-2021			
		S.M Con	sulta	nts	NAME OF GEOLOGIST	Gaurav Chunekar			

	Bh-16 ;Total Depth 62m											
	Dept	h (m)						RMR	Sample	es		
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Type of Sample Collected	Q VALUE	
287.324	0.0	1.5	Moderately Weathered, , Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite (DS and DS Wash Collected)	Highly Fractured and Jointed	16	0	33	CLASS 3(FAIR ROCK)	0.00-1.50	Core Rock	1.5	
285.82	1.5	3.0	Moderately Weathered, , Grey , Fine Grained, Interlocking	Highly Fractured and Jointed	25	0	33	CLASS 3(FAIR ROCK)	1.50-3.00	Core Rock	1.5	
284.316	3.0	4.5	Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	32	0	33	CLASS 3(FAIR ROCK)	3.00-4.50	Core Rock	1.5	
282.812	4.5	6.0		Highly Fractured and Jointed	32	0	33	CLASS 3(FAIR ROCK)	4.50-6.00	Core Rock	1.5	

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

				Bh-16 ;Tc	otal Dept	h 62n	n				
	Dept	h (m)						RMR	Sampl	es	
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Type of Sample Collected	Q VALUE
281.308	6.0	7.5	Moderately Weathered, , Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	30	0	33	CLASS 3(FAIR ROCK)	6.00-7.50	Core Rock	1.5
279.804	7.5	9.0		Highly Fractured and Jointed	31	10	35	CLASS 3(FAIR ROCK)	7.50-9.00	Core Rock	1.5
278.3	9.0	10.5	Slightly Weathered, Grey, Fine Grained,	Highly Fractured and Jointed	30	0	35	CLASS 3(FAIR ROCK)	9.00- 10.50	Core Rock	1.5
276.796	10.5	12.0	Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	34	0	35	CLASS 3(FAIR ROCK)	10.50- 12.00	Core Rock	1.5
275.292	12.0	13.5		Highly Fractured and Jointed	31	15	38	CLASS 3(FAIR ROCK)	12.00- 13.50	Core Rock	2.2995
273.788	13.5	15.0	Slightly Weathered, Grey, Fine	Highly Fractured and Jointed	27	10	38	CLASS 3(FAIR ROCK)	13.50- 15.00	Core Rock	1.5
272.284	15.0	16.5	Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	36	19	38	CLASS 3(FAIR ROCK)	15.00- 16.50	Core Rock	2.85
270.78	16.5	18.0		Highly Fractured and Jointed	28	15	38	CLASS 3(FAIR ROCK)	16.50- 18.00	Core Rock	2.295

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

				Bh-16 ;Tc	tal Dept	h 62n	n				
	Dept	h (m)						RMR	Sampl	es	
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Type of Sample Collected	Q VALUE
269.276	18.0	19.5		Highly Fractured and Jointed	46	36	43	CLASS 3(FAIR ROCK)	18.00- 19.50	Core Rock	5.445
267.772	19.5	21.0		Highly Fractured and Jointed	48	0	38	CLASS 3(FAIR ROCK)	19.50- 21.00	Core Rock	1.5
266.268	21.0	22.5	Slightly Weathered, Grey, Fine	Highly Fractured and Jointed	44	14	38	CLASS 3(FAIR ROCK)	21.00- 22.50	Core Rock	2.1
264.764	22.5	24.0	Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	43	11	38	CLASS 3(FAIR ROCK)	22.50- 24.00	Core Rock	1.65
263.26	24.0	25.5		Highly Fractured and Jointed	42	28	43	CLASS 3(FAIR ROCK)	24.00- 25.50	Core Rock	4.2
261.756	25.5	27.0		Highly Fractured and Jointed	34	15	38	CLASS 3(FAIR ROCK)	25.50- 27.00	Core Rock	2.25
260.252	27.0	28.5		Highly Fractured and Jointed	53	47	43	CLASS 3(FAIR ROCK)	27.00- 28.50	Core Rock	7.05
258.748	28.5	30.0		Highly Fractured and Jointed	31	8	38	CLASS 3(FAIR ROCK)	28.50- 30.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Deposit No.	SMC/2050	Infrastructure Development Corporation
	DITO D/ III L JII/ III	Report No.:	SIVIC/2030	Ltd

				Bh-16 ;To	otal Dept	h 62n	n				
	Dept	h (m)		2 20 ///			-	RMR	Sample	es	
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Type of Sample Collected	Q VALUE
257.244	30.0	31.5		Highly Fractured and Jointed	39	34	43	CLASS 3(FAIR ROCK)	30.00- 31.50	. Core Rock	5.1
255.74	31.5	33.0		Highly Fractured and Jointed	30	14	38	CLASS 3(FAIR ROCK)	31.50- 33.00	Core Rock	2.1
254.236	33.0	34.5	Slightly Weathered, Grey, Fine Grained, Interlocking	Highly Fractured and Jointed	36	25	43	CLASS 3(FAIR ROCK)	33.00- 34.50	Core Rock	3.75
252.732	34.5	36.0	Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	30	22	38	CLASS 3(FAIR ROCK)	34.50- 36.00	Core Rock	3.3
251.228	36.0	37.5		Highly Fractured and Jointed	37	22	38	CLASS 3(FAIR ROCK)	36.00- 37.50	Core Rock	3.3
249.724	37.5	39.0	Slightly Weathered, Grey, Fine Grained,	Highly Fractured and Jointed	30	8	38	CLASS 3(FAIR ROCK)	37.50- 39.00	Core Rock	1.5
248.22	39.0	40.5	Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	34	20	38	CLASS 3(FAIR ROCK)	39.00- 40.50	Core Rock	3
246.716	40.5	42.0	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	36	0	38	CLASS 3(FAIR ROCK)	40.50- 42.00	Core Rock	1.5

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd

				Bh-16 ;Tc	tal Dept	:h 62n	n						
	Dept	h (m)		,,,,				RMR	Sample	Samples			
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Type of Sample Collected	Q VALUE		
245.212	42.0	43.5	Slightly Weathered, Grey, Fine Grained,	Highly Fractured and Jointed	42	17	38	CLASS 3(FAIR ROCK)	42.00- 43.50	Core Rock	2.49		
243.708	43.5	45.0	Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	44	44	43	CLASS 3(FAIR ROCK)	43.50- 45.00	Core Rock	6.6		
242.204	45.0	46.5	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	37	0	38	CLASS 3(FAIR ROCK)	45.00- 46.50	Core Rock	1.5		
240.7	46.5	48.0	Slightly	Highly Fractured and Jointed	53	51	48	CLASS 3(FAIR ROCK)	46.50- 48.00	Core Rock	7.695		
239.196	48.0	49.5	Weathered, , Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very	Highly Fractured and Jointed	45	15	38	CLASS 3(FAIR ROCK)	48.00- 49.50	Core Rock	2.295		
237.692	49.5	51.0	Hard Quartzite	Highly Fractured and Jointed	38	27	43	CLASS 3(FAIR ROCK)	49.50- 51.00	Core Rock	3.99		
236.188	51.0	52.5	Slightly Weathered, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very	Highly Fractured and Jointed	40	29	43	CLASS 3(FAIR ROCK)	51.00- 52.50		4.395		

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

				Bh-16 ;Tc	tal Dept	h 62n	n				
	Dept	h (m)						RMR	Sampl	es	
Elevation (m)	Тор	Bottom	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Depth of sample (m)	Type of Sample Collected	Q VALUE
234.684	52.5	54.0	Hard, Quartzite (Weathered Medium Grained Garnet Grains, Contact of Phyllite Band Noticed)	Highly Fractured and Jointed	43	16	38	CLASS 3(FAIR ROCK)	52.50- 54.00		2.445
233.18	54.0	55.5		Highly Fractured and Jointed	43	21	38	CLASS 3(FAIR ROCK)	54.00- 55.50		3.15
231.676	55.5	57.0		Highly Fractured and Jointed	31	8	38	CLASS 3(FAIR ROCK)	55.50- 57.00		1.5
230.172	57.0	58.5	Slightly Weathered, , Grey, Fine Grained,	Highly Fractured and Jointed	30	18	30	CLASS 3(FAIR ROCK)	57.00- 58.50		2.64
228.668	58.5	60.0	Interlocking Texture, Iron Leaching, Very Hard Quartzite	Highly Fractured and Jointed	25	20	30	CLASS 3(FAIR ROCK)	58.50- 60.00		3
227.164	60.0	61.5		Highly Fractured and Jointed	32	24	30	CLASS 3(FAIR ROCK)	60.00- 61.50		3.645
225.66	61.5	62.0		Highly Fractured and Jointed	66	9	30	CLASS 3(FAIR ROCK)	61.50- 62.00		1.5

	Consultant:	Geotechnical I	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Project: Exploring alternate alignments, final location survey, geological mapping, geo-technical investigation, detail design of tunnel & its approaches including Viaduct if any and other ancillary work in Sohna-Manesar Section of HORC project.

BORE HOLE ID:	BH 17	LONGIT UDE		77°2'30.0 32''E		LOCATION:	Sohna	STRUCTU	Tunnel	
CHAINAG E (Km)	25785	LATTIT UDE		28°12'38.		TOTAL DEPTH:	50.0m	RE	Tunnet	
START DATE	15-09-2021	GROUND ELEVATI MSL :	276.4			TYPE OF CORE BARREL:	Double Tube Core Barrel	TYPE OF BIT	Diamond Bit	
COMPLET ED DATE	01-10-2021		ANGLE WITH HORIZONT: 90°			DEPTH OF WATER TABLE	10.0 m	CASING		
BORING TYPE&SIZ E:			DRILLING AGENCY			WATER TABLE RECORD DATE	02-10-2021			
		S.M Con	S.M Consultants			NAME OF GEOLOGIST	Gaurav Chunekar			

	Bh-17 ;Total Depth 75m ∽									
on (m)	(m) ı		conditions	of covery	QD	Rſ	ИR	Samples	LUE	
Elevation (m)	Depth (m)	Lithology	Structural conditions	% of Core-Recovery	% RQD	Rating	Class	Type of Sample Collected	QVALUE	
282.46	0			0	0	NA	NA		0	
280.961	1.5	Brown colour, very fine to fine grained, clayey silt deposit	very fine to fine grained, clayey silt deposit	0	0	NA	NA		0	
279.461	3	to fine oosit		0	0	NA	NA		0	
277.96	4.5	Brown colour, very fine to fine grained, clayey silt deposit	very fine to fine grained, clayey silt deposit	0	0	NA	NA		0	
276.46	9	n colour, ned, clay		0	0	NA	NA		0	
274.96	6	Browi		0	0	NA	NA		0	
273.461	12	Brown colour, very fine to fine grained, clayey silt with gravels	very fine to fine grained, clayey silt with gravels	0	0	NA	NA		0	

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

			Bh-17 ;Total	Depth 75n	n				
(m) uc	ı (m)		conditions	of covery	۵D	RI	MR	Samples	LUE
Elevation (m)	Depth (m)	Lithology	Structural conditions	% of Core-Recovery	% RQD	Rating	Class	Type of Sample Collected	Q VALUE
271.96	15			0	0	NA	NA		0
270.46	16.5			0	0	NA	NA		0
268.961	18	Brown colour, very fine to fine grained, sub angular to sub rounded pebbels with clayey silt.	It shows very fine to fine grained, sub angular to sub rounded pebbels clayey silt.	0	0	NA	NA		0
267.461	19.5	actured, Jointed, Grey, Fine Grained, Iron Leaching, Hard Quartzite.	Joints of 0°,45°	17	0	40	CLASS 4 (POOR ROCK)	Core Rock	0
265.961	20.5	actured, Jo ron Leachi	Closed Joint of 10°	22	0	40	CLASS 4 (POOR ROCK)	Core Rock	0
264.461	22	, Highly Fra ; Texture, I	It shows highly fractured weathered rock	25	11.6	47	CLASS 3(FAIR ROCK)	Core Rock	0
262.961	23	Highly Weathered, Highly Fr Interlocking Texture,		32	0	40	CLASS 4 (POOR ROCK)	Core RockCore Rock	0
261.461	24.5	V VHighly V		33	0	40	CLASS 4 (POOR ROCK)	Core Rock	0

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

			Bh-17 ;Total	Depth 75n	n				
(m) uc	ı (m)		conditions	of covery	ap	RI	MR	Samples	LUE
Elevation (m)	Depth (m)	Lithology	Structural conditions	% of Core-Recovery	% RQD	Rating	Class	Type of Sample Collected	Q VALUE
259.961	25	Moderately Weathered, Moderately Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite.	Joints of 0°,10°,15°	48	25	47	CLASS 3(FAIR ROCK)	Core Rock	1
258.461	26	ered, Mod 6rained, In 6, Very Har	Joints of 0°, 15°,80°	59	32.6	43	CLASS 3(FAIR ROCK)	Core Rock	1
256.961	27.5	ely Weath rey, Fine G n Leaching	Joints of 0°,10°,15°,20°	44	12.66	40	CLASS 4 (POOR ROCK)	Core RockCore Rock	0
255.461	28	Moderat Jointed, G Iro		68	25.8	43	CLASS 3(FAIR ROCK)	Core Rock	1
253.961	29.5	Highly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Hard Quartzite.	It shows highly fractured weathered rock	58	7.6	40	CLASS 4 (POOR ROCK)	Core Rock	0
252.461	30	Slightly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	Joints of 0°,10°,15°, 70°	70	0	47	CLASS 3(FAIR ROCK)	Core Rock	0
250.961	31	Slightly We: Jointed, Grey Texture, I	It shows highly angular fractured and jointed, weak strength	47	17.13	40	CLASS 4 (POOR ROCK)	Core Rock	0

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

			Bh-17 ;Total	Depth 75n	n				
(m) uc	ı (m)		conditions	of covery	QD	RI	MR	Samples	LUE
Elevation (m)	Depth (m)	Lithology	Structural conditions	% of Core-Recovery	% RQD	Rating	Class	Type of Sample Collected	Q VALUE
249.461	32.5			64	0	40	CLASS 4 (POOR ROCK)	Core Rock	0
247.961	33.5	Slightly Weathered, Moderately Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite		54	15.53	40	CLASS 4 (POOR ROCK)		0
246.461	32	Slightly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite.(crushed zone)		34.66	0	40	CLASS 4 (POOR ROCK)		0
244.961	36.5	se grained, ıded)	Coarse grained, Sand. (SPT Rebounded)	0	0	0	CLASS 5 (VERY POOR ROCK)		0
243.461	38	Light Brown colour, Coarse grained, Sand. (SPT Rebounded)		0	0	0	CLASS 5 (VERY POOR ROCK)	Core Rock	0
241.961	39.5	Light Browr Sand.		0	0	0	CLASS 5 (VERY POOR ROCK)	Core Rock	0

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

	Bh-17 ;Total Depth 75m								
(m) uc	onditions		of scovery QD		RMR		Samples	LUE	
Elevation (m)	Depth (m)	Lithology	Structural conditions	% of Core-Recovery	% RQD	Rating	Class	Type of Sample Collected	Q VALUE
240.461	41	Moderatey to Slightly Weathered, Moderately to Highly Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite		32	11	47	CLASS 3(FAIR ROCK)	Core Rock	0
238.961	42.5	. Fine Grair		41.33	19.33	40	CLASS 4 (POOR ROCK)	Core Rock	0
237.461	44	nted, Grey, rtzite		54	41.53	43	CLASS 3(FAIR ROCK)	Core Rock	1
235.961	45.5	rately to Highly Fractured, Jointed, Iron Leaching, Very Hard Quartzite		30	16.66	47	CLASS 3(FAIR ROCK)	Core Rock	0
234.461	47	Highly Frac hing, Very		37.33	0	40	CLASS 4 (POOR ROCK)	Core Rock	0
232.961	48.5	erately to H Iron Leac		41.33	21.06	47	CLASS 3(FAIR ROCK)	Core Rock	0
231.461	50	red, Mode		30	0	40	CLASS 4 (POOR ROCK)	Core Rock	0
229.961	51.5	tly Weathe		36.66	0	40	CLASS 4 (POOR ROCK)	Core Rock	0
228.461	53	ey to Slight		34.66	12	40	CLASS 4 (POOR ROCK)	Core RockCore RockCore RockCore RockCore RockCore RockCore RockCore RockCore	0
226.961	54.5	Moderate		33.33	6.8	47	CLASS 3(FAIR ROCK)	Core Rock	0

Consultant:		Geotechnical I	nvestigation Report	Client:	
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

	Bh-17 ;Total Depth 75m								
(m) uc	Depth (m) Assolved the structural conditions		of covery	ďρ	RMR		Samples	LUE	
Elevation (m)	Dept	Lithology	Structural	% of Core-Recovery	% RQD	Rating	Class	Type of Sample Collected	Q VALUE
225.461	56			28	6.73	32	CLASS 4 (POOR ROCK)	Core Rock	0
223.961	58			38	8	32	CLASS 4 (POOR ROCK)	Core Rock	0
222.461	59.5			38.33	0	39	CLASS 4 (POOR ROCK)	Core RockCore RockCore Rock	0
220.961	61			40.6	27.66	35	CLASS 4 (POOR ROCK)	Core Rock	1

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE -B Tensile Strength

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Tensile Strength

Sr.No.	BH NO.	Depth		Tensile Strength Test
		From	To	(MPa)
1		0.50	1.50	14.21
2		1.50	3.00	
3		3.00	4.50	
4		4.50	6.00	
5		6.00	7.50	
6		7.50	9.00	
7		9.00	10.50	
8		10.50	12.00	14.12
9		15.00	16.50	
10		16.50	18.00	
11		18.00	19.50	
12		19.50	21.00	14.34
13		21.00	22.50	
14	BH-13	22.50	24.00	
15		24.00	25.50	13.34
16		25.50	27.00	
17		27.00	28.50	
18		28.50	30.00	20.71
19		30.00	31.50	
20		31.50	33.00	
21		33.00	34.50	
22		34.50	36.00	22.99
23		36.00	37.50	
24		37.50	39.00	
25		39.00	40.50	
26		40.50	42.00	21.08
27		42.00	43.50	
28		43.50	45.00	
29		45.00	46.50	
30		46.50	48.00	
31		48.00	49.50	
32		49.50	51.00	
33		51.00	52.50	

Consultant:		Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	BH NO.	Depth		Tensile Strength Test
		From	To	(MPa)
34		52.50	54.00	
35		54.00	55.50	
36		55.50	57.00	
37		57.00	58.50	16
38		58.50	60.00	
		<u>I</u>	Min.	13.34
			Max.	22.99
			Avg.	17.10
39		1.50	3.00	
40		3.00	4.50	15.77
41		4.50	6.00	
42		6.00	7.50	
43		7.50	9.00	
44		9.00	10.50	
45	BH-14	10.50	12.00	
46		12.00	13.50	17.78
47		15.00	16.50	
48		16.50	18.00	
49		18.00	19.50	
50		19.50	21.00	15.72
51		21.00	22.50	
52		22.50	24.00	
53		24.00	25.50	
54		25.50	27.00	
55		27.00	28.50	
56		28.50	30.00	
57		30.00	31.50	
58		31.50	33.00	21.25
59		33.00	34.50	
60		34.50	36.00	
61		36.00	37.50	
62		37.50	39.00	
63		39.00	40.50	19.31
64		40.50	42.00	
65		42.00	43.50	
66		43.50	45.00	04.00
67		45.00	46.50	24.93

Consultant:		Geotechnical I	nvestigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	BH NO.	Depth		Tensile Strength Test
		From	To	(MPa)
68		46.50	48.00	
69		48.00	49.50	
70		49.50	51.00	
71		51.00	52.50	
72		52.50	54.00	
73		54.00	55.50	
74		57.00	58.50	18.27
75		58.50	60.00	
76		60.00	61.50	
77		63.00	64.50	19.68
78		64.50	66.00	
79		66.00	67.50	
80		67.50	69.00	
81		69.00	70.50	14.78
82		70.50	72.00	
83		72.00	73.50	16.94
		Min.	•	14.78
		Max.		24.93
		Avg.		18.44
84		0.00	1.50	
85		1.50	3.00	
86		3.00	4.50	16.36
87		4.50	6.00	
88		6.00	7.50	
89		7.50	9.00	
90		9.00	10.50	
91		10.50	12.00	
92	DII 45	12.00	13.50	
93	BH-15	15.00	16.50	
94		16.50	18.00	
95		18.00	19.50	14.89
96		19.50	21.00	
97		21.00	22.50	
98		22.50	24.00	
99		24.00	25.50	
100		25.50	27.00	
101		27.00	28.50	18.2

Consultant:		Geotechnical I	nvestigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	BH NO.	Dej	oth	Tensile Strength Test
		From	To	(MPa)
102		28.50	30.00	
103		30.00	31.50	
104		31.50	33.00	17.81
105		33.00	34.50	
106		34.50	36.00	
107		36.00	37.50	16.03
108		37.50	39.00	
109		39.00	40.50	
110		40.50	42.00	
111		42.00	43.50	
112		43.50	45.00	
113		45.00	46.50	
114		46.50	48.00	
115		48.00	49.50	
116		49.50	51.00	
117		51.00	52.50	
118		52.50	54.00	14.66
119		54.00	55.50	
120		57.00	58.50	
121		58.50	60.00	14.94
122		60.00	61.50	
123		61.50	63.00	
124		64.50	66.00	16.49
125		66.00	67.50	
126		67.50	69.00	19.2
127		69.00	70.00	
		Min.		14.66
		Max.		19.2
		Avg.		16.51
128		0.00	1.50	
129		1.50	3.00	
130	BH-15A	3.00	4.50	
131		4.50	6.00	16.47
132		6.00	7.50	

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	De	pth	Tensile Strength Test
		From	То	(MPa)
133		7.50	9.00	
155		7.50	9.00	
138		9.00	10.50	
139		10.50	12.00	
140		12.00	13.50	
141		13.50	15.00	
142		15.00	16.50	15.89
143		16.50	18.00	
144		18.00	19.50	
145		19.50	21.00	
146		21.00	22.50	14.91
147		22.50	24.00	
148		25.50	27.00	
149		27.00	28.50	
150		28.50	30.00	15.97
151		30.00	31.50	
152		31.50	33.00	
153		33.00	34.50	
154		34.50	36.00	18.78
155		36.00	37.50	

	Consultant:	Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	Dep	th	Tensile Strength Test
		From	To	(MPa)
156		37.50	39.00	
157		39.00	40.50	
158		40.50	42.00	17.21
159		42.00	43.50	
160		43.50	45.00	
161		46.50	48.00	
162		48.00	49.50	
163		49.50	51.00	17.64
		Min.		14.91
		Max.		18.78
		Avg.		16.70
164		0.00	1.50	
165		1.50	3.00	
166		3.00	4.50	
167		4.50	6.00	15.72
168		4.50	6.00	
169		7.50	9.00	
170		9.00	10.50	15.39
171		10.50	12.00	
172		12.00	13.50	
173	BH-16	13.50	15.00	
174		18.00	19.50	25.83
175		19.50	21.00	
176		21.00	22.50	26.24
177		22.50	24.00	
178		24.00	25.50	
179		25.50	27.00	
180		27.00	28.50	
181		28.50	30.00	16.65
182		30.00	31.50	
183		31.50	33.00	

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

Sr.No.	BH NO.	Depth		Tensile Strength Test
		From	To	(MPa)
184		33.00	34.50	19.89
185		33.00	34.50	
186		36.00	37.50	23.96
187		37.50	39.00	
188		39.00	40.50	
189		40.50	42.00	23.86
190		42.00	43.50	
191		45.00	46.50	
192		46.50	48.00	
193		48.00	49.50	
194		49.50	51.00	27.77
195		52.50	54.00	22.76
196		54.00	55.50	
197		55.50	57.00	20.25
198		58.50	60.00	
199		60.00	61.50	
200		61.50	62.00	
		Min.	•	15.39
		Max.		27.77
		Avg.		21.67

BH 17				
Sample Number	Tensile Strength Test			
	(Mpa)			
BH17/1221/R/01				
BH17/1221/R/03				
BH17/1221/R/05				
BH17/1221/R/06	26.58			
BH17/1221/R/07				
	Sample Number BH17/1221/R/01 BH17/1221/R/03 BH17/1221/R/05 BH17/1221/R/06			

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

BH 17	
Sample Number	Tensile Strength Tes
BH17/1221/R/08	
BH17/0122/R/09	
BH17/0122/R/10	
BH17/0122/R/11	22.64
BH17/0122/R/12	
BH17/0122/R/13	
BH17/0122/R/14	
BH17/0122/R/15	
BH17/0122/R/16	
BH17/0122/R/17	15.21
BH17/0122/R/18	
BH17/0122/R/19	
BH17/0122/R/20	
BH17/0122/R/21	8.77
BH17/0122/R/22	
BH17/0122/R/23	
BH17/0122/R/24	
BH17/0122/R/25	
BH17/0122/R/26	
BH17/0122/R/27	
BH17/0122/R/28	
BH17/0122/R/29	22.57
BH17/0122/R/30	
BH17/0122/R/31	
BH17/0122/R/32	
BH17/0122/R/33	
	Sample Number BH17/1221/R/08 BH17/0122/R/09 BH17/0122/R/10 BH17/0122/R/11 BH17/0122/R/12 BH17/0122/R/13 BH17/0122/R/14 BH17/0122/R/15 BH17/0122/R/16 BH17/0122/R/17 BH17/0122/R/18 BH17/0122/R/19 BH17/0122/R/20 BH17/0122/R/21 BH17/0122/R/22 BH17/0122/R/23 BH17/0122/R/24 BH17/0122/R/25 BH17/0122/R/26 BH17/0122/R/27 BH17/0122/R/28 BH17/0122/R/29 BH17/0122/R/30 BH17/0122/R/30 BH17/0122/R/31 BH17/0122/R/31

	Consultant:	Geotechnical I	nvestigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

	BH 17	
Depth	Sample Number	Tensile Strength Tes
	BH17/0122/R/34	
	BH17/0122/R/35	
35.00	BH17/0122/R/37	
35.00	BH17/0122/R/38	
41.00	BH17/0122/R/40	
41.00	BH17/0122/R/41	
42.50	BH17/0122/R/42	
42.50	BH17/0122/R/43	
	BH17/0122/R/44	
44.00	BH17/0122/R/45	
44.00	BH17/0122/R/46	
	BH17/0122/R/47	
	BH17/1221/R/48	
45.50	BH17/1221/R/49	
45.50	BH17/1221/R/50	
	BH17/1221/R/51	
47.00	BH17/1221/R/52	
47.00	BH17/1221/R/53	
	BH17/1221/R/54	
48.50	BH17/1221/R/55	
46.30	BH17/1221/R/56	
	BH17/1221/R/57	
	BH17/1221/R/58	
F0.00	BH17/1221/R/59	
50.00	BH17/1221/R/60	
	BH17/1221/R/61	

Consultant:		Geotechnical I	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

	BH 17	
Depth	Sample Number	Tensile Strength Tes
	BH17/1221/R/65	15.46
53.00	BH17/1221/R/69	18.01
	BH17/1221/R/74	
54.50	BH17/1221/R/75	
54.50	BH17/1221/R/76	19.83
	BH17/1221/R/77	
F6 00	BH17/1221/R/78	
56.00	BH17/1221/R/79	19.09
F8 00	BH17/1221/R/80	
58.00	BH17/1221/R/81	15.07
59.50	BH17/1221/R/82	
	BH17/1221/R/87	
	BH17/1221/R/88	
62.00	BH17/1221/R/89	15.1
62.00	BH17/1221/R/90	
	BH17/1221/R/91	
	BH17/1221/R/92	
Min.		8.77
Max		26.58
Aver	age.	18.03

Consultant:		Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –C Unconfined Compressive strength

	Consultant:		Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Unconfined Compressive Strength

Sr.No.	BH NO.	De	pth	UCS Test
		From	То	(MPa)
1		0.50	1.50	
2		1.50	3.00	41.06
3		3.00	4.50	
4		4.50	6.00	
5	BH-13	6.00	7.50	
6		7.50	9.00	
7		9.00	10.50	
8		10.50	12.00	61.6
9		15.00	16.50	
10		16.50	18.00	
11		18.00	19.50	67.07
12		19.50	21.00	
13		21.00	22.50	
14		22.50	24.00	
15		24.00	25.50	
16		25.50	27.00	67.01
17		27.00	28.50	
18		28.50	30.00	
19		30.00	31.50	
20		31.50	33.00	
21		33.00	34.50	64.01
22		34.50	36.00	
23		36.00	37.50	
24		37.50	39.00	
25		39.00	40.50	65.17
26		40.50	42.00	
27		42.00	43.50	
28		43.50	45.00	64.79
29		45.00	46.50	
30		46.50	48.00	64.94
31		48.00	49.50	
32		49.50	51.00	63.23
33		51.00	52.50	

Consultant:		Geotechnical	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	вн по.	De	pth	UCS Test
		From	То	(MPa)
34		52.50	54.00	64.29
35		54.00	55.50	
36		55.50	57.00	68.34
37		57.00	58.50	
38		58.50	60.00	70.33
		Į.	Min.	41.06
			Max.	70.33
			Avg.	63.49
39		1.50	3.00	
40		3.00	4.50	
41		4.50	6.00	49.1
42		6.00	7.50	
43		7.50	9.00	
44		9.00	10.50	
45		10.50	12.00	69.54
46		12.00	13.50	
47		15.00	16.50	
48		16.50	18.00	68.69
49		18.00	19.50	
50		19.50	21.00	
51		21.00	22.50	
52	BH-14	22.50	24.00	
53		24.00	25.50	
54		25.50	27.00	66.51
55		27.00	28.50	
56		28.50	30.00	
57		30.00	31.50	65.1
58		31.50	33.00	
59		33.00	34.50	
60		34.50	36.00	
61		36.00	37.50	53.54
62		37.50	39.00	
63		39.00	40.50	
64		40.50	42.00	
65		42.00	43.50	
66		43.50	45.00	49.01
67		45.00	46.50	170

Consultant:		Geotechnical I	nvestigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	BH NO.	De	pth	UCS Test
		From	То	(MPa)
68		46.50	48.00	55.52
69		48.00	49.50	
70		49.50	51.00	
71		51.00	52.50	59.06
72		52.50	54.00	
73		54.00	55.50	
74		57.00	58.50	45.15
75		58.50	60.00	
76		60.00	61.50	60.66
77		63.00	64.50	
78		64.50	66.00	
79		66.00	67.50	
80		67.50	69.00	45.15
81		69.00	70.50	
82		70.50	72.00	47.33
83		72.00	73.50	
		Min.	•	45.15
		Max.		69.54
		Avg.		56.49
84		0.00	1.50	
85		1.50	3.00	69.58
86		3.00	4.50	
87		4.50	6.00	
88	BH-15	6.00	7.50	
89		7.50	9.00	67.04
90		9.00	10.50	
91		10.50	12.00	
92		12.00	13.50	
93		15.00	16.50	
94		16.50	18.00	68.52
95		18.00	19.50	
96		19.50	21.00	
97		21.00	22.50	
98		22.50	24.00	66.01
99		24.00	25.50	
100		25.50	27.00	
101		27.00	28.50	68.94

	Consultant:		Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	BH NO.	De	pth	UCS Test
		From	То	(MPa)
102		28.50	30.00	
103		30.00	31.50	
104		31.50	33.00	
105		33.00	34.50	68.84
106		34.50	36.00	
107		36.00	37.50	
108		37.50	39.00	
109		39.00	40.50	
110		40.50	42.00	
111		42.00	43.50	
112		43.50	45.00	70.44
113		45.00	46.50	
114		46.50	48.00	69.4
115		48.00	49.50	
116		49.50	51.00	62.21
117		51.00	52.50	
118		52.50	54.00	61.45
119		54.00	55.50	
120		57.00	58.50	64.29
121		58.50	60.00	
122		60.00	61.50	
123		61.50	63.00	68.63
124		64.50	66.00	
125		66.00	67.50	68.41
126		67.50	69.00	
127		69.00	70.00	64.97
		Min.		61.45
		Max.		70.44
		Avg.	_	67.05
128		0.00	1.50	
129		1.50	3.00	69.38
130	BH-15A	3.00	4.50	
131		4.50	6.00	
132		6.00	7.50	

Consultant:		Geotechnical I	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	BH NO.	De	epth	UCS Test
		From	То	(MPa)
				66
133		7.50	9.00	
138		9.00	10.50	
139		10.50	12.00	
140		12.00	13.50	62.28
141		13.50	15.00	
142		15.00	16.50	
143		16.50	18.00	
144		18.00	19.50	
145		19.50	21.00	
146		21.00	22.50	63.06
147		22.50	24.00	
148		25.50	27.00	
149		27.00	28.50	64.78
150		28.50	30.00	
151		30.00	31.50	
152		31.50	33.00	65.17
153		33.00	34.50	07.2
133			2 1.50	

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	Dep	pth	UCS Test
		From	То	(MPa)
154		34.50	36.00	
155		36.00	37.50	69.38
156		37.50	39.00	
157		39.00	40.50	63.64
158		40.50	42.00	
159		42.00	43.50	60.42
160		43.50	45.00	
161		46.50	48.00	
162		48.00	49.50	65.05
163		49.50	51.00	
		Min.		60.42
		Max.		69.38
		Avg.		65.12
164		0.00	1.50	66
165		1.50	3.00	
166		3.00	4.50	
167		4.50	6.00	
168		4.50	6.00	
169		7.50	9.00	52.79
170		9.00	10.50	
171	BH-16	10.50	12.00	
172	D11-10	12.00	13.50	
173		13.50	15.00	
174		18.00	19.50	70.8
175		19.50	21.00	
176		21.00	22.50	
177		22.50	24.00	44.8
178		24.00	25.50	
179		25.50	27.00	
180		27.00	28.50	

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	De	pth	UCS Test
		From	То	(MPa)
181		28.50	30.00	
182		30.00	31.50	70.27
183		31.50	33.00	
184		33.00	34.50	
185		33.00	34.50	
186		36.00	37.50	
187		37.50	39.00	70.23
188		39.00	40.50	
189		40.50	42.00	
190		42.00	43.50	52.49
191		45.00	46.50	
192		46.50	48.00	70.08
193		48.00	49.50	
194		49.50	51.00	69.57
195		52.50	54.00	
196		54.00	55.50	
197		55.50	57.00	70.16
198		58.50	60.00	
199		60.00	61.50	68.55
200		61.50	62.00	
		Min.		44.8
		Max.		70.8
		Avg.		64.16

Consultant:		Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

	BH 17	
Depth	Sample Number	UCS (Mpa)
19.50	BH17/1221/R/01	
20.50	BH17/1221/R/03	
22.00	BH17/1221/R/05	70.68
23.00	BH17/1221/R/06	
24.50	BH17/1221/R/07	
24.50	BH17/1221/R/08	
25.00	BH17/0122/R/09	69.63
25.00	BH17/0122/R/10	
	BH17/0122/R/11	
26.00	BH17/0122/R/12	
	BH17/0122/R/13	
	BH17/0122/R/14	
27.50	BH17/0122/R/15	
27.50	BH17/0122/R/16	
	BH17/0122/R/17	
	BH17/0122/R/18	69.31
28.00	BH17/0122/R/19	
	BH17/0122/R/20	
	BH17/0122/R/21	
29.50	BH17/0122/R/22	
	BH17/0122/R/23	
30.00	BH17/0122/R/24	
30.00	BH17/0122/R/25	
	BH17/0122/R/26	
31.50	BH17/0122/R/27	66.51
31.30	BH17/0122/R/28	
	BH17/0122/R/29	
32.50	BH17/0122/R/30	
32.30	BH17/0122/R/31	
	BH17/0122/R/32	
	BH17/0122/R/33	
33.50	BH17/0122/R/34	
	BH17/0122/R/35	
	BH17/0122/R/36	67.94
35.00	BH17/0122/R/37	
	BH17/0122/R/38	

Consultant:		Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation	
				Ltd	

	BH 17	
Depth	Sample Number	UCS (Mpa)
41.00	BH17/0122/R/40	
41.00	BH17/0122/R/41	68.41
42.50	BH17/0122/R/42	
42.50	BH17/0122/R/43	
	BH17/0122/R/44	
44.00	BH17/0122/R/45	
44.00	BH17/0122/R/46	
	BH17/0122/R/47	
45.50	BH17/1221/R/49	67.23
47.00	BH17/1221/R/52	
47.00	BH17/1221/R/53	
	BH17/1221/R/54	
48.50	BH17/1221/R/55	
46.30	BH17/1221/R/56	
	BH17/1221/R/57	63.34
50.00	BH17/1221/R/58	
	BH17/1221/R/62	
	BH17/1221/R/63	
51.50	BH17/1221/R/64	
31.30	BH17/1221/R/65	
	BH17/1221/R/66	61.24
	BH17/1221/R/67	
	BH17/1221/R/69	
	BH17/1221/R/70	
53.00	BH17/1221/R/71	
	BH17/1221/R/72	
	BH17/1221/R/73	
	BH17/1221/R/74	
F4.F0	BH17/1221/R/75	70.85
54.50	BH17/1221/R/76	
	BH17/1221/R/77	
F.6.00	BH17/1221/R/78	
56.00	BH17/1221/R/79	
F8 00	BH17/1221/R/80	68.97
58.00	BH17/1221/R/81	
59.50	BH17/1221/R/82	
62.00	BH17/1221/R/87	69.04
62.00	BH17/1221/R/88	

Consultant:		Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

BH 17					
Depth	Sample Number	UCS (Mpa)			
	BH17/1221/R/89				
	BH17/1221/R/90				
	BH17/1221/R/91				
	BH17/1221/R/92				
	61.24				
	70.85				
	67.76				

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –D Specific Gravity, Water absorption, Density

Consultant:		Geotechnical I	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Specific Gravity, Water absorption, Density

Sr.No.	BH NO.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
1	BH-13	0.50	1.50	24.31	2.47	0.4
2	BH-13	1.50	3.00			
3		3.00	4.50			
4		4.50	6.00			
5		6.00	7.50	25.15	2.55	0.45
6		7.50	9.00			
7		9.00	10.50			
8		10.50	12.00			
9		15.00	16.50	25.26	2.57	0.32
10		16.50	18.00			
11		18.00	19.50			
12		19.50	21.00			
13		21.00	22.50	25.65	2.6	0.44
14		22.50	24.00			
15		24.00	25.50			
16		25.50	27.00			
17		27.00	28.50			
18		28.50	30.00	25.08	2.55	0.4
19		30.00	31.50			
20		31.50	33.00			
21		33.00	34.50			
22		34.50	36.00	25.35	2.58	0.14
23		36.00	37.50			
24		37.50	39.00	25.47	2.58	0.47
25		39.00	40.50			
26		40.50	42.00	25.23	2.56	0.3
27		42.00	43.50			
28		43.50	45.00	25.47	2.58	0.47
29		45.00	46.50			
30		46.50	48.00	25.73	2.61	0.39
31		48.00	49.50			
32		49.50	51.00	25.43	2.58	0.38
33		51.00	52.50			
34		52.50	54.00			

	Consultant:	Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
				Infrastructure	
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd	

Sr.No.	BH NO.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
35		54.00	55.50	25.64	2.6	0.51
36		55.50	57.00			
37		57.00	58.50			
38		58.50	60.00			
			Min.	24.31	2.47	0.14
			Max.	25.73	2.61	0.51
			Avg.	25.31	2.57	0.39
39		1.50	3.00			
40		3.00	4.50			
41		4.50	6.00			
42		6.00	7.50	25.67	2.61	0.41
43		7.50	9.00			
44		9.00	10.50			
45		10.50	12.00			
46		12.00	13.50	25.8	2.63	0.16
47		15.00	16.50			
48	BH-14	16.50	18.00			
49	22.	18.00	19.50	25.83	2.62	0.35
50		19.50	21.00			
51		21.00	22.50			
52		22.50	24.00	25.78	2.62	0.3
53		24.00	25.50			
54		25.50	27.00			
55		27.00	28.50			
56		28.50	30.00			
57 E0		30.00	31.50			
58 59		31.50 33.00	33.00 34.50	26.09	2.65	0.43
60		34.50	36.00	20.03	2.03	0.45
61		36.00	37.50			
62		37.50	39.00	25.99	2.65	0.15
63		39.00	40.50		2.03	0.13
64		40.50	42.00			
65		42.00	43.50	25.92	2.63	0.41
66		43.50	45.00	-		-
67		45.00	46.50			
68		46.50	48.00			

	Consultant:	Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
				Infrastructure	
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation	
				Ltd	

Sr.No.	BH NO.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
69		48.00	49.50			
70		49.50	51.00	25.82	2.62	0.57
71		51.00	52.50			
72		52.50	54.00			
73		54.00	55.50			
74		57.00	58.50	25.96	2.64	0.23
75		58.50	60.00			
76		60.00	61.50			
77		63.00	64.50			
78		64.50	66.00	25.94	2.64	0.28
79		66.00	67.50			
80		67.50	69.00	25.82	2.63	0.23
81		69.00	70.50	25.91	2.63	0.29
82		70.50	72.00			
83		72.00	73.50			
	Min.		25.67	2.61	0.15	
	Max.		26.09	2.65	0.57	
		Avg.		25.88	2.63	0.32
84	BH-15	0.00	1.50			
85	DU-13	1.50	3.00			
86		3.00	4.50			
87		4.50	6.00	25.66	2.6	0.51
88		6.00	7.50			
89		7.50	9.00			
90		9.00	10.50			
91		10.50	12.00			
92		12.00	13.50			
93		15.00	16.50	25.33	2.57	0.51
94		16.50	18.00			
95		18.00	19.50			
96		19.50	21.00	25.53	2.59	0.5
97		21.00	22.50			
98		22.50	24.00			
99		24.00	25.50			
100		25.50	27.00	25.38	2.57	0.63
101		27.00	28.50			
102		28.50	30.00			

	Consultant:	Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
				Infrastructure	
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation	
				Ltd	

Sr.No.	BH NO.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
103		30.00	31.50			
104		31.50	33.00	25.5	2.59	0.49
105		33.00	34.50			
106		34.50	36.00			
107		36.00	37.50			
108		37.50	39.00			
109		39.00	40.50			
110		40.50	42.00			
111		42.00	43.50	25.2	2.55	0.6
112		43.50	45.00			
113		45.00	46.50			
114		46.50	48.00			
115		48.00	49.50	25.36	2.57	0.47
116		49.50	51.00			
117		51.00	52.50			
118		52.50	54.00			
119		54.00	55.50	25.5	2.59	0.47
120		57.00	58.50			
121		58.50	60.00			
122		60.00	61.50			
123		61.50	63.00			
124		64.50	66.00	25.74	2.61	0.53
125		66.00	67.50			
126		67.50	69.00			
127		69.00	70.00	25.07	2.54	0.46
		Min.		25.07	2.54	0.46
		Max.		25.74	2.61	0.63
		Avg.	1	25.43	2.58	0.52
128		0.00	1.50			
129		1.50	3.00			
130	BH-15A	3.00	4.50	25.44	2.59	0.16
131		4.50	6.00			
132		6.00	7.50			

	Consultant:	Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
				Infrastructure	
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd	

Sr.No.	вн по.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
133		7.50	9.00			
138		9.00	10.50	25.55	2.59	0.47
139		10.50	12.00			
140		12.00	13.50			
141		13.50	15.00			
142		15.00	16.50			
143		16.50	18.00			
144		18.00	19.50	25.35	2.57	0.75
145		19.50	21.00			
146		21.00	22.50			
147		22.50	24.00	25.69	2.6	0.55
148		25.50	27.00			
149		27.00	28.50			
150		28.50	30.00	25.17	2.56	0.2
151		30.00	31.50			
152		31.50	33.00	25.45	2.58	0.72
153		33.00	34.50			
154		34.50	36.00			
155		36.00	37.50	24.81	2.52	0.46

	Consultant:	Geotechnical	Investigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
				Infrastructure	
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation	
				Ltd	

Sr.No.	BH NO.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
156		37.50	39.00			
157		39.00	40.50	25.01	2.54	0.45
158		40.50	42.00			
159		42.00	43.50	25.58	2.6	0.38
160		43.50	45.00	25.02	2.54	0.57
161		46.50	48.00			
162		48.00	49.50			
163		49.50	51.00			
		Min.		24.81	2.52	0.16
		Max.		25.69	2.6	0.75
		Avg.	1	25.307	2.57	0.47
164		0.00	1.50			
165		1.50	3.00	25.43	2.59	0.25
166		3.00	4.50			
167		4.50	6.00			
168		4.50	6.00			
169 170		7.50 9.00	9.00			
171	BH-16	10.50	12.00	25.3	2.56	0.62
172		12.00	13.50			
173		13.50	15.00	25.51	2.58	0.7
174		18.00	19.50			
175		19.50	21.00			
176		21.00	22.50	26.22	2.60	0.57
177		22.50	24.00	26.39	2.68	0.57
178		24.00	25.50			
179		25.50	27.00			
180 181		27.00 28.50	28.50 30.00			
182		30.00	31.50	26.33	2.67	0.48
-				20.33	2.07	0.40
183		31.50	33.00			

	Consultant:	Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Sr.No.	BH NO.	De	pth	Weight Density	Specific Gravity	Water Absorption
		From	То	(kN/m³)		(%)
184		33.00	34.50			
185		33.00	34.50			
186		36.00	37.50			
187		37.50	39.00	26.52	2.69	0.51
188		39.00	40.50			
189		40.50	42.00			
190		42.00	43.50			
191		45.00	46.50			
192		46.50	48.00	25.54	2.63	0.63
193		48.00	49.50	26.24	2.67	0.3
194		49.50	51.00			
195		52.50	54.00			
196		54.00	55.50			
197		55.50	57.00			
198		58.50	60.00	26.36	2.67	0.46
199		60.00	61.50	26.1	2.65	0.51
200		61.50	62.00			
		Min.		25.3	2.56	0.25
		Max.		26.52	2.69	0.7
_		Avg.		25.97	2.64	0.50

BH 17							
Depth	Sample Number	Weight Density	Specific Gravity	Water Absorption			
		(kN/m³)		(%)			
19.50	BH17/1221/R/01	26.21	2.67	0			
20.50	BH17/1221/R/03						
22.00	BH17/1221/R/05						
23.00	BH17/1221/R/06	25.73	2.61	0.36			
24.50	BH17/1221/R/07						
24.50	BH17/1221/R/08						
25.00	BH17/0122/R/09						
25.00	BH17/0122/R/10						
26.00	BH17/0122/R/11	25.7	2.61	0.38			

Consultant:		Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

		BH 17		
Depth	Sample Number	Weight Density	Specific Gravity	Water Absorption
	BH17/0122/R/12			
	BH17/0122/R/13			
	BH17/0122/R/14			
27.50	BH17/0122/R/15			
27.30	BH17/0122/R/16	24.79	2.5	0.95
	BH17/0122/R/17			
	BH17/0122/R/18			
28.00	BH17/0122/R/19			
	BH17/0122/R/20			
	BH17/0122/R/21	25.21	2.54	1.18
29.50	BH17/0122/R/22			
	BH17/0122/R/23			
30.00	BH17/0122/R/24			
30.00	BH17/0122/R/25	25.79	2.63	0.16
	BH17/0122/R/26			
31.50	BH17/0122/R/27			
31.50	BH17/0122/R/28			
	BH17/0122/R/29	25.82	2.62	0.36
32.50	BH17/0122/R/30			
32.30	BH17/0122/R/31			
	BH17/0122/R/32			
	BH17/0122/R/33			
33.50	BH17/0122/R/34			
	BH17/0122/R/35	26.2	2.66	0.21
	BH17/0122/R/36			
35.00	BH17/0122/R/37			
35.00	BH17/0122/R/38			
44.00	BH17/0122/R/40	24.96	2.52	1.1
41.00	BH17/0122/R/41			
42.50	BH17/0122/R/42			
42.50	BH17/0122/R/43			
	BH17/1221/R/48	25.48	2.59	0.39
45.50	BH17/1221/R/49			
45.50	BH17/1221/R/50			
	BH17/1221/R/51			
47.00	BH17/1221/R/52			
47.00	BH17/1221/R/53			
48.50	BH17/1221/R/54	24.23	2.45	0.9

Consultant:		Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

		BH 17		
Depth	Sample Number	Weight Density	Specific Gravity	Water Absorption
	BH17/1221/R/55			
	BH17/1221/R/56			
	BH17/1221/R/57			
50.00	BH17/1221/R/58			
30.00	BH17/1221/R/59			
	BH17/1221/R/62			
	BH17/1221/R/63	25.13	2.54	0.81
51.50	BH17/1221/R/64			
51.50	BH17/1221/R/65			
	BH17/1221/R/66			
	BH17/1221/R/67			
	BH17/1221/R/69			
	BH17/1221/R/70			
53.00	BH17/1221/R/71	25.73	2.62	0.2
	BH17/1221/R/72			
	BH17/1221/R/73			
	BH17/1221/R/74			
54.50	BH17/1221/R/75			
54.50	BH17/1221/R/76			
	BH17/1221/R/77	25.51	2.59	0.21
56.00	BH17/1221/R/78			
30.00	BH17/1221/R/79			
58.00	BH17/1221/R/80			
38.00	BH17/1221/R/81	25.54	2.58	0.72
59.50	BH17/1221/R/82	25.25	2.55	0.78
	BH17/1221/R/83			
61.00	BH17/1221/R/84			
61.00	BH17/1221/R/85	25.31	2.57	0.45
	BH17/1221/R/86			
	BH17/1221/R/87			
	BH17/1221/R/88	25.68	2.61	0.42
62.00	BH17/1221/R/89			
02.00	BH17/1221/R/90			
	BH17/1221/R/91			
	BH17/1221/R/92			
	Min.	24.23	2.45	0
	Max.	26.21	2.67	1.18
	Average.	25.42	2.58	0.56

Consultant:		Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –E Point load index

	Consultant:	Geotechnical I	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
				Ltd

Point load index Test

Sr.No.	BH NO.	De	pth	Point load index
		From	То	(MPa)
1		0.50	1.50	
2		1.50	3.00	
3		3.00	4.50	
4		4.50	6.00	3.73
5		6.00	7.50	
6		7.50	9.00	
7		9.00	10.50	
8		10.50	12.00	
9		15.00	16.50	
10		16.50	18.00	2.61
11		18.00	19.50	
12		19.50	21.00	
13		21.00	22.50	
14		22.50	24.00	2.39
15		24.00	25.50	
16		25.50	27.00	
17	DU 42	27.00	28.50	
18	BH-13	28.50	30.00	
19		30.00	31.50	1.01
20		31.50	33.00	
21		33.00	34.50	
22		34.50	36.00	
23		36.00	37.50	
24		37.50	39.00	2.30
25		39.00	40.50	
26		40.50	42.00	
27		42.00	43.50	
28		43.50	45.00	
29		45.00	46.50	
30		46.50	48.00	
31		48.00	49.50	
32		49.50	51.00	
33		51.00	52.50	
34		52.50	54.00	

Consultant:		Geotechnical I	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	De	pth	Point load index
		From	То	(MPa)
35		54.00	55.50	1.6
36		55.50	57.00	
37		57.00	58.50	
38		58.50	60.00	
		•	Min.	1.01
			Max.	3.20
			Avg.	2.18
39		1.50	3.00	21.83
40		3.00	4.50	
41		4.50	6.00	
42		6.00	7.50	
43		7.50	9.00	
44		9.00	10.50	3.2
45		10.50	12.00	
46		12.00	13.50	
47		15.00	16.50	3.23
48		16.50	18.00	
49		18.00	19.50	
50		19.50	21.00	
51		21.00	22.50	
52		22.50	24.00	
53	511.44	24.00	25.50	3.62
54	BH-14	25.50	27.00	
55		27.00	28.50	
56		28.50	30.00	
57		30.00	31.50	
58		31.50	33.00	
59		33.00	34.50	
60		34.50	36.00	3.08
61		36.00	37.50	
62		37.50	39.00	
63		39.00	40.50	
64		40.50	42.00	
65		42.00	43.50	
66		43.50	45.00	
67		45.00	46.50	
68		46.50	48.00	

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	De	epth	Point load index
		From	То	(MPa)
69		48.00	49.50	3.16
70		49.50	51.00	
71		51.00	52.50	
72		52.50	54.00	
73		54.00	55.50	2.37
74		57.00	58.50	
75		58.50	60.00	
76		60.00	61.50	
77		63.00	64.50	
78		64.50	66.00	
79		66.00	67.50	2.26
80		67.50	69.00	
81		69.00	70.50	
82		70.50	72.00	
83		72.00	73.50	
		Min.	-	2.27
		Max.		3.62
		Avg.		2.99
84		0.00	1.50	3.15
85		1.50	3.00	
86		3.00	4.50	
87		4.50	6.00	
88		6.00	7.50	
89		7.50	9.00	
90	BH-15	9.00	10.50	
91		10.50	12.00	3.66
92		12.00	13.50	
93		15.00	16.50	
94		16.50	18.00	
95		18.00	19.50	
96		19.50	21.00	
97		21.00	22.50	2.53
98		22.50	24.00	
99		24.00	25.50	
100		25.50	27.00	
101		27.00	28.50	
102		28.50	30.00	

	Consultant:	Geotechnical Investigation Report		Client:
ŀ	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	De	epth	Point load index
		From	То	(MPa)
103		30.00	31.50	3.21
104		31.50	33.00	
105		33.00	34.50	
106		34.50	36.00	
107		36.00	37.50	
108		37.50	39.00	
109		39.00	40.50	3.66
110		40.50	42.00	
111		42.00	43.50	
112		43.50	45.00	
113		45.00	46.50	3.35
114		46.50	48.00	
115		48.00	49.50	
116		49.50	51.00	3.53
117		51.00	52.50	
118		52.50	54.00	
119		54.00	55.50	
120		57.00	58.50	
121		58.50	60.00	
122		60.00	61.50	3.85
123		61.50	63.00	
124		64.50	66.00	
125		66.00	67.50	
126		67.50	69.00	
127		69.00	70.00	
		Min.		2.5
		Max.		3.8
		Avg.		3.37
128		0.00	1.50	2.86
129		1.50	3.00	
130	BH-15A	3.00	4.50	
131		4.50	6.00	
132		6.00	7.50	

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	Depth		Point load index
		From	То	(MPa)
133		7.50	9.00	
138		9.00	10.50	
139		10.50	12.00	
140		12.00	13.50	3.02
141		13.50	15.00	
142		15.00	16.50	
143		16.50	18.00	
144		18.00	19.50	
145		19.50	21.00	
146		21.00	22.50	
147		22.50	24.00	3.15
148		25.50	27.00	
149		27.00	28.50	
150		28.50	30.00	
151		30.00	31.50	
152		31.50	33.00	
153		33.00	34.50	3.4
154		34.50	36.00	

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	BH NO.	De	pth	Point load index
		From	То	(MPa)
155		36.00	37.50	
156		37.50	39.00	
157		39.00	40.50	
158		40.50	42.00	3.3
159		42.00	43.50	
160		43.50	45.00	
161		46.50	48.00	
162		48.00	49.50	
163		49.50	51.00	
		Min.		2.86
		Max.		3.4
		Avg.		3.14
164		0.00	1.50	
165		1.50	3.00	
166		3.00	4.50	
167		4.50	6.00	
168		4.50	6.00	
169		7.50	9.00	
170		9.00	10.50	2.16
171		10.50	12.00	
172	DU 16	12.00	13.50	
173	BH-16	13.50	15.00	
174		18.00	19.50	
175		19.50	21.00	2.06
176		21.00	22.50	
177		22.50	24.00	
178		24.00	25.50	
179		25.50	27.00	
180		27.00	28.50	
181		28.50	30.00	
182		30.00	31.50	

	Consultant:		Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Sr.No.	BH NO.	Depth		Point load index
		From	То	(MPa)
183		31.50	33.00	3.47
184		33.00	34.50	
185		33.00	34.50	
186		36.00	37.50	
187		37.50	39.00	
188		39.00	40.50	
189		40.50	42.00	
190		42.00	43.50	
191		45.00	46.50	3.84
192		46.50	48.00	
193		48.00	49.50	
194		49.50	51.00	3.32
195		52.50	54.00	
196		54.00	55.50	
197		55.50	57.00	
198		58.50	60.00	
199		60.00	61.50	3.60
200		61.50	62.00	
		Min.		2.06
		Max.		3.84
		Avg.		3.07

BH 17					
Depth	Sample Number	Point load index (Mpa)			
19.50	BH17/1221/R/01	3.02			
20.50	BH17/1221/R/03				
22.00	BH17/1221/R/05				
23.00	BH17/1221/R/06				
24.50	BH17/1221/R/07				
24.50	BH17/1221/R/08	2.97			
35.00	BH17/0122/R/09				
25.00	BH17/0122/R/10				
26.00	BH17/0122/R/11				

Consultant:		Geotechnical I	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation	
				Ltd	

	BH 17	
Depth	Sample Number	Point load index
	BH17/0122/R/12	(Mna) 2.9
	BH17/0122/R/13	
	BH17/0122/R/14	
27.50	BH17/0122/R/15	2.95
27.50	BH17/0122/R/16	
	BH17/0122/R/17	
	BH17/0122/R/18	
28.00	BH17/0122/R/19	
	BH17/0122/R/20	
	BH17/0122/R/21	
29.50	BH17/0122/R/22	
	BH17/0122/R/23	2.84
20.00	BH17/0122/R/24	
30.00	BH17/0122/R/25	
	BH17/0122/R/26	
24.50	BH17/0122/R/27	
31.50	BH17/0122/R/28	
	BH17/0122/R/29	
22.50	BH17/0122/R/30	
32.50	BH17/0122/R/31	
	BH17/0122/R/32	
	BH17/0122/R/33	
33.50	BH17/0122/R/34	
	BH17/0122/R/35	
	BH17/0122/R/36	
35.00	BH17/0122/R/37	
35.00	BH17/0122/R/38	
41.00	BH17/0122/R/40	
41.00	BH17/0122/R/41	
42.50	BH17/0122/R/42	
42.50	BH17/0122/R/43	
	BH17/0122/R/44	
44.00	BH17/0122/R/45	
44.00	BH17/0122/R/46	
	BH17/0122/R/47	
	BH17/1221/R/48	
45 50	BH17/1221/R/49	
45.50	BH17/1221/R/50	
	BH17/1221/R/51	
47.00	BH17/1221/R/52	
47.00	BH17/1221/R/53	

Consultant:		Geotechnical I	Investigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	The second second			Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

	BH 17	
Depth	Sample Number	Point load index
	BH17/1221/R/54	, in the second
40.50	BH17/1221/R/55	
48.50	BH17/1221/R/56	
	BH17/1221/R/57	
	BH17/1221/R/58	
50.00	BH17/1221/R/59	
30.00	BH17/1221/R/60	
	BH17/1221/R/61	
	BH17/1221/R/62	
	BH17/1221/R/63	
51.50	BH17/1221/R/64	
31.30	BH17/1221/R/65	
	BH17/1221/R/66	
	BH17/1221/R/67	
	BH17/1221/R/69	
	BH17/1221/R/70	
53.00	BH17/1221/R/71	
	BH17/1221/R/72	
	BH17/1221/R/73	2.82
	BH17/1221/R/74	
54.50	BH17/1221/R/75	
34.30	BH17/1221/R/76	
	BH17/1221/R/77	3.02
56.00	BH17/1221/R/78	
30.00	BH17/1221/R/79	2.94
58.00	BH17/1221/R/80	
38.00	BH17/1221/R/81	
59.50	BH17/1221/R/82	
	BH17/1221/R/83	
61.00	BH17/1221/R/84	
01.00	BH17/1221/R/85	
	BH17/1221/R/86	
Min.		2.82
Max	-	3.02
Aver	age.	2.9325

Consultant:		Geotechnical I	nvestigation Report	Client:	
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

ANNEXURE –F Modulus of elasticity and Poisson's ratio

Consultant:		Geotechnical Investigation Report		Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Modulus of elasticity and Poisson's ratio

Sr.No.	вн по.	Depth		Modulus of Elasticity (GPa)	Poisson's Ratio
		From	То	(014)	
1		0.50	1.50		
2		1.50	3.00	31.4	0.14
3		3.00	4.50		
4		4.50	6.00		
5		6.00	7.50		
6		7.50	9.00		
7		9.00	10.50		
8		10.50	12.00	45.2	0.15
9		15.00	16.50		
10		16.50	18.00		
11		18.00	19.50	48	0.13
12		19.50	21.00		
13		21.00	22.50		
14		22.50	24.00		
15		24.00	25.50		
16		25.50	27.00	46.3	0.14
17	BH-13	27.00	28.50		
18	DU-12	28.50	30.00		
19		30.00	31.50		
20		31.50	33.00		
21		33.00	34.50	42.4	0.16
22		34.50	36.00		
23		36.00	37.50		
24		37.50	39.00		
25		39.00	40.50	42.7	0.15
26		40.50	42.00		
27		42.00	43.50		
28		43.50	45.00	43.1	0.14
29		45.00	46.50		
30		46.50	48.00	43.5	0.15
31		48.00	49.50		
32		49.50	51.00	41.6	0.17
33		51.00	52.50		
34		52.50	54.00		

Consultant:		Geotechnical	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	вн по.	Depth		Modulus of Elasticity (GPa)	Poisson's Ratio
		From	То	(GI a)	
35		54.00	55.50		
36		55.50	57.00	45.7	0.16
37		57.00	58.50		
38		58.50	60.00	53.6	0.1
			Min.	31.4	0.1
			Max.	53.6	0.17
			Avg.	43.95	0.14
39		1.50	3.00		
40		3.00	4.50		
41		4.50	6.00	35.6	0.12
42		6.00	7.50		
43		7.50	9.00		
44		9.00	10.50		
45		10.50	12.00	47.4	0.12
46		12.00	13.50		
47	BH-14	15.00	16.50		
48		16.50	18.00	53	0.11
49		18.00	19.50		
50		19.50	21.00		
51		21.00	22.50		
52		22.50	24.00		
53		24.00	25.50		
54		25.50	27.00	47.1	0.13
55		27.00	28.50		
56		28.50	30.00		
57		30.00	31.50	45.4	0.14
58		31.50	33.00		
59		33.00	34.50		
60		34.50	36.00		
61		36.00	37.50	35.1	0.16
62		37.50	39.00		
63		39.00	40.50		
64		40.50	42.00		
65		42.00	43.50		
66		43.50	45.00	33.7	0.16
67		45.00	46.50		

Consultant:		Geotechnical	Investigation Report	Client:	
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	вн по.	Depth		Modulus of Elasticity (GPa)	Poisson's Ratio
60		From	To	F2 2	2.42
68		46.50	48.00 49.50	52.2	0.13
69 70		48.00 49.50	51.00		
70		51.00	52.50	43.6	0.14
72		52.50	54.00	43.0	0.14
73		54.00	55.50		
74		57.00	58.50	38.7	0.15
75		58.50	60.00		
76		60.00	61.50	45.3	0.13
77		63.00	64.50		
78		64.50	66.00		
79		66.00	67.50		
80		67.50	69.00	39.5	0.13
81		69.00	70.50		
82		70.50	72.00	39.7	0.14
83		72.00	73.50		
		Min.		33.7	0.11
		Max.		53	0.16
		Avg.		42.79	0.14
84		0.00	1.50		
85		1.50	3.00	47.6	0.14
86		3.00	4.50		
87		4.50	6.00		
88		6.00	7.50		
89		7.50	9.00	49.1	0.12
90		9.00	10.50		
91	D!! 45	10.50	12.00		
92	BH-15	12.00	13.50		
93		15.00 16.50	16.50 18.00	48	0.15
94 95		18.00	19.50	40	0.15
96		19.50	21.00		
97		21.00	22.50		
98		22.50	24.00	46.9	0.15
99		24.00	25.50	10.5	5.15
100		25.50	27.00		

Consultant:		Geotechnical I	nvestigation Report	Client:	
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail	
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd	

Sr.No.	вн по.	Depth		Modulus of Elasticity (GPa)	Poisson's Ratio
		From	То		2.15
101		27.00	28.50	47.6	0.15
102		28.50	30.00		
103		30.00	31.50		
104 105		31.50 33.00	33.00 34.50	46.6	0.14
105		34.50	36.00	40.0	0.14
106		36.00	37.50		
107		37.50	39.00		
108		39.00	40.50		
110		40.50	42.00		
111		42.00	43.50		
112		43.50	45.00	52.4	0.12
113		45.00	46.50	32.1	0.12
114		46.50	48.00	51.6	0.13
115		48.00	49.50		
116		49.50	51.00	41.2	0.14
117		51.00	52.50		
118		52.50	54.00	43.4	0.14
119		54.00	55.50		
120		57.00	58.50	47.7	0.13
121		58.50	60.00		
122		60.00	61.50		
123		61.50	63.00	48.9	0.13
124		64.50	66.00		
125		66.00	67.50	45.8	0.14
126		67.50	69.00		
127		69.00	70.00	48.9	0.12
		Min.		41.2	0.12
		Max.		52.4	0.15
		Avg.		47.55	0.14
128		0.00	1.50		
129		1.50	3.00	46.1	0.12
130	BH-15A	3.00	4.50		
131		4.50	6.00		

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	вн по.	Depth		Modulus of Elasticity	Poisson's Ratio
		From	То	(GPa)	
132		6.00	7.50	45.8	0.11
133		7.50	9.00		
138		9.00	10.50		
139		10.50	12.00		
140		12.00	13.50	42.9	0.13
141		13.50	15.00		
142		15.00	16.50		
143		16.50	18.00		
144		18.00	19.50		
145		19.50	21.00		
146		21.00	22.50	44.5	0.12
147		22.50	24.00		
148		25.50	27.00		
149		27.00	28.50	46.3	0.11
150		28.50	30.00		
151		30.00	31.50		
				47.4	0.11
152		31.50	33.00	49.8	0.1

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr.No.	вн по.	De		Modulus of Elasticity (GPa)	Poisson's Ratio
		From	То	(31 4)	
153		33.00	34.50		
154		34.50	36.00		
155		36.00	37.50	47.6	0.09
156		37.50	39.00		
157		39.00	40.50	45.8	0.13
158		40.50	42.00		
159		42.00	43.50	47.9	0.12
160		43.50	45.00		
161		46.50	48.00		
162		48.00	49.50	50.1	0.12
163		49.50	51.00		
		Min.		42.9	0.09
		Max.		50.1	0.13
		Avg.		46.75	0.11
164		0.00	1.50	54.2	0.14
165		1.50	3.00		
166		3.00	4.50		
167	BH-16	4.50	6.00		
168		4.50	6.00		
169		7.50	9.00	39.9	0.14
170		9.00	10.50		
171		10.50	12.00		
172		12.00	13.50		
173		13.50	15.00		
174		18.00	19.50	51.3	0.11
175		19.50	21.00		
176		21.00	22.50		
177		22.50	24.00	39.7	0.13
178		24.00	25.50		
179		25.50	27.00		

Consultant:		Geotechnical I	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

Sr.No.	вн по.	Depth		Modulus of Elasticity (GPa)	Poisson's Ratio
		From	То	(614)	
180		27.00	28.50		
181		28.50	30.00		
182		30.00	31.50	51.3	0.12
183		31.50	33.00		
184		33.00	34.50		
185		33.00	34.50		
186		36.00	37.50		
187		37.50	39.00	55.5	0.11
188		39.00	40.50		
189		40.50	42.00		
190		42.00	43.50	40.3	0.13
191		45.00	46.50		
192		46.50	48.00	52.6	0.11
193		48.00	49.50		
194		49.50	51.00	45.9	0.12
195		52.50	54.00		
196		54.00	55.50		
197		55.50	57.00	51.4	0.1
198		58.50	60.00		
199		60.00	61.50	50.8	0.12
200		61.50	62.00		
		Min.	1	39.7	0.1
		Max.		55.5	0.14
		Avg.		48.45	0.12

	BH 17				
Depth	Sample Number	Modulus of Elasticity (GPa)	Poisson's Ratio		
19.50	BH17/1221/R/01				
20.50	BH17/1221/R/03				
22.00	BH17/1221/R/05	44.3	0.12		
23.00	BH17/1221/R/06				

Consultant:		Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

	BH 17				
Depth	Sample Number	Modulus of	Poisson's Ratio		
24.50	BH17/1221/R/07				
24.50	BH17/1221/R/08				
25.00	BH17/0122/R/09	42.1	0.1		
25.00	BH17/0122/R/10				
	BH17/0122/R/11				
26.00	BH17/0122/R/12				
	BH17/0122/R/13				
	BH17/0122/R/14				
27.50	BH17/0122/R/15				
27.50	BH17/0122/R/16				
	BH17/0122/R/17				
	BH17/0122/R/18	48.4	0.12		
28.00	BH17/0122/R/19				
	BH17/0122/R/20				
	BH17/0122/R/21				
29.50	BH17/0122/R/22				
23.30	BH17/0122/R/23				
30.00	BH17/0122/R/24				
	BH17/0122/R/25				
31.50	BH17/0122/R/26				
	BH17/0122/R/27	43.3	0.11		
	BH17/0122/R/28				
	BH17/0122/R/29				
22.50	BH17/0122/R/30				
32.50	BH17/0122/R/31				
	BH17/0122/R/32				
	BH17/0122/R/33				
33.50	BH17/0122/R/34				
	BH17/0122/R/35				
	BH17/0122/R/36	44.3	0.08		
	BH17/0122/R/37				
35.00	BH17/0122/R/38				
	BH17/0122/R/40				
41.00	BH17/0122/R/41	45.1	0.13		
	BH17/0122/R/42				
42.50	BH17/0122/R/43				
	BH17/0122/R/44				
	BH17/0122/R/45				
44.00	BH17/0122/R/46				
	BH17/0122/R/47				
	BH17/1221/R/48				
	BH17/1221/R/49	42.8	0.11		
45.50	BH17/1221/R/50	.2.0	5.11		
	BH17/1221/R/51				

Consultant:		Geotechnical	Investigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation
				Ltd

		BH 17		
Depth	Sample Number	Modulus of	Poisson's Ratio	
	BH17/1221/R/52			
47.00	BH17/1221/R/53			
	BH17/1221/R/54			
	BH17/1221/R/55			
48.50	BH17/1221/R/56			
	BH17/1221/R/57	41.6	0.13	
	BH17/1221/R/58			
50.00	BH17/1221/R/59			
50.00	BH17/1221/R/60			
	BH17/1221/R/61			
	BH17/1221/R/62			
	BH17/1221/R/63			
54.50	BH17/1221/R/64			
51.50	BH17/1221/R/65			
	BH17/1221/R/66	45.5	0.1	
	BH17/1221/R/67			
	BH17/1221/R/74			
54.50	BH17/1221/R/75	48.5	0.09	
54.50	BH17/1221/R/76			
	BH17/1221/R/77			
FC 00	BH17/1221/R/78			
56.00	BH17/1221/R/79			
F0.00	BH17/1221/R/80	49.3	0.11	
58.00	BH17/1221/R/81			
59.50	BH17/1221/R/82			
	BH17/1221/R/83			
61.00	BH17/1221/R/84			
01.00	BH17/1221/R/85			
	BH17/1221/R/86			
62.00	BH17/1221/R/87	43.7	0.1	
62.00	BH17/1221/R/88			
M	in.	41.6	0.08	
M	ax.	49.3	0.13	
Av	rerage.	44.91	0.11	

Consultant:		Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –G Triaxial Test

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
				Infrastructure
	BHUBANESWAR	Report No.:	SMC/2050	Development Corporation Ltd

Sr No.	BH No.	De	pth	Tr	iaxial Test
		From	То	Cohesion	Angle of Internal Friction
1		27.00	30.00	17.9	63
2	BH-13	40.50	43.50	20.88	60.02
3		48.00	49.50	15.13	65.23
		Min.		15.13	60.02
		Max.		20.88	65.23
		Avg.		17.97	62.75
4		10.50	13.50	17.66	62.8
5	BH-14	28.50	31.50	18.53	62.06
6		63.00	66.00	24.39	56.48
		Min.		17.66	56.48
		Max.		24.39	62.8
		Avg.		20.19	60.45
7	BH-15	40.50	43.50	13.78	66.39
	•	Min.		13.78	66.39
		Max.			66.39
		Avg.		13.78	66.39

	Consultant:	Geotechnical	Investigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation
			, , , , , , , , , , , , , , , , , , , ,	. Ltd

Sr No.	BH No.	Dep	oth	Tr	iaxial Test
		From	То	Cohesion	Angle of Internal Friction
8	BH-15A	13.50	15.00	16.54	64.08
9	DU-13A	30.00	31.50	15.71	64.67
		Min.		15.71	64.08
		Max.		16.54	64.67
		Avg.			64.38
10	DU 16	27.00	30.00	14.50	65.63
11	BH-16	52.50	54.00	14.75	65.63
		Min.		14.50	65.63
		Max.		14.75	65.63
		Avg.		14.63	65.63
12		25.0	27.5	13.58	69.96
13	BH-17	42.5	44.0	19.44	66.36
14		59.5	61.0	18.89	66.76
	Min.			13.58	66.36
		Max.			69.96
		Avg.		17.30	67.69

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –H Hardness

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr No.	BH No.	De	pth	Hardness Number
		From	То	
1		3.00	4.50	66.5
2		6.00	7.50	64.6
3		19.50	21.00	61.4
4		24.00	25.50	60
5	BH-13	31.50	33.00	53.1
6		36.00	37.50	58.2
7		43.50	45.00	59.9
8		46.50	48.00	64.8
9		57.00	58.50	59.9
		Min.		53.1
		Max.		66.5
		Avg.		60.93
10		6.00	7.50	59.8
11		18.00	19.50	63.2
12		22.50	24.00	61.8
13		31.50	33.00	63.6
14	BH-14	40.50	42.00	58.8
15		46.50	48.00	56.2
16		57.00	58.50	59.00
17		70.50	72.00	57.2
18		72.00	73.50	57.8
		Min.		56.2
		Max.		63.6
		Avg.		59.71

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr No.	BH No.	De	pth	Hardness Number
		From	То	
19		4.50	6.00	58.6
20		9.00	10.50	53.4
21	-	12.00	13.50	59
22		18.00	19.50	61.7
23	BH-15	25.50	27.00	60
24	BU-13	34.50	36.00	54.4
25		51.00	52.50	59.6
26		54.00	55.50	60.6
27		60.00	61.50	61.5
28		67.50	69.00	60.1
		Min.		53.4
		Max.		61.7
		Avg.		58.89
29		3.00	4.50	61
30		9.00	10.50	61.2
31		15.00	16.50	61.5
32	BH-15A	21.00	22.50	60.2
33	DU-13A	25.50	27.00	56.2
34		33.00	34.50	56.1
35		39.00	40.50	61.1
36		46.50	48.00	62.2
		Min.		56.1
		Max.		62.2
		Avg.		59.94

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr No.	BH No.	De	epth	Hardness Number
		From	То	
37		3.00	4.50	60.2
38		13.50	15.00	61.7
39		21.00	22.50	61.7
40	BH-16	27.00	28.50	61.6
41		36.00	37.50	54.8
42		46.50	48.00	58.6
43		55.50	57.00	60.2
		M	lin.	54.8
		М	ax.	61.7
		A	vg.	59.83
44		20.5	22.0	27.4
45		26.0	27.5	25.5
46		27.5	28.0	30.2
47		29.5	30.0	31.8
48		31.5	32.5	22.1
49		32.5	33.5	50.6
50	BH-17	33.5	35.0	34.5
51		41.0	42.5	34.1
52		44.0	45.5	40.0
53		47	48.5	24.5
54		51.5	53.0	28.6
55		54.5	56	33.9
56		61.0	62.0	36.3
		Min.		22.1
		Max.		50.6
		Avg.		32.65

	Consultant:	Geotechnical I	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

ANNEXURE –I Abrasiveness Test

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr No.	BH No.	De	pth	Abrasiveness	Classification				
		From	То		(HRC=55)				
1		3.00	4.50	2.66	High Abrasiveness				
2		6.00	7.50	2.7	High Abrasiveness				
3		19.50	21.00	2.62	High Abrasiveness				
4]	24.00	25.50	2.68	High Abrasiveness				
5	BH-13	31.50	33.00	2.96	High Abrasiveness				
6		36.00	37.50	2.99	High Abrasiveness				
7		43.50	45.00	2.96	High Abrasiveness				
8		46.50	48.00	3.01	High Abrasiveness				
9		57.00	58.50	3.37	High Abrasiveness				
		Min.		2.62	High Abrasiveness				
		Max.		3.37	High Abrasiveness				
		Avg.		2.88	High Abrasiveness				
10		6.00	7.50	2.54	High Abrasiveness				
]	10.50	12.00	2.38	High Abrasiveness				
11		18.00	19.50	2.5	High Abrasiveness				
12		22.50	24.00	2.44	High Abrasiveness				
13	DU 44	31.50	33.00	2.33	High Abrasiveness				
14	BH-14	40.50	42.00	2.74	High Abrasiveness				
15		46.50	48.00	2.5	High Abrasiveness				
16		57.00	58.50	2.76	High Abrasiveness				
17		70.50	72.00	2.64	High Abrasiveness				
18		72.00	73.50	2.64	High Abrasiveness				
		Min.	1	2.33	High Abrasiveness				
		Max.		2.76	High Abrasiveness				
		Avg.		2.55	High Abrasiveness				

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr No.	BH No.	De	pth	Abrasiveness	Classification				
		From	То		(HRC=55)				
19		4.50	6.00	2.99	High Abrasiveness				
20		9.00	10.50	2.96	High Abrasiveness				
21		12.00	13.50	3.19	High Abrasiveness				
22		18.00	19.50	2.88	High Abrasiveness				
23		25.50	27.00	3.25	High Abrasiveness				
24	BH-15	34.50	36.00	3.23	High Abrasiveness				
		43.50	45.00	3.43	High Abrasiveness				
25		51.00	52.50	3.07	High Abrasiveness				
26		54.00	55.50	3.19	High Abrasiveness				
27		60.00	61.50	3.15	High Abrasivenes				
28		67.50	69.00	3.29	High Abrasiveness				
		Min.		2.88	High Abrasiveness				
		Max.		3.43	High Abrasiveness				
		Avg.		3.15	High Abrasivenes				
29		3.00	4.50	3.17	High Abrasiveness				
30		9.00	10.50	3.23	High Abrasiveness				
31		15.00	16.50	3.21	High Abrasiveness				
32	Bu 454	21.00	22.50	3.39	High Abrasiveness				
33	- BH-15A	25.50	27.00	2.92	High Abrasiveness				
34		33.00	34.50	3.13	High Abrasivenes				
35		39.00 40.50		3.15	High Abrasivenes				
36		46.50 48.00		3.01	High Abrasiveness				
		Min.	1	2.92	High Abrasiveness				
		Max.		3.39 High Abrasive					
		Avg.		3.15 High Abrasive					

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S.M. CONSULTANTS	Job No.:	830	Haryana Rail
	BHUBANESWAR	Report No.:	SMC/2050	Infrastructure Development Corporation Ltd

Sr No.	BH No.	De	epth	Abrasiveness	Classification		
		From	То		(HRC=55)		
37		3.00	4.50	3.15	High Abrasiveness		
38		13.50	15.00	3.23	High Abrasiveness		
39		21.00	22.50	2.94	High Abrasiveness		
40	BH-16	27.00	28.50	3.15	High Abrasiveness		
41		36.00	37.50	3.15	High Abrasiveness		
42		46.50	48.00	3.27	High Abrasiveness		
43		55.50	57.00	3.31	High Abrasiveness		
		Min.	•	2.94			
		Max.		3.31			
		Avg.		3.17			
44		20.5	22.0	1.95	Medium Abrasiveness		
45		26.0 27.5		1.91	Medium Abrasiveness		
46		27.5 28.0		2.38	High Abrasiveness		
47		29.5	30.0	2.58	High Abrasiveness		
48		31.5	32.5	2.18	High Abrasiveness		
49		32.5	33.5	2.36	High Abrasiveness		
50	BH-17	33.5	35.0	2.46	High Abrasiveness		
51		41.0	42.5	2.12	High Abrasiveness		
52		44.0	45.5	2.28	High Abrasiveness		
53		47	48.5	2.16	High Abrasiveness		
54		51.5	53.0	2.08	High Abrasiveness		
55		54.5	56	2.24	High Abrasiveness		
56		61.0	62.0	1.97	Medium Abrasiveness		
		Min.	•	1.91			
		Max.		2.58			
		Avg.		2.21			

	Consultant:	Geotechnical II	nvestigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	ET

ANNEXURE –G SOIL TEST Results

^{*} The SPT N values illustrated in the tables below are raw values (without correction factor) collected directly from field.

^{*} The phi values represented in the tables are measured in laboratory, they do not illustrate the phi values in the insitu condition.

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	T RESULTSHEI	ET

BH-17, (CH-25785 M)

				(Grain size	e analys	is		meter lysis	A [·]	tterbe Limit	-										
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value		(4.75mm To 2.00 mm)	(2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(φ) in degree	Triaxial test (UU)		Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	From 0.0 m to 1.50 m depth	UDS		6.23	1.87	4.63	37.26	37.56	12.45	25	19	6	10.56	1.754	1.586	0.09	27	DS	2.66	0.68	0.136	ML-CL
2	From 1.50 m to 3.0 m depth	SPT	12	11.53	2.21	5.3	29.63	38.70	12.63	25	20	5							2.66			ML-CL
3	From 3.0 m to 4.50 m depth	UDS		5.23	3.14	4.87	6.85	65.06	14.85	26	20	6	12.45	1.816	1.615	0.15	14	UU	2.67	0.65	0.129	ML-CL
4	From 4.50 m to 6.0 m depth	SPT	16	4.21	1.35	4.58	7.59	65.88	16.39	27	20	7							2.67			ML-CL
5	From 6.0 m to 9.0 m depth	UDS		3.15	2.84	6.47	9.66	63.26	14.62	25	20	5	13.82	1.853	1.628	0.15	12	UU	2.66	0.63	0.139	ML-CL
6	From 9.0 m to 12.0 m depth	SPT	26	7.14	0.73	1.12	5.69	68.56	16.76	26	19	7							2.68			ML-CL
7	From 12.0 m to 15.0 m depth	SPT	21	6.02	1.06	2.48	7.03	67.55	15.86	25	19	6							2.67			ML-CL

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFC'	<u> </u>	er.

Contd... BH-17, (CH-25785 M)

					Grain size analysis Hydrometer Analysis Atterberg's Limit L L L L L L L L L L L L L																	
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm	Medium Sand in % (2.0mm To 0.425mm	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance (Φ) in degree	Type of shear test Triaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, (Group of soil
8	From 15.0 m to 16.50 m depth	SPT	37	6.97	68.2 15										ML-CL							
9	From 16.50 m to 18.00 m depth	SPT	>50	26	0.87									ML-CL								
10	From 18.0 m to 19.50 m depth	ROCK			ROCK (CORE RECOVERY=17%, R.Q.D=NIL)																	
11	From 19.50 m to 20.50 m depth	ROCK								R	OCK (CORE RI	ECOVER	Y=22%,	R.Q.D=N	IIL)						
12	From 20.50m to 22.00 m depth	ROCK								RO	CK (C	ORE REC	COVERY:	=25%, R	.Q.D=11	.6%)						
13	From 22.0 m to 23.0 m depth	ROCK								R	OCK (CORE RI	ECOVER	Y=32%,	R.Q.D=N	IIL)						
14	From 23.0 m to 24.50 m depth	ROCK			ROCK (CORE RECOVERY=33%, R.Q.D=NIL)																	
15	From 24.50 m to 25.0 m depth	ROCK			ROCK (CORE RECOVERY=48%, R.Q.D=25%)																	
	1		1																			

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		ТЕСТ	DECIH TCHEI	· ጥ

Contd... BH-17, (CH-25785 M)

				(Grain si	ize ana	ılysis		-	meter lysis	Att	erberg's	s Limit													
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in %	(2.0mm 10 0.425mm)	(0.425mm To 0.075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistance	(φ) in degree	Triaxial test (UU)	Diract chast tact (DS)	Specific gravity	Void ratio	consolidation test	(Compression Index, Cc)	Group of soil
16	From 25.00 m to 26.00 m depth	ROCK		·							ROO	CK (COI	RE RECC	OVERY=5	9%, R.Q	.D=32.69	%)				-					
17	From 26.00 m to 27.50 m depth	ROCK									ROC	K (COR	E RECO	VERY=4	4%, R.Q.	D=12.66	5%)									
18	From 27.50 m to 28.0 m depth	ROCK									ROO	CK (COI	RE RECC	OVERY=6	58%, R.Q	.D=25.8	%)									
19	From 28.0 m to 29.50 m depth	ROCK									RO	CK (CO	RE REC	OVERY=	58%, R.C).D=7.6%	6)									
20	From 29.50 m to 30.0 m depth	ROCK									RC	OCK (CC	ORE REC	COVERY=	=70%, R.	Q.D=NIL)									
21	From 30.00m to 31.00 m depth	ROCK									ROC	K (COR	E RECO	VERY=4	7%, R.Q.	D=17.13	%)									
22	From 31.0 m to 32.50 m depth	ROCK									RC	OCK (CC	ORE REC	COVERY=	=64%, R.	Q.D=NIL)									

	Consultant:	Geotechnical In	vestigation Report	Client:
S M.C.	S,M, CONSULTANTS	Job No.:	830	Hawana Bail Infrastructura Davalanment Corneration Ital
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFCT	DECIII TCHEI	7T

Contd... BH-17, (CH-25785 M)

					Grain	size analysi	5		ometer Ilysis	A	tterber Limit	g's												
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	Coarse sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of snearing resistance	(φ) in degree	Triaxial test (UU)	Specific gravity	Void ratio	Consolidation test	(Compression Index, Cc)	Group of soil
23	From 32.50 m to 33.50 m depth	ROCK				ROCK (CORE RECOVERY=34 66%, R.Q.D=15.53%)																		
24	From 33.50 m to 35.0 m depth	ROCK				ROCK (CORE RECOVERY=34.66%, R.Q.D=NIL)																		
25	From 35.00 m to 36.50 m depth	SPT	>50	2.16	1.51	3.55	67.09	25.69	0.00	21		NP					-			2.65				SM
26	From 36.50 m to 38.00 m depth	SPT	>50	3.41	1.61	9.75	71.60	13.63	0.00	20		NP					-			2.64				SM
27	From 38.00 m to 39.50 m depth	SPT	>50	4.10	1.37	2.57	5.31	71.41	15.24	25		NP					-			2.66				ML
28	From 39.50 m to 41.00 m depth	ROCK					•		-	ROC	K (COR	E REC	OVER	Y=32%, F	R.Q.D=11	.%)	•			•	-	•	•	
29	From 41.00 m to 42.50 m depth	ROCK							RC	OCK (C	ORE R	ECOV	ERY=4	41.33%, F	R.Q.D=19).33%)								

	Consultant:	Geotechnical Ir	vestigation Report	Client:
SMC	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TT CT	DECLI MOTEL	

Contd... BH-17, (CH-25785 M)

					Grain s	size a	nalysi	S		-	meter Ilysis	Д	tterbe Limit	-												
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm) Coarse Sand In %	(4.75mm To 2.00 mm)	Medium Sand in %	(2.0mm To 0.425mm)	Fine Sand in %	(0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of snearing resistance	(ϕ) in degree	Triaxial test (UU)	Specific gravity	Void ratio	Consolidation test	(Compression Index, Cc)	Group of soil
30	From 42.50m to 44.00 m depth	ROCK			Company Comp																					
31	From 44.0 m to 45.50 m depth	ROCK										ROC	CK (CO	RE RE	COVE	RY=30%,	R.Q.D=N	IL)								
32	From 45.50 m to 47.00 m depth	ROCK										ROCK	(COR	RECO	OVER	Y=37.33%	%, R.Q.D=	NIL)								
33	From 47.00 m to 48.50 m depth	ROCK									F	ROCK (CORE I	RECOV	ERY=	41.33%,	R.Q.D=21	06%)								
34	From 48.50 m to 50.00 m depth	ROCK										ROC	CK (CO	RE RE	COVE	RY=30%,	R.Q.D=N	IL)								
35	From 50.00 m to 51.50 m depth	ROCK										ROCK	(COR	RECO	OVER	Y=36.66%	6, R.Q.D=	NIL)								
36	From 51.50 m to 53.00 m depth	ROCK										ROCK	(CORE	RECC	VERY	/=34.66%	, R.Q.D=1	12%)								

	Consultant:	Geotechnical II	nvestigation Report	Client:
S.M.C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	ET

Contd... BH-17, (CH-25785 M)

					Grain	size a	analysi	is		Hydro Anal		Att	erberg's	Limit													
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm) Coarse Sand in %	(4.75mm To 2.00 mm)	Medium Sand in %	(2.0mm To 0.425mm)	Fine Sand in %	(0.425mm To 0.075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of snearing resistance	(φ) in degree	Triaxial test (UU)	Diract chaar tact (DS)	Specific gravity	Void ratio	consolidation test	(Compression Index, Cc)	Group of soil
37	From 53.00 m to 54.50 m depth	ROCK		·	ROCK (CORE RECOVERY=33.33%, R.Q.D=6.8%)																						
38	From 54.50 m to 56.00m depth	ROCK			ROCK (CORE RECOVERY=33.33%, R.Q.D=6.8%) ROCK (CORE RECOVERY=28%, R.Q.D=6.73%)																						
39	From 56.00m to 58.00 m depth	ROCK										RO	OCK (CC	ORE REC	COVERY=	=38%, R.	Q.D=8%)									
40	From 58.00 m to 59.50m depth	ROCK										ROC	CK (COF	E RECC	VERY=3	8.33%, I	R.Q.D=N	IL)									
41	From 59.50 m to 61.00 m depth	ROCK										ROCK	(CORE	RECOV	/ERY=40	.6%, R.C).D=27.6	6%)									
42	From 61.00 m to 62.00 m depth	ROCK										ROC	K (COR	E RECO	VERY=70	0%, R.Q.	D=12.66	5%)									
*Note: I	From 35.0 m to 39.5	5m denth hig	hlv wes	thered so	oft roc	k str	atum	eviste	s from	which c	ore san	nnle c	nuldn't	he colle	cted only	v washed	out sam	nle ha	s hee	n coll	ected						

^{*}Note: From 35.0 m to 39.5m depth, highly weathered soft rock stratum exists from which core sample couldn't be collected only washed out sample has been collected.

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFCT	DECIII TCHEI	7 T

BH-18, (CH-25990)

						Grain	size analys	sis		Atte	rberg's	s Limit										
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value		Coarse Sand in % (4.75mm To 2.00 mm)	(2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance (φ) in degree	Type of shear test Triaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	2.77	21.85	66.69	8.69	26		NP							2.67			ML
2	At 1.5 m depth	UDS		0	0.09	0.54	34.22	58.61	6.54	24		NP	11.42	1.765	1.584	0.13	17	UU	2.66	0.68	0.132	ML
3	At 3.0 m depth	SPT	11	1.21	0.16	1.49	7.87	80.01	9.26	25		NP							2.68			ML
4	At 4.5 m depth	UDS		0	0.13	0.53	35.77	55.94	7.63	25		NP	12.63	1.803	1.601	0.12	19	UU	2.66	0.66	0.128	ML
5	At 6.0 m depth	SPT	20	0.75	1.12	1.02	11.01	76.63	9.47	26		NP							2.68			ML
6	At 9.0 m depth	UDS		0	0	0.64	22.85	67.82	8.69	26		NP	14.63	1.853	1.617	0.16	14	UU	2.67	0.65	0.125	ML
7	At 12.0 m depth	SPT	24	0	0	0.41	17.66	71.47	10.46	27		NP							2.68			ML
8	At 15.0 m depth	SPT	31	0	0	0.65	13.25	70.87	15.23	27	21	6							2.70			ML-CL
9	At 18.0 m depth	SPT	35	1.12	3.05	3.21	12.74	65.99	13.89	25	20	5							2.69			ML-CL

	Consultant:	Geotechnical In	vestigation Report	Client:
S M.C.	S,M, CONSULTANTS	Job No.:	830	Hawana Bail Infrastructura Davalanment Corneration Ital
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFCT	DECIII TCHEI	7T

Contd... BH-18, (CH-25990)

						Grain size	analysis				erber Limit	g's					a)					
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance (ϕ) in degree	Type of shear test Triaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	40	0	4.27	4.28	12.73	66.51	12.21	26	20	6							2.69			ML-CL
11	At 24.0 m depth	SPT	47	2.08	5.39	4.35	10.17	70.32	7.69	25		NP							2.66			ML
12	At 27.00 m depth	SPT	49	2.77	5.59	4.54	7.57	71.08	8.45	24		NP							2.67			ML
13	At 30.00 m depth	SPT	57	6.59	2.30	2.13	11.62	70.87	6.49	25		NP							2.66			ML
14	At 33.00 m depth	SPT	64	2.29	3.32	2.72	20.65	64.68	6.34	24		NP							2.65			ML
15	At 36.00 m depth	SPT	69	1.21	3.92	2.72	20.65	64.94	6.56	25		NP							2.67			ML
16	At 39.00 m depth	SPT	77	1.21	3.92	5.48	13.20	68.82	7.37	26		NP							2.66			ML
17	At 42.00 m depth	SPT	84	0	0.29	4.69	14.85	70.53	9.64	27		NP							2.67			ML
18	At 45.00 m depth	SPT	>50	0.86	1.29	2.47	21.77	66.35	7.26	25		NP							2.66			ML
19	At 47.00 m depth	SPT	>50	1.01	0.95	1.68	21.22	67.29	7.85	25		NP							2.65			ML

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		ТЕСТ	DECIH TCHEI	· ጥ

Contd... BH-18, (CH-25990)

						Grain size	analysis				erberg Limit	g's					υ υ					
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	lium San nm To 0	Fine Sand in % (0.425mm To .075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistance (φ) in degree	Type of shear test Triaxial test (UU) Direct shear test (DS)	c gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
20	At 50.0 m depth	SPT	>50	0	0	0.38	36.92	56.16	6.54	24		NP							2.68			ML
21	At 53.0 m depth	SPT	>50	5.50	1.11	0.98	17.76	66.76	7.89	25		NP							2.66			ML
22	At 55.00 m depth	SPT	>50	4.29	1.92	1.75	16.29	67.63	8.12	26		NP							2.66			ML

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S.M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	 RESULTSHEI	ET

BH-19, (CH-26210 M)

				ı	Grain size	analysi	S	Hydro Anal		Atte	berg's	s Limit					.EI) (DI				
Sl. No.	Sample Collected at	Type of soil collected	N Value	avel in ⁹ To 4.75	7 2	(2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(φ) degree	Type of shear test (Triaxial test (UU) Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.52	31.8	46.32	21.36	25		NP							2.66			ML
2	At 1.5 m depth	SPT	17	0	0	0.35	29.33	47.89	22.43	26		NP							2.67			ML
3	At 3.0 m depth	UDS		0	0	0.78	33.46	45.28	20.48	24		NP	10.59	1.761	1.592	0.14	20	DS	2.66	0.67	0.123	ML
4	At 4.5 m depth	SPT	23	13.54	1.59	3.96	10.02	49.93	20.96	24		NP							2.65			ML
5	At 6.0 m depth	UDS		6.24	2.85	4.39	13.62	49.46	23.44	27		NP	11.36	1.792	1.609	0.13	24	DS	2.67	0.66	0.118	ML
6	At 9.0 m depth	SPT	30	5.8	0.24	3.24	9.08	54.79	26.85	26		NP							2.68			ML
7	At 12.0 m depth	UDS		3.15	0.46	1.79	13.63	56.03	24.94	26		NP	11.85	1.813	1.621	0.10	26	DS	2.68	0.65	0.114	ML
8	At 15.0 m depth	SPT	35	1.01	0.3	0.8	17.77	55.86	24.26	25		NP							2.67			ML

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	T RESULTSHEI	ET

Contd... BH-19, (CH-26210 M)

					Grain siz	ze analysis			ometer lysis		erberg Limit	g's					(b):	test ()				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(in degree	Type of shear test (Triaxial test (UU) / Direct shear test (DS))	Specific gravity	Void ratio	Compression Index, Cc)	Group of soil
9	At 18.0 m depth	UDS		5.26	0.96	1.45	14.96	54.50	22.87	26		NP	12.64	1.826	1.621	0.11	25	DS	2.66	0.64	0.111	ML
10	At 21.0 m depth	SPT	35	8.28	0.81	2.77	12.82	55.69	19.63	24		NP							2.65			ML
11	At 24.0 m depth	UDS		3.45	0.69	1.75	21.82	51.85	20.44	25		NP	13.76	1.849	1.625	0.12	23	DS	2.66	0.64	0.115	ML
12	At 27.00 m depth	SPT	39	0.55	0.29	1.08	27.15	51.39	19.54	24		NP							2.65			ML
13	At 30.00 m depth	UDS		0.63	0.45	1.69	24.85	50.75	21.63	25		NP	14.24	1.863	1.631	0.08	27	DS	2.66	0.63	0.116	ML
14	At 33.00 m depth	SPT	43	2.3	3.3	12.85	60.05	21.50	0.00	19		NP							2.65			SM
15	At 36.00 m depth	DS		0.53	3.24	13.83	62.42	19.98	0.00	18		NP							2.63			SM
16	At 39.00 m depth	SPT	52	0	0	11.29	43.73	44.98	0.00	21		NP							2.65			SM
17	At 42.00 m depth	DS		0.14	1.64	12.89	50.37	34.96	0.00	20		NP							2.64			SM
18	At 45.00 m depth	SPT	65	0.62	0.82	10.3	43.26	45.00	0.00	21		NP							2.65			SM

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFST	RESULTSHE	 የ ፐ

TEST KESULISHEET

Contd... BH-19, (CH-26210 M)

					Grain siz	ze analysis		Hydro Anal	ometer lysis	1	terberg Limit						(b)a	test ()			
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	um Sand nm To 0	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance in degree	Type of shear test (Triaxial test (UU) / Direct shear test (DS))	Specific gravity	Compression Index, Cc)	Group of soil
19	At 48.00 m depth	DS		1.01	2.08	12.23	52.69	31.99	0.00	20		NP							2.64	 	SM
20	At 50.00 m depth	SPT	80	0.22	0.92	11.98	51.54	35.34	0.00	21		NP							2.63	 	SM

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	Γ RESULTSHEI	ET

BH-20, (CH-26387M)

					Grain size	analysi	s	Hydro Anal		Atter	rberg's	Limit					ni (φ)	test ())				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	and ir 1 To 2	(2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(degree	Type of shear test (Triaxial ter (UU) / Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	1.04	38.61	54.08	6.27	27		NP							2.67			ML
2	At 1.5 m depth	SPT	18	0	0	2.56	45.72	46.58	5.14	25		NP							2.66			ML
3	At 3.0 m depth	UDS		1.8	0.78	1.42	39.52	50.44	6.04	26		NP	11.58	1.761	1.578	0.12	24	DS	2.66	0.69	0.118	ML
4	At 4.5 m depth	SPT	32	0	0	1.13	39.71	53.23	5.93	26		NP							2.67			ML
5	At 6.0 m depth	UDS		0	0	0.67	40.58	52.93	5.82	25		NP	12.43	1.795	1.597	0.14	27	DS	2.66	0.67	0.112	ML
6	At 9.0 m depth	SPT	48	8.24	0.8	1.32	4.08	77.09	8.47	27		NP							2.68			ML
7	At 12.0 m depth	DS		14.74	5.96	3.44	37.78	38.08	0.00	21		NP							2.64			SM
8	At 15.0 m depth	SPT	60	13.83	3.05	4.49	14.01	57.77	6.85	26		NP							2.67			ML
9	At 18.0 m depth	DS		15.72	10.44	3.33	15.53	49.18	5.80	22		NP							2.65			ML

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFST	RESULTSHE	 የ ፐ

TEST KESULISHEET

Contd... BH-20, (CH-26387 M)

					Grain siz	ze analysis	_	Hydro Ana	ometer lysis		erberg Limit	g's					(\phi)a	test				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(in degree	Type of shear test (Triaxial test (UU) / Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	67	4.2	2.21	2.11	28.52	56.46	6.50	25		NP							2.67			ML
11	At 24.0 m depth	SPT	76	0	0	1.81	13.06	76.83	8.30	27		NP							2.68			ML
12	At 27.00 m depth	UDS		3.38	2.51	7.06	7.7	64.85	14.50	31	20	11	14.21	1.902	1.665	0.27	12	UU	2.70	0.62	0.134	CL
13	At 30.00 m depth	SPT	58	0	0	0.21	11.23	71.36	17.20	33	21	12							2.71			CL
14	At 33.00 m depth	UDS		0.76	1.71	3.61	6.07	71.05	16.80	33	20	13	14.85	1.935	1.685	0.30	11	UU	2.71	0.61	0.136	CL
15	At 36.00 m depth	SPT	67	1.2	0.77	4.01	17.67	62.15	14.20	31	21	10							2.70			CL
16	At 39.00 m depth	UDS		0	0.63	1.08	7.44	72.35	18.50	34	22	12	15.38	1.958	1.697	0.36	14	UU	2.72	0.60	0.138	CL
17	At 42.00 m depth	SPT	75	3.12	1.63	3.72	9.71	64.92	16.90	32	21	11							2.71			CL
18	At 45.00 m depth	UDS		0	0	1.11	24.18	60.71	14.00	30	18	12	16.47	1.988	1.707	0.31	10	UU	2.70	0.58	0.133	CL
19	At 48.00 m depth	SPT	79	0	0.69	0.18	8.39	72.34	18.40	34	23	11							2.72			CL

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	T RESULTSHEI	ET

BH-21, (CH-26587 M)

					Grain size	e analysis		Hydro Anal		A	tterbe Limi						п	/(nn)				
SI. No.	Sample Collected at	Type of soil collected		avel in ⁹ To 4.75	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(φ) in degree	f shear test (Triaxial test shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.98	29.34	63.28	6.40	25		NP							2.66			ML
2	At 1.5 m depth	SPT	14	0	0	0.8	27.92	64.38	6.90	26		NP							2.67			ML
3	At 3.0 m depth	UDS		0	0	0.78	23.87	67.85	7.50	27		NP	10.28	1.768	1.603	0.11	24	DS	2.67	0.67	0.112	ML
4	At 4.5 m depth	SPT	20	0	0	1.02	26.12	65.76	7.10	26		NP							2.66			ML
5	At 6.0 m depth	UDS		10.23	0.57	2.52	8.02	70.86	7.80	27		NP	11.47	1.819	1.632	0.10	25	DS	2.68	0.64	0.116	ML
6	At 9.0 m depth	SPT	31	8.31	1.47	2.56	10.42	69.94	7.30	27		NP							2.68			ML
7	At 12.0 m depth	UDS		22.85	4.06	2.15	19.18	45.06	6.70	25		NP	12.16	1.824	1.626	0.07	27	DS	2.64	0.62	0.109	ML
8	At 15.0 m depth	SPT	38	0	1.06	3.7	6.73	80.11	8.40	27		NP							2.68			ML
9	At 18.0 m depth	ROCK			I			ı	FRAG	GMEN	NTED	ROCK	(CORE I	RECOVE	RY = 6.0	%, R.Q.	D=4.5%	6)	ı	ı	1	

	Consultant:	Geotechnical	Investigation Report	Client:
S M C	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TES'	T RESULTSHE	ET

Contd... BH-21, (CH-26587 M)

					Grain	size analys	is	Hydro Anal		Atte	erberg's	Limit					φ) in	(UU)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value		Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(φ degree	Type of shear test (Triaxial test (UU) / Direct shear test (DS))	Specific gravity	Void ratio	Consondation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	ROCK			FRAGMENTED ROCK (CORE RECOVERY=3.5%, R.Q.D=NIL)																	
11	At 24.0 m depth	ROCK			FRAGMENTED ROCK (CORE RECOVERY=3.5%, R.Q.D=NIL) FRAGMENTED ROCK (CORE RECOVERY=4.0%, R.Q.D=NIL) FRAGMENTED ROCK (CORE RECOVERY=6.0%, R.Q.D=NIL)																	
12	At 27.00 m depth	ROCK							FRAG	MENT	ED RC	CK (CO	RE REC	OVERY	=6.0%, R	2.Q.D=1	NIL)					
13	At 30.00 m depth	ROCK							FRAG	MENT	ED RC	CK (CO	RE REC	OVERY	=9.0%, R	.Q.D=1	NIL)					
14	At 33.00 m depth	ROCK							FRAG	MENT	ED RC	CK (CO	RE REC	OVERY	=6.0%, R	.Q.D=1	NIL)					
15	At 36.00 m depth	ROCK							FRAG	MENT	ED RC	CK (CO	RE REC	OVERY	=4.6%, R	.Q.D=1	NIL)					
16	At 39.00 m depth	DS		1.59	1.05	1.79	9.41	77.76	8.40	28		NP							2.68			ML
17	At 42.00 m depth	SPT	77	0	0.12	2.98	19.55	69.85	7.50	27		NP							2.67			ML
18	At 45.00 m depth	26600		0	0	3.56	22.62	66.62	7.20	25		NP							2.66			ML

	Consultant:	Geotechnical II	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	E T

BH-22, (CH-26787 M)

					Compression Index Compression I																	
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	ın % 2.00	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in		Plastic Limit In %	Index in	Field Moisture Content in %	Natural density in gm/cc.	density in	(C)	Angle of shearing resistance(ϕ degree	axial test	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.2	20.81	60.79	18.20	31	20	11							2.70			CL
2	At 1.5 m depth	SPT	15	0																		
3	At 3.0 m depth	UDS		0.39															ML			
4	At 4.5 m depth	SPT	21	19.14	0.52	3.9	11.46	58.38	6.60	25		NP							2.65			ML
5	At 6.0 m depth	UDS		0	0.2	0.14	24.82	67.64	7.20	27		NP	13.57	1.826	1.608	0.13	28	DS	2.67	0.66	0.112	ML
6	At 9.0 m depth	SPT	28	16.76	2.29	7.05	8.02	59.08	6.80	26		NP							2.66			ML
7	At 12.0 m depth	PEBBLE			PEBBLE PIECES WERE COLLECTED																	
8	At 15.0 m depth	PEBBLE									PEBE	BLE PIE	ECES WE	RE COLI	ECTED							
9	At 18.0 m depth	ROCK							FRAG	MEN'	TED F	ROCK (CORE RE	COVERY	∕=3.0%, F	R.Q.D=1	NIL)					

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		ТЕСТ	DECIH TCHEI	· ጥ

Contd... BH-22, (CH-26787 M)

					Grain si	ze analys	is	Hydro Anal		Atte	erberg's	Limit					φ) in	st				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	To 4.75	Coarse Sand m % (4.75mm To 2.00 mm)	um Sand um To 0	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(degree	Type of shear test (Triaxial test (UU) / Direct shear test (DS))	Specific gravity	Void ratio	Compression Index, Cc)	Group of soil
10	At 21.0 m depth	ROCK				FRAGMENTED ROCK (CORE RECOVERY=2.3%, R.Q.D=NIL) FRAGMENTED ROCK (CORE RECOVERY=3.0%, R.Q.D=NIL)																
11	At 24.0 m depth	ROCK																				
12	At 27.00 m depth	ROCK							FRAG	MENT	ED RO	CK (CO	RE REC	COVERY	=2.0%, F	R.Q.D=	NIL)					
13	At 30.00 m depth	ROCK							FRAG	MENT	ED RO	CK (CO	RE REC	COVERY	=3.0%, F	R.Q.D=	NIL)					
14	At 33.00 m depth	ROCK							FRAG	MENT	ED RO	CK (CO	RE REC	COVERY	=2.3%, F	R.Q.D=	NIL)					
15	At 36.00 m depth	ROCK							FRAG	MENT	ED RO	CK (CO	RE REC	COVERY	=4.0%, F	R.Q.D=	NIL)					
16	At 39.00 m depth	ROCK							FRAG	MENT	ED RO	OCK (CO	RE REC	COVERY	=4.0%, F	R.Q.D=	NIL)					
17	At 42.00 m depth	DS		0	0.3	1.58	33.52	44.10	20.50	30	20	10							2.71			CL
18	At 45.00 m depth	SPT	91	6.44	0.88	1.4	32.90	38.78	19.60	28	19	9							2.70			CL

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFS'	<u> </u>	rr

BH-23, (CH-26980 M)

Analysis Limit L						Grain s	ize analys	sis		ometer lysis	At	tterber Limit						II	/(0.0				
2 At 1.5 m depth SPT 16 0 0 0.2 20.45 64.55 14.80 32 19 13 2.71 CL 3 At 3.0 m depth UDS 0 0 0.2 20.32 64.58 14.90 32 20 12 10.62 1.752 1.584 0.31 9 UU 2.71 0.71 0.130 CL 4 At 4.5 m depth SPT 23 12.8 0.7 1.67 9.92 60.71 14.20 31 18 13 2.70 CL 5 At 6.0 m depth UDS 0 0 1.37 15.52 67.91 15.20 33 20 13 11.35 1.785 1.603 0.26 12 UU 2.72 0.70 0.132 CL 6 At 9.0 m depth SPT 34 0 0 0 23.15 70.65 6.20 27 N	SI. No.	Sample Collected at	Type of soil collected	Z	aver nr 70 To 4.75mm	апа из 20 То 2.00	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	ii.	Clay in %	Liquid Limit In %	Plastic Limit In %		Content in	Natural density in gm/cc.	density in	(C)	of shearing resistance(φ)	Type of shear test (Triaxial test (Upprect shear test (DS))	Specific gravity	Void ratio	ex,	Group of soil
3 At 3.0 m depth UDS 0 0 0.2 20.32 64.58 14.90 32 20 12 10.62 1.752 1.584 0.31 9 UU 2.71 0.71 0.130 CL 4 At 4.5 m depth SPT 23 12.8 0.7 1.67 9.92 60.71 14.20 31 18 13	1	At 0.5 m depth	DS		0	0	0	32.85	53.65	13.50	30	18	12							2.70			CL
4 At 4.5 m depth SPT 23 12.8 0.7 1.67 9.92 60.71 14.20 31 18 13 2.70 CL 5 At 6.0 m depth UDS 0 0 1.37 15.52 67.91 15.20 33 20 13 11.35 1.603 0.26 12 UU 2.72 0.70 0.132 CL 6 At 9.0 m depth SPT 34 0 0 0 23.15 70.65 6.20 27 NP 2.67 ML 7 At 12.0 m depth DS 6.27 1.67 7.71 9.26 60.89 14.20 32 19 13 2.70 CL 8 At 15.0 m depth SPT 38 2.31 2	2	At 1.5 m depth	SPT	16	0	0	0.2	20.45	64.55	14.80	32	19	13							2.71			CL
5 At 6.0 m depth UDS 0 0 1.37 15.52 67.91 15.20 33 20 13 11.35 1.785 1.603 0.26 12 UU 2.72 0.70 0.132 CL 6 At 9.0 m depth SPT 34 0 0 0 23.15 70.65 6.20 27 NP 2.67 ML 7 At 12.0 m depth DS 6.27 1.67 7.71 9.26 60.89 14.20 32 19 13	3	At 3.0 m depth	UDS		0	0	0.2	20.32	64.58	14.90	32	20	12	10.62	1.752	1.584	0.31	9	UU	2.71	0.71	0.130	CL
6 At 9.0 m depth SPT 34 0 0 0 23.15 70.65 6.20 27 NP 2.67 ML 7 At 12.0 m depth DS 6.27 1.67 7.71 9.26 60.89 14.20 32 19 13 2.70 CL 8 At 15.0 m depth SPT 38 2.31 2.23 15.61 8.32 57.63 13.90 30 17 13 2.69 CL	4	At 4.5 m depth	SPT	23	12.8	0.7	1.67	9.92	60.71	14.20	31	18	13							2.70			CL
7 At 12.0 m depth DS 6.27 1.67 7.71 9.26 60.89 14.20 32 19 13 2.70 CL 8 At 15.0 m depth SPT 38 2.31 2.23 15.61 8.32 57.63 13.90 30 17 13 2.69 CL	5	At 6.0 m depth	UDS		0	0	1.37	15.52	67.91	15.20	33	20	13	11.35	1.785	1.603	0.26	12	UU	2.72	0.70	0.132	CL
8 At 15.0 m depth SPT 38 2.31 2.23 15.61 8.32 57.63 13.90 30 17 13 2.69 CL	6	At 9.0 m depth	SPT	34	0	0	0	23.15	70.65	6.20	27		NP							2.67			ML
	7	At 12.0 m depth	DS		6.27	1.67	7.71	9.26	60.89	14.20	32	19	13							2.70			CL
9 At 18.0 m depth DS 0 0 0.2 19.19 65.81 14.80 33 19 14 2.71 CL	8	At 15.0 m depth	SPT	38	2.31	2.23	15.61	8.32	57.63	13.90	30	17	13							2.69			CL
	9	At 18.0 m depth	DS		0	0	0.2	19.19	65.81	14.80	33	19	14							2.71			CL

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	Γ RESULTSHEI	ET

Contd... BH-23, (CH-26980 M)

					Grain s	ize analys	is	Hydro Ana	ometer lysis	Atterl	perg's	Limit					φ) in	test (UU)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(q degree	Type of shear test (Triaxial test / Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	50	5.71	0.9	0.99	49.32	43.08	0.00	20		NP							2.65			SM
11	At 24.0 m depth	UDS		3.47	1.7	1.54	31.5	48.59	13.20	30	17	13	13.45	1.851	1.632	0.29	11	UU	2.69	0.65	0.126	CL
12	At 27.00 m depth	SPT	63	1.03	0.51	0.23	61.61	36.62	0.00	19		NP							2.64			SM
13	At 30.00 m depth	UDS		4.84	1.61	1.35	18.75	67.65	5.80	26		NP	14.62	1.883	1.643	0.11	26	DS	2.67	0.63	0.117	ML
14	At 33.00 m depth	SPT	73	2.64	1.21	1.95	10.36	68.54	15.30	33	19	14							2.72			CL
15	At 36.00 m depth	UDS		7.71	0.7	1.56	42.4	47.63	0.00	21		NP	15.48	1.906	1.651	0.04	27	DS	2.66	0.61		SM
16	At 39.00 m depth	SPT	77	0	0	0.2	1.39	79.11	19.30	34	21	13							2.72			CL
17	At 42.00 m depth	UDS		0	2.74	7.74	11.98	62.64	14.90	31	20	11	16.21	1.961	1.687	0.30	14	UU	2.70	0.60	0.132	CL
18	At 45.00 m depth	SPT	85	0	0	0.49	1.74	78.57	19.20	34	22	12							2.72			CL

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFS'	<u> </u>	rr

BH-24, (CH-27187 M)

					Grain s	ize analys	sis		ometer lysis	Atterl	berg's	Limit					uı (/(nn)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(φ) in degree	Type of shear test (Triaxial test (UU) Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.36	23.48	68.86	7.30	26		NP							2.67			ML
2	At 1.5 m depth	SPT	14	0	0	0.42	18.62	73.16	7.80	26		NP							2.68			ML
3	At 3.0 m depth	UDS		0	0	0.82	13.57	77.41	8.20	27		NP	10.82	1.761	1.589	0.14	25	DS	2.68	0.69	0.113	ML
4	At 4.5 m depth	SPT	21	0	0	0.72	16.82	74.46	8.00	27		NP							2.68			ML
5	At 6.0 m depth	UDS		0.82	0.36	1.42	23.27	67.63	6.50	26		NP	11.48	1.784	1.600	0.11	26	DS	2.66	0.66	0.108	ML
6	At 9.0 m depth	SPT	27	0.34	0.68	0.95	17.43	72.9	7.70	26		NP							2.68			ML
7	At 12.0 m depth	UDS		0	0	0.17	25.49	67.74	6.60	25		NP	12.44	1.824	1.622	0.10	26	DS	2.67	0.65	0.109	ML
8	At 15.0 m depth	SPT	33	0	0	0.48	21.46	70.46	7.60	25		NP							2.66			ML
9	At 18.0 m depth	UDS		0.12	1.26	5.87	10.44	74.31	8.00	26		NP	13.28	1.839	1.623	0.12	27	DS	2.67	0.64	0.117	ML

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TOTOG	DECLI MOLLEI	

Contd... BH-24, (CH-27187 M)

					Grain siz	ze analysis	S	_	ometer lysis	Atte	rberg's	Limit					ni (
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance($\boldsymbol{\phi}$ degree	Type of shear test (Triaxial test (UU) / Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	43	0	0	12.62	15.87	65.21	6.30	25		NP							2.66			ML
11	At 24.0 m depth	UDS		0	0	8.47	11.49	64.44	15.60	32	20	12	15.47	1.935	1.676	0.25	15	UU	2.71	0.62	0.137	CL
12	At 27.00 m depth	SPT	58	0.43	0.82	5.44	8.79	68.32	16.20	34	21	13							2.72			CL
13	At 30.00 m depth	UDS		0.29	0.45	3.28	16.74	64.14	15.10	30	20	10	15.89	1.958	1.690	0.30	11	UU	2.70	0.60	0.132	CL
14	At 33.00 m depth	SPT	72	0	0.17	2.62	21.53	60.88	14.80	30	19	11							2.70			CL
15	At 36.00 m depth	UDS		0	0	4.51	11.43	67.46	16.60	33	21	12	16.52	1.992	1.710	0.25	10	UU	2.72	0.59	0.136	CL
16	At 39.00 m depth	SPT	89	0	0	0.32	18.84	65.04	15.80	31	20	11							2.71			CL
17	At 40.00 m depth	UDS		1.23	4.62	7.38	12.56	59.61	14.60	30	21	9	17.24	2.018	1.721	0.30	12	UU	2.70	0.57	0.128	CL

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S M.C	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	ET

BH-25, (CH-27410 M)

					Grain si	ze analysi	s	_	ometer llysis	A	Atterbe Limi						ni (/(00)				
Sl. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(ϕ) in degree	Type of shear test (Triaxial test (UU). Direct shear test (DS))	Specific gravity	Void ratio	Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.42	19.2	64.18	16.20	31	19	12							2.71			CL
2	At 1.5 m depth	SPT	13	0	0	0.28	5.96	74.26	19.50	34	21	13							2.72			CL
3	At 3.0 m depth	UDS		9.16	1.88	10.4	7.00	56.36	15.20	29	17	12	12.14	1.758	1.568	0.31	10	UU	2.70	0.72	0.138	CL
4	At 4.5 m depth	SPT	20	0	0	0.56	20.8	62.64	16.00	30	17	13							2.70			CL
5	At 6.0 m depth	UDS		24.64	0.24	0.18	11.95	48.39	14.60	28	18	10	12.58	1.779	1.580	0.29	13	UU	2.69	0.70	0.134	CL
6	At 9.0 m depth	SPT	30	0	0	0.82	20.36	62.72	16.10	30	18	12							2.70			CL
7	At 12.0 m depth	UDS		0	0	0.08	21.46	62.66	15.80	30	17	13	13.42	1.816	1.601	0.26	10	UU	2.70	0.69	0.136	CL
8	At 15.0 m depth	SPT	31	18.06	0	0.42	18.4	48.42	14.70	29	18	11							2.69			CL
9	At 18.0 m depth	UDS		0	4.3	7.84	9.5	62.66	15.70	31	19	12	14.34	1.846	1.614	0.30	9	UU	2.70	0.67	0.134	CL

	Consultant:	Geotechnical	Investigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TES	T RESULTSHEI	ET

Contd... BH-25, (CH-27410 M)

					Grain s	ize analys	is		ometer lysis	Atte	rberg's	Limit					ni ((UU)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(ϕ) in degree	Type of shear test (Triaxial test / Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	33	1.16	1.15	23.2	8.81	50.88	14.80	28	16	12							2.69			CL
11	At 24.0 m depth	UDS		0	0	26.28	5.92	52.9	14.90	29	17	12	15.32	1.878	1.629	0.30	10	UU	2.69	0.65	0.129	CL
12	At 27.00 m depth	SPT	48	9.1	1.82	18.91	7.42	48.25	14.50	28	17	11							2.69			CL
13	At 30.00 m depth	UDS		0	0	8.74	12.18	63.28	15.80	30	17	13	15.86	1.906	1.645	0.25	14	UU	2.70	0.64	0.131	CL
14	At 33.00 m depth	SPT	68	0	0	0.32	16.1	66.78	16.80	31	19	12							2.71			CL
15	At 36.00 m depth	UDS		4.24	5.46	10	5.02	59.98	15.30	30	17	13	16.38	1.936	1.664	0.31	11	UU	2.70	0.62	0.128	CL
16	At 39.00 m depth	SPT	81	0	0	0.54	14.4	68.36	16.70	32	20	12							2.71			CL
17	At 40.00 m depth	UDS		7	3.42	20.7	7.68	47.3	13.90	28	17	11	16.69	1.952	1.673	0.29	16	UU	2.69	0.61	0.125	CL

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Hamana Bail Infrastructura Barralamanant Camanastian Ital
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	r.T

BH-26, (CH-27550)

					Grain s	ize analys	is		ometer alysis	A	tterber Limit						in (/(nn)				
Sl. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)		Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance(φ degree	Type of shear test (Triaxial test Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0	1.17	79.33	19.50	34	21	13							2.72			CL
2	At 1.5 m depth	SPT	11	0	0	0.10	1.20	79.50	19.20	34	22	12							2.72			CL
3	At 3.0 m depth	UDS		0	0	0	1.07	79.33	19.60	34	21	13	10.89	1.763	1.590	0.36	8	UU	2.72	0.71	0.140	CL
4	At 4.5 m depth	SPT	19	0	0	0.36	20.4	62.74	16.50	32	21	12							2.70			CL
5	At 6.0 m depth	UDS		0	0	0.46	16.4	65.94	17.20	33	22	11	11.62	1.801	1.614	0.34	10	UU	2.71	0.68	0.132	CL
6	At 9.0 m depth	SPT	28	0	0	0.42	14.4	67.58	17.60	33	23	10							2.71			CL
7	At 12.0 m depth	UDS		0	0.24	0.36	17.92	64.38	17.10	32	20	12	12.62	1.829	1.624	0.25	16	UU	2.70	0.66	0.130	CL
8	At 15.0 m depth	SPT	34	0	2.3	21.32	8.68	52.50	15.20	30	20	10							2.69			CL
9	At 18.0 m depth	UDS		1.6	1.13	8.97	7.83	63.67	16.80	31	21	10	13.54	1.859	1.637	0.30	11	UU	2.70	0.65	0.128	CL
		l	l		1	1	1	l	1	1	I	I	l			1	l	l	1	l	l	

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TFCT	DECIII TCHEI	7 T

TEST KESULISHEET

Contd... BH-26, (CH-27550)

				,	Grain siz	ze analysi	S		ometer lysis	Atte	rberg's l	Limit					φ) in	(UU)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	апа п То 2	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance (c degree	Type of shear test (Triaxial test / Direct shear test (DS))	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	41	2.2	5.4	9.62	3.64	62.64	16.50	31	21	10							2.71			CL
11	At 24.0 m depth	UDS		30.22	3.28	1.12	11.78	39.40	14.20	28	19	9	14.86	1.892	1.647	0.29	14	UU	2.69	0.63	0.125	CL
12	At 27.00 m depth	SPT	53	16.38	0	0.56	10.63	56.73	15.70	30	19	11							2.71			CL
13	At 30.00 m depth	UDS		11.84	0	0.24	9.2	62.42	16.30	31	20	11	15.42	1.936	1.677	0.30	12	UU	2.71	0.62	0.128	CL
14	At 33.00 m depth	SPT	65	28.78	0	0.22	13.00	43.60	14.40	29	19	10							2.69			CL
15	At 35.00 m depth	UDS		0	0	0.38	21.96	61.56	16.10	31	20	11	16.38	1.958	1.682	0.25	16	UU	2.70	0.60	0.127	CL

	Consultant:	Geotechnical I	nvestigation Report	Client:							
S M.C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							
TEST RESULTSHEET											

BH-27, (CH-28050m)

				Grain size analysis				· ·	meter lysis	At	terber Limit	_										
SI. No.	Sample Collected at	Type of soil collected	N Value	Fine Gravel in % (20mm To 4.75mm)	(4.75mm To 2.00 mm)	(2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistance (φ) in degree	Type of shear testTriaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.7	21.45	57.65	20.20	31	20	11							2.70			CL
2	At 1.5 m depth	SPT	14	0	0	0.4	16.2	66.60	16.80	32	21	11							2.72			CL
3	At 3.0 m depth	UDS		0	0	0.4	36.03	49.97	13.60	30	18	12	11.45	1.758	1.577	0.26	10	UU	2.69	0.71	0.126	CL
4	At 4.5 m depth	SPT	24	0	0	1.52	18.64	64.24	15.60	31	19	12							2.70			CL
5	At 6.0 m depth	UDS		0	0	0.2	48.27	45.93	5.60	24		NP	12.63	1.779	1.580	0.16	14	UU	2.67	0.69	0.109	ML
6	At 9.0 m depth	SPT	27	6.66	0.51	1.88	6.69	66.96	17.30	31	19	12							2.72			CL
7	At 12.0 m depth	UDS		12.22	0.58	1.43	7.42	62.95	15.40	30	19	11	13.21	1.825	1.612	0.24	12	UU	2.70	0.67	0.132	CL
8	At 15.0 m depth	SPT	36	0	0	0.81	16.98	65.91	16.30	31	18	13							2.71			CL

	Consultant:	Geotechnical In	vestigation Report	Client:									
S.M.C.	S.M. CONSULTANTS	Job No.:	830										
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									
	TECT DECLI TOHERT												

Contd... BH-27, (CH-28050m)

		Grain size analysis					Hydro Ana	meter lysis	Atterberg's Limit													
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)		Medium Sand in % (2.0mm To 0.425mm)	(0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistance (φ) in degree	Type of shear testTriaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
9	At 18.0 m depth	UDS		0	0	0.23	32.2	58.07	9.50	26		NP	14.45	1.854	1.620	0.18	13	UU	2.69	0.66	0.118	ML
10	At 21.0 m depth	SPT	45	0	0	4.68	4.92	71.80	18.60	33	20	13							2.72			CL
11	At 24.0 m depth	UDS		0	0.37	1.08	7.36	71.79	19.40	34	20	14	15.63	1.916	1.657	0.29	9	UU	2.72	0.64	0.136	CL
12	At 27.00 m depth	SPT	54	1.36	0.25	0.75	3.35	73.69	20.60	34	21	13							2.72			CL
13	At 30.00 m depth	UDS		0	0	0.48	6.68	73.04	19.80	33	21	12	16.48	1.942	1.667	0.30	9	UU	2.72	0.63	0.138	CL

	Consultant:	Geotechnical II	nvestigation Report	Client:								
S M.C	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd								
TEST RESULTSHEET												

BH-28, (CH-28350)

			-	I	Grain siz	· '	meter lysis	А	tterbe Limi	-						(nr						
SI. No.	Sample Collected at	Type of soil collected	N Value	Fine Gravel in % (20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(φ) in degree	Type of shear testTriaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.35	36.45	57.00	6.20	24		NP							2.66			ML
2	At 1.5 m depth	SPT	12	0	0.44	34.2	4.36	47.6	13.40	28	18	10							2.69			CL
3	At 3.0 m depth	UDS		0	0	0.66	27.56	65.18	6.60	25		NP	11.82	1.763	1.577	0.12	18	UU	2.67	0.69	0.108	ML
4	At 4.5 m depth	SPT	21	7.06	0.67	0.91	11.1	73.16	7.10	25		NP							2.68			ML
5	At 6.0 m depth	UDS		0	1.29	2.21	55.64	40.86	0.00	20		NP	12.47	1.782	1.584	0.03	26	DS	2.64	0.67		SM
6	At 9.0 m depth	SPT	28	0	0	1.6	8.52	82.08	7.80	25		NP							2.68			ML
7	At 12.0 m depth	UDS		16.98	0.76	1.3	6.54	67.62	6.80	25		NP	12.86	1.806	1.600	0.14	18	UU	2.66	0.66	0.110	ML
8	At 15.0 m depth	SPT	38	4.65	7.39	16.02	5.62	60.02	6.30	27		NP							2.67			ML
9	At 18.0 m depth	UDS		2.89	1.51	2.82	15.3	62.18	15.30	32	19	13	13.27	1.866	1.647	0.28	10	UU	2.70	0.64	0.136	CL
	I	I	1		1	l	l	I	1	1	1		l	l	I	l .	1	I	1		1	

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TITIOT	DECLIE MOTERI	

Contd... BH-28, (CH-28350)

					Grain s	size analysis		,	ometer Ilysis	1	Atterbei Limit							(00)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(ф) in degree	Туре of shear testTriaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	47	1.53	3.64	20.64	7.17	52.52	14.50	29	17	12							2.69			CL
11	At 24.0 m depth	UDS		1.52	0.39	1.78	2.39	74.32	19.60	34	20	14	14.43	1.901	1.661	0.25	10	UU	2.72	0.64	0.138	CL
12	At 27.00 m depth	SPT	53	0	0	2.72	3.54	74.44	19.30	34	21	13							2.72			CL
13	At 30.00 m depth	UDS		0	0	0.68	22.58	68.94	7.80	25		NP	15.62	1.923	1.663	0.17	14	UU	2.66	0.60	0.109	ML
14	At 33.00 m depth	SPT	70	0	0.68	1.27	2.97	74.58	20.50	35	22	13							2.72			CL
15	At 36.00 m depth	UDS		0	0	3.74	3.44	73.42	19.40	33	21	12	16.45	1.987	1.706	0.26	9	UU	2.72	0.59	0.136	CL
16	At 39.00 m depth	SPT	81	33.16	1.42	2.18	10.64	48.00	4.60	24		NP							2.66			ML
17	At 42.00 m depth	UDS		0	0	2.2	16.4	73.20	8.20	25		NP	17.61	2.009	1.708	0.19	13	UU	2.66	0.56	0.112	ML
18	At 45.00 m depth	SPT	92	0	0	2.7	15.36	73.64	8.30	25		NP							2.67			ML

	Consultant:	Geotechnical In	vestigation Report	Client:									
S.M.C.	S.M. CONSULTANTS	Job No.:	830										
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									
	TECT DECIH TCHEET												

BH-29, (CH-28550m)

			-	Grain size analysis					Hydrometer Analysis		tterbe Limi							(n				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(φ) in degree	ect	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.48	20.15	67.97	9.40	27		NP							2.66			ML
2	At 1.5 m depth	SPT	12	0	0	0.56	37.26	54.88	7.30	27		NP							2.67			ML
3	At 3.0 m depth	UDS		0	0	1.07	36.44	48.09	14.40	26		NP	11.45	1.761	1.580	0.20	11	UU	2.70	0.71	0.126	ML-CL
4	At 4.5 m depth	SPT	24	0	0	0.27	41.98	43.85	13.90	26		NP							2.69			ML-CL
5	At 6.0 m depth	UDS		8.04	17.4	7.97	3.10	48.89	14.60	27	20	7	11.89	1.795	1.604	0.18	14	UU	2.70	0.68	0.131	ML-CL
6	At 9.0 m depth	SPT	27	0	0	0.62	33.02	51.46	14.90	27	21	6							2.70			ML-CL
7	At 12.0 m depth	UDS		0	0.18	0.17	57.05	42.60	0.00	21		NP	12.63	1.802	1.600	0.02	25	DS	2.66	0.66		SM
8	At 15.0 m depth	SPT	38	3.91	14.98	8.17	3.37	60.77	8.80	26		NP							2.69			ML

	Consultant:	Geotechnical	Investigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
	DITODARESTAN		T RESULTSHE	ET

Contd... BH-29, (CH-28550m)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII & Pt. XV) AND IS: 1498 – 1970

					Grain size	analysis		'	meter lysis	А	tterbe Limi	•						tes(UU)				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	avel ii To 4.	Coarse Sand in % (4.75mm To 2.00 mm)	nm To 0	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistance (φ) in degree	Type of shear testTriaxial te Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
9	At 18.0 m depth	UDS		5.72	15.44	9.61	5.28	49.45	8.50	26		NP	13.48	1.857	1.636	0.14	19	UU	2.69	0.64	0.128	ML
10	At 21.0 m depth	SPT	47	0	0	0.34	23.87	65.69	10.10	27		NP							2.70			ML
11	At 24.0 m depth	UDS		0	0	0.98	56.73	42.29	0.00	19		NP	14.69	1.874	1.634	0.03	25	DS	2.66	0.63		SM
12	At 27.00 m depth	SPT	61	26.98	0.17	6.66	14.33	41.06	10.80	26	19	7							2.67			ML-CL
13	At 30.00 m depth	UDS		0	0	0.76	43.32	42.12	13.80	26	20	6	15.27	1.923	1.668	0.18	16	UU	2.69	0.61	0.127	ML-CL

	Consultant:	Geotechnical Ir	vestigation Report	Client:
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	 RESULTSHEI	ET

BH-30, (CH-28750)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII, & Pt. XV) AND IS: 1498 – 1970

						Grain	size analys	sis		Atte	rberg's	s Limit						ĵ				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	TO 2.00	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistance (φ) in degree	Type of shear testTriaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	0	0.88	47.65	42.67	8.80	24		NP							2.66			ML
2	At 1.5 m depth	SPT	17	0	0	0.41	42.88	47.51	9.20	26		NP							2.67			ML
3	At 3.0 m depth	UDS		0	0	0.94	43.45	47.51	8.10	26		NP	12.62	1.768	1.570	0.17	19	UU	2.67	0.71	0.123	ML
4	At 4.5 m depth	SPT	22	0	1.05	2.58	8.25	68.52	19.60	27	22	5							2.69			ML-CL
5	At 6.0 m depth	UDS		0	0	0.27	11.1	69.73	18.90	28	22	6	13.47	1.816	1.600	0.19	14	UU	2.69	0.69	0.132	ML-CL
6	At 9.0 m depth	SPT	30	0	0	0.31	16.49	66.80	16.40	26	20	6							2.68			ML-CL
7	At 12.0 m depth	UDS		0	0.5	0.98	2.4	72.52	23.60	34	23	11	13.86	1.847	1.622	0.25	10	UU	2.72	0.68	0.146	CL
8	At 15.0 m depth	SPT	38	0	0	0.66	10.22	66.22	22.90	33	22	11							2.72			CL
9	At 18.0 m depth	UDS		0	0	1.69	24.57	64.54	10.20	25		NP	14.43	1.864	1.629	0.19	14	UU	2.68	0.66	0.125	ML

	Consultant:	Geotechnical I	nvestigation Report	Client:
S M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	T RESULTSHEI	ET

Contd... BH-30, (CH-28750)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII & Pt. XV) AND IS: 1498 – 1970

						Grain siz	e analysis			Atte	erberg's	Limit						()				
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance (φ) in degree	Type of shear testTriaxial test (UU) Direct shear test (DS)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
10	At 21.0 m depth	SPT	44	0	0	0.47	8.56	66.57	24.40	34	22	12							2.72			CL
11	At 24.0 m depth	UDS		2.75	10.44	31.23	7.20	48.38	0.00	22		NP	15.17	1.879	1.632	0.03	25	DS	2.67	0.64		SM
12	At 27.00 m depth	SPT	56	18.53	0.57	1.46	5.54	63.20	10.70	24		NP							2.70			ML
13	At 30.00 m depth	UDS		0	0	2.11	15.18	71.41	11.30	26		NP	16.21	1.936	1.666	0.18	15	UU	2.71	0.63	0.126	ML
14	At 33.00 m depth	SPT	64	0	0	0.47	35.50	54.83	9.20	25		NP							2.68			ML
15	At 36.00 m depth	UDS		0	0	1.72	36.52	52.16	9.60	24		NP	16.72	1.947	1.668	0.14	17	UU	2.69	0.61	0.128	ML
16	At 39.00 m depth	SPT	73	0	9.34	6.6	23.74	52.12	8.20	24		NP							2.67			ML
17	At 42.00 m depth	UDS		0	1.88	6.24	13.57	68.11	10.20	26		NP	17.62	1.995	1.696	0.16	13	UU	2.71	0.60	0.122	ML
18	At 45.00 m depth	SPT	84	10.2	14.44	7.44	13.61	38.31	16.00	27	20	7							2.69			ML-CL

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S.M.C.	S.M. CONSULTANTS	Job No.:	830	
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	DECLII TOILEI	ייי אר

TEST RESULTSHEET

BH-31, (CH-29050)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII, & Pt. XV) AND IS: 1498 – 1970

					Grain siz	e analysis	i	Hydro Ana		A	tterberg Limit	;'s										
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel In % (20mm To 4.75mm)	Coarse Sand in % (4.75mm To 2.00 mm)	IVIEGIUM Sand IN % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To 0.075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(φ) in degree	Triaxial test (UU)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		4.09	1.33	3.53	31.98	45.07	14.00	29	18	11							2.69			CL
2	At 1.5 m depth	SPT	16	5.72	2.18	4.08	21.64	51.18	15.20	30	18	12							2.69			CL
3	At 3.0 m depth	UDS		27.54	2.16	2.2	37.7	30.40	0.00	21		NP	12.24	1.765	1.573	0.02	27	DS	2.65	0.69		SM
4	At 4.5 m depth	SPT	23	5.46	1.94	3.82	24.96	53.02	10.80	27		NP							2.67			ML
5	At 6.0 m depth	UDS		0	0	0.2	42.13	47.27	10.40	25		NP	13.47	1.808	1.593	0.04	29	DS	2.66	0.67	0.123	ML
6	At 9.0 m depth	SPT	32	0	0	0.86	45.22	40.02	13.90	26		NP							2.69			ML
7	At 12.0 m depth	UDS		0.92	1.86	11.96	5.42	63.64	16.20	26	20	6	14.61	1.882	1.642	0.17	12	UU	2.71	0.65	0.132	ML-CL
8	At 15.0 m depth	SPT	40	0	0	0.44	18.47	64.19	16.90	27	21	6							2.72			ML-CL

	Consultant:	Geotechnical I	nvestigation Report	Client:
S.M.C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	ET

Contd... BH-31, (CH-29050)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII & Pt. XV) AND IS: 1498 – 1970

					Grain siz	ze analy:	sis	Hydro Ana		At	terbei Limit	-										
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	(4.75mm To 2.00 mm)	nom To 0	Fine Sand in % (0.425mm To 0.075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Natural density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm ²	Angle of shearing resistance (φ) in degree	Triaxial test (UU)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
9	At 18.0 m depth	UDS		8.32	6.4	5.86	13.56	50.76	15.10	25	20	5	15.37	1.926	1.669	0.14	15	UU	2.70	0.62	0.130	ML-CL
10	At 20.0 m depth	SPT	51	1.65	2.91	6.1	11.29	61.95	16.10	27	20	7							2.69			ML-CL

	Consultant:	Geotechnical Ir	nvestigation Report	Client:
S. M. C.	S.M. CONSULTANTS	Job No.:	830	Hamana Bail Infrastructura Barralamanant Camanastian Ital
	BHUBANESWAR	REPORT. No.:	SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd
		TEST	RESULTSHE	r.T

BH-32, (CH-29550)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII& Pt. XV) AND IS: 1498 – 1970

						Grain siz	ze analysis	5		A	tterbe Limi	-										
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	(4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(φ) in degree	Triaxial test (UU)	ıity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		2.18	0.46	3.88	17.28	61.30	14.90	26	20	6							2.69			ML-CL
2	At 1.5 m depth	SPT	17	1.56	2.2	1.92	17.08	61.94	15.30	27	21	6							2.68			ML-CL
3	At 3.0 m depth	UDS		0	0.24	0.32	29	56.14	14.30	25	20	5	10.69	1.754	1.585	0.16	15	UU	2.69	0.70	0.141	ML-CL
4	At 4.5 m depth	SPT	27	0	3.54	3.6	16.4	61.36	15.10	27	20	7							2.67			ML-CL
5	At 6.0 m depth	UDS		0	0	2.36	27.14	55.90	14.60	26	21	5	11.58	1.784	1.599	0.15	14	UU	2.69	0.68	0.136	ML-CL
6	At 9.0 m depth	SPT	35	0	0	0.26	18.4	72.54	8.80	25		NP							2.68			ML
7	At 12.0 m depth	UDS		25.98	8.4	6.38	8.46	43.28	7.50	24		NP	12.18	1.824	1.626	0.02	30	DS	2.68	0.65	0.118	ML
8	At 15.0 m depth	SPT	44	0	0	0.64	18.06	72.60	8.70	25		NP							2.67			ML

	Consultant:	Geotechnical Ir	vestigation Report	Client:							
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							
	TEST RESULTSHEET										

TEST RESULTSHEET

Contd... BH-32, (CH-29550)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII & Pt. XV) AND IS: 1498 – 1970

						Grain si	ze analysi:	S		Atte	erberg's	Limit										
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	Fine Gravel in % (20mm To 4.75mm)	Coarse sand in % (4.75mm To 2.00 mm)	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in %	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angre or snearing resistance (ф) in degree	Triaxial test (UU)	Specific gravity	Void ratio	Compression Index, Cc)	Group of soil
9	At 18.0 m depth	UDS		0	0	1.36	33.9	57.24	7.50	25		NP	12.87	1.847	1.636	0.03	27	DS	2.68	0.64	0.12	ML
10	At 21.0 m depth	SPT	54	0	0	0.42	30.4	60.38	8.80	26		NP							2.67			ML
11	At 24.0 m depth	UDS		0	0	0.54	33.06	57.80	8.60	26		NP	13.68	1.882	1.656	0.04	26	DS	2.67	0.61	0.12 4	ML
12	At 27.00 m depth	SPT	63	0	0	1.22	16.54	72.84	9.40	27		NP							2.68			ML
13	At 30.00 m depth	UDS		0	0	0.82	17.96	72.02	9.20	27		NP	14.57	1.937	1.691	0.16	17	UU	2.68	0.59	0.13	ML

	Consultant:	Geotechnical II	nvestigation Report	Client:					
S M.C.	S.M. CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					
TEST RESULTSHEET									

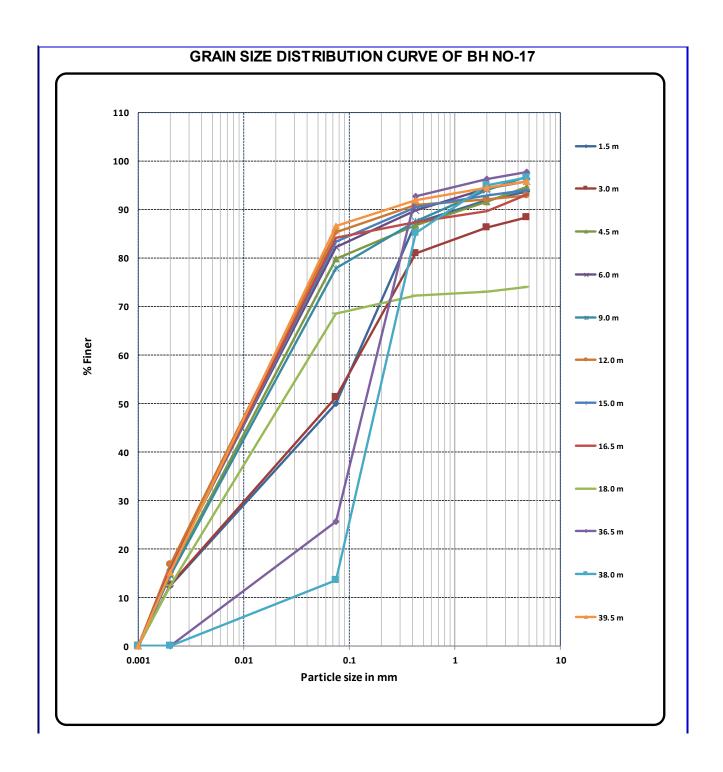
BH-33, (CH-30125)

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII,& Pt. XV) AND IS: 1498 – 1970

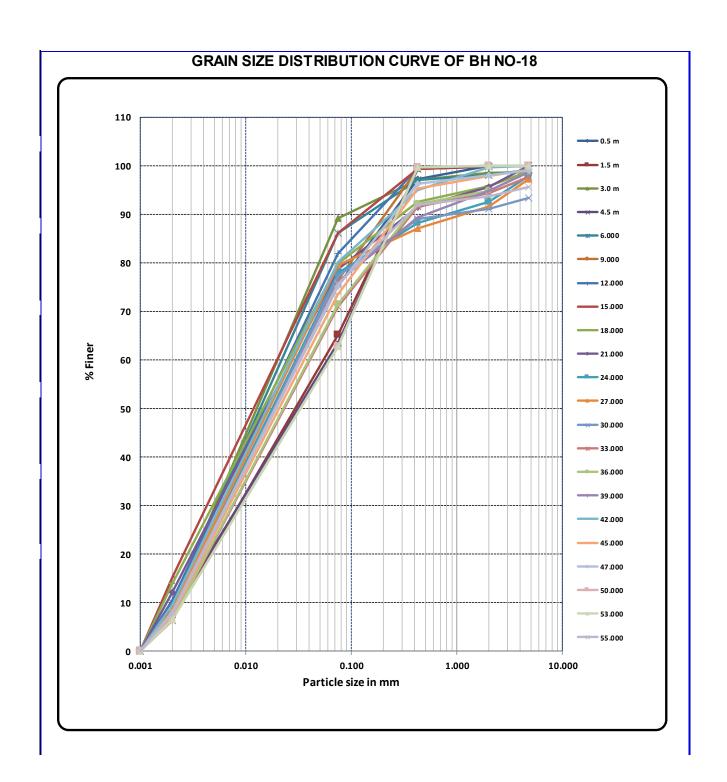
						Grain	size analys	is		Atte	rberg's I	Limit										
Sl. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	K ⊆	Medium Sand in % (2.0mm To 0.425mm)	Fine Sand in % (0.425mm To .075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	(φ) in degree	Triaxial test (UU)	Direct shear test (DS) Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
1	At 0.5 m depth	DS		0	1.94	0.77	36.88	52.61	7.80	25		NP							2.67			ML
2	At 1.5 m depth	SPT	11	0	0	1.94	33.44	50.42	14.20	26	20	6							2.68			ML-CL
3	At 3.0 m depth	UDS		0	0	0.79	9.79	73.02	16.40	28	22	6	11.62	1.772	1.588	0.16	14	UU	2.68	0.69	0.137	ML-CL
4	At 4.5 m depth	SPT	28	0	0	0.42	33.62	51.36	14.60	26	21	5							2.67			ML-CL
5	At 6.0 m depth	UDS		0	0	3.19	20.06	61.45	15.30	27	22	5	12.47	1.814	1.613	0.14	13	UU	2.68	0.66	0.131	ML-CL
6	At 9.0 m depth	SPT	39	0	0	0.25	24.59	60.06	15.10	27	21	6							2.67			ML-CL
7	At 12.0 m depth	UDS		0	0	0.42	25.78	59.00	14.80	26	20	6	13.27	1.843	1.627	0.09	27	DS	2.68	0.65	0.128	ML-CL
8	At 15.0 m depth	SPT	50	0	0	0.32	40.18	45.90	13.60	25	20	5							2.67			ML-CL

	Consultant:	Geotechnical Ir	nvestigation Report	Client:					
S.M.C.	S,M, CONSULTANTS BHUBANESWAR	Job No.: REPORT. No.:	830 SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					
TEST RESULTSHEET									

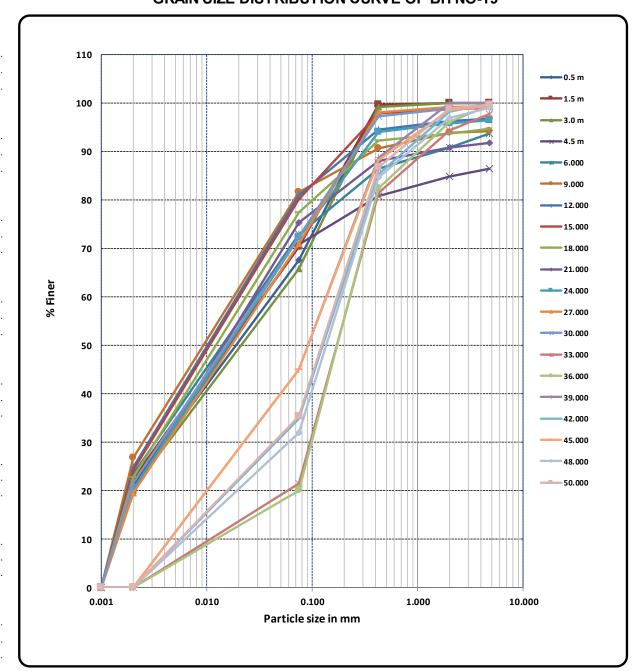
Contd... BH-33, (CH-30125)

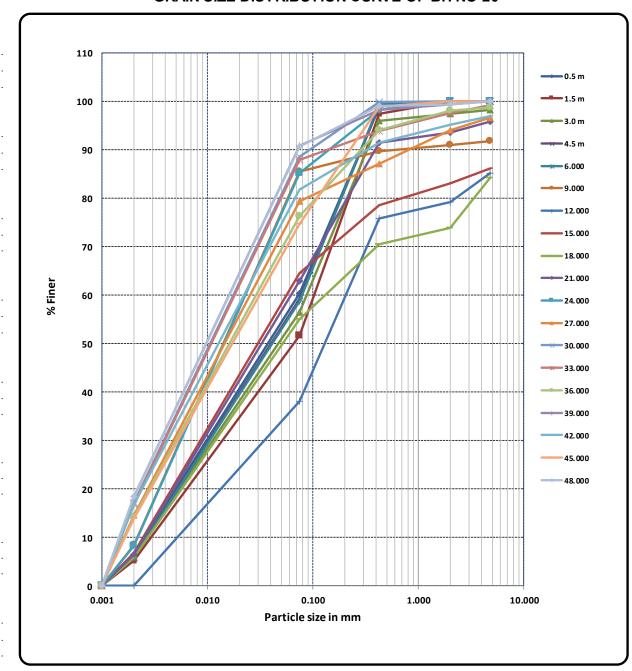

TEST CONDUCTED AS PER IS: 2720 (Pt. II, Pt. III, Pt. IV, Pt. V, Pt. X, Pt. XI / Pt. XIII & Pt. XV) AND IS: 1498 – 1970

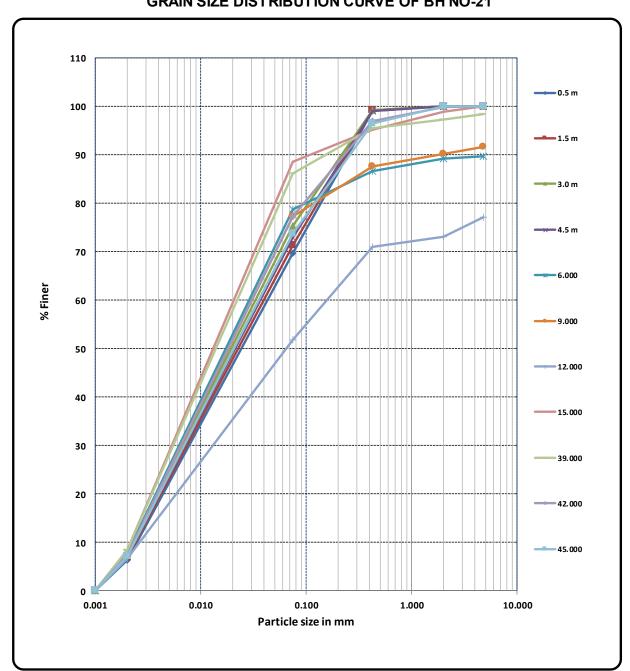
						Grain	size analy	/sis		Atter	berg's L	imit					0)					
SI. No.	Sample Collected at	Type of soil collected	S.P.T N Value	(20mm To 4.75mm)	(4.75mm To 2.00 mm)	2.0mm To 0.425r	FINE SAND IN % (0.425mm To .075mm)	Silt in%	Clay in %	Liquid Limit In %	Plastic Limit In %	Plasticity Index in %	Field Moisture Content in %	Bulk density in gm/cc.	Dry density in gm/cc	Cohesion (C) Kgf/cm²	Angle of shearing resistanα (φ) in degree	Triaxial test (UU)	Specific gravity	Void ratio	Consolidation test (Compression Index, Cc)	Group of soil
9	At 18.0 m depth	UDS		0	0	1.56	28.53	55.11	14.80	25	20	5	14.65	1.901	1.658	0.08	26	DS	2.68	0.62	0.126	ML-CL
10	At 20.0 m depth	SPT	63	0	0	3.23	20.48	61.29	15.00	26	21	5							2.67			ML-CL

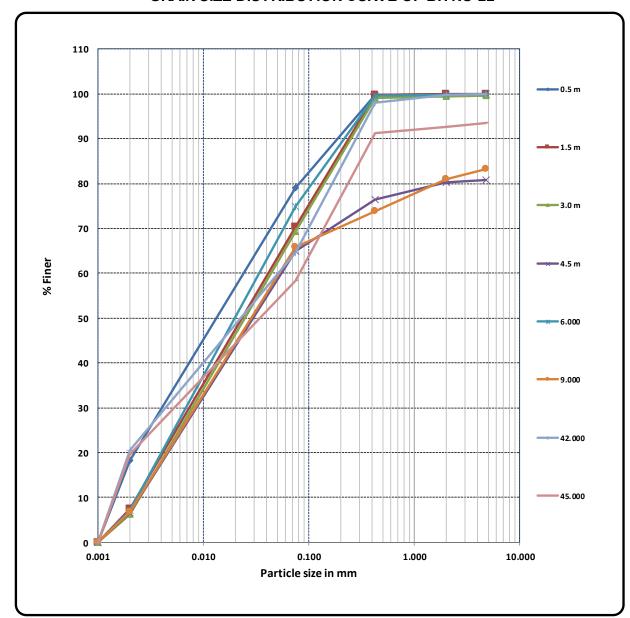

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

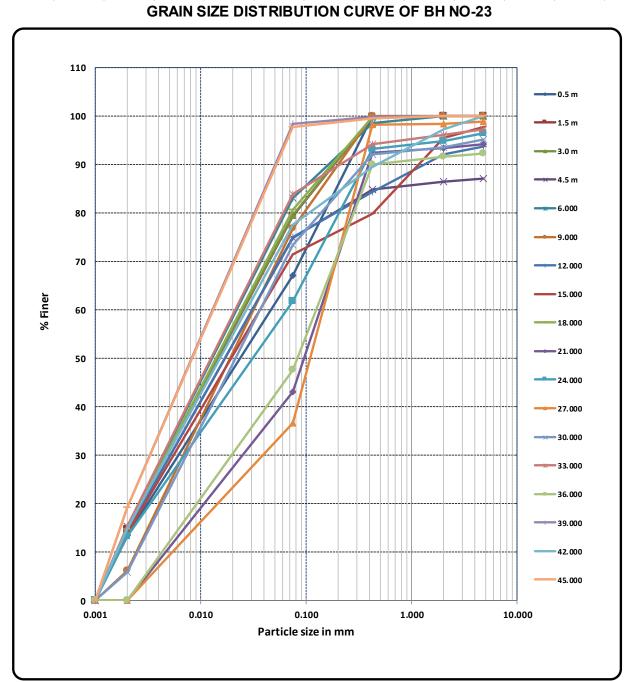
ANNEXURE –H GRAIN SIZE DISTRIBUTION CURVE

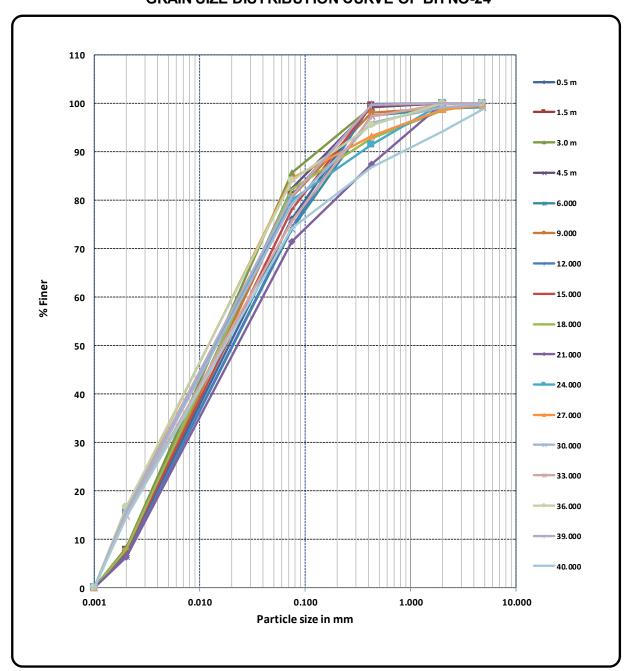

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

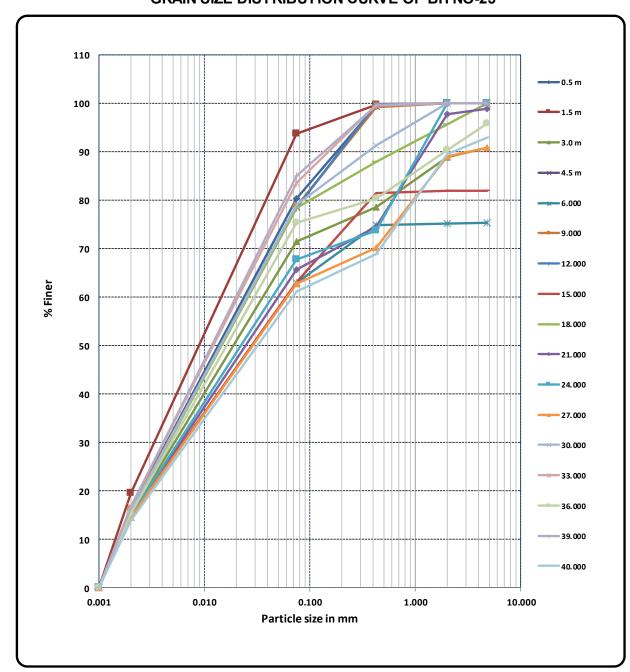

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

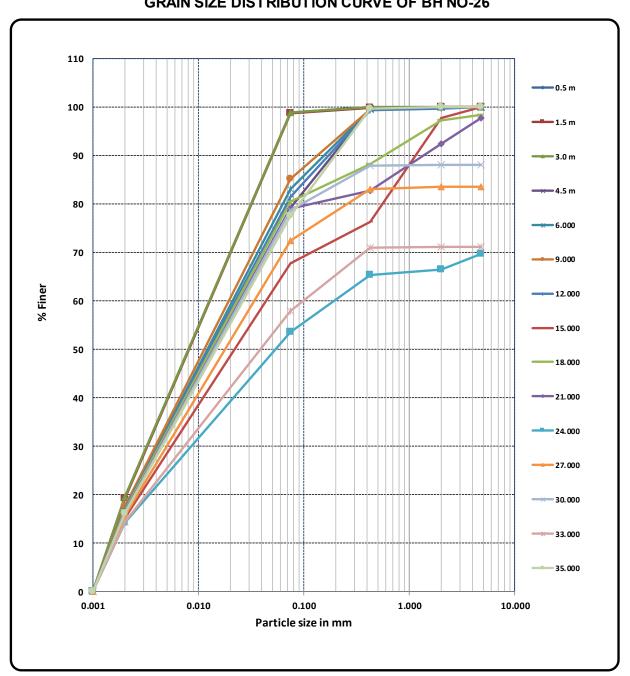

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

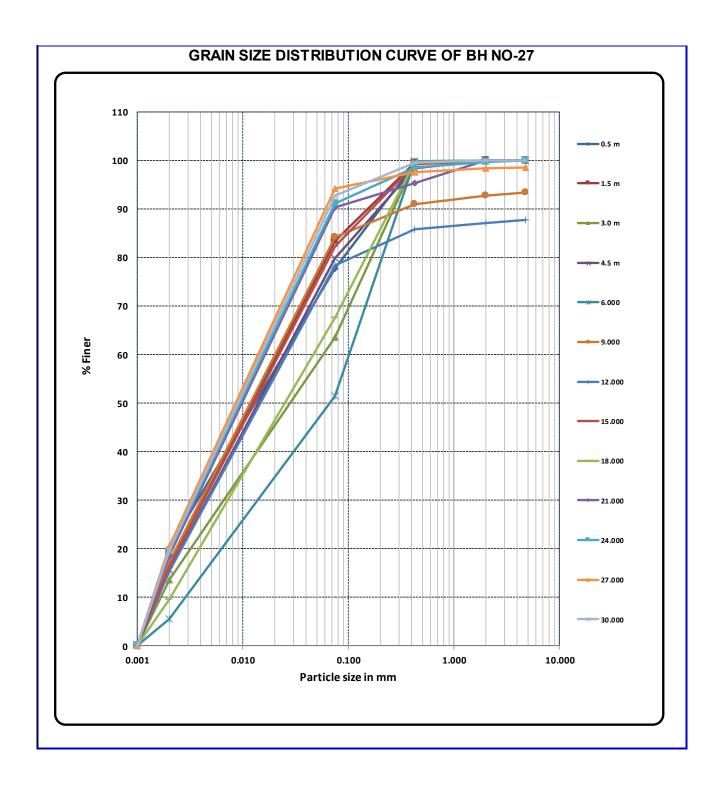

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

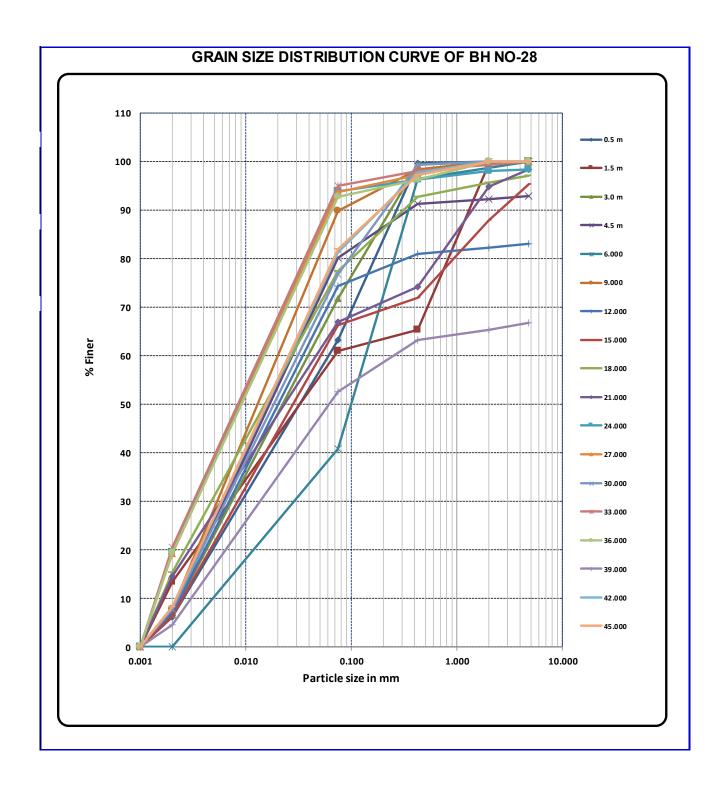

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

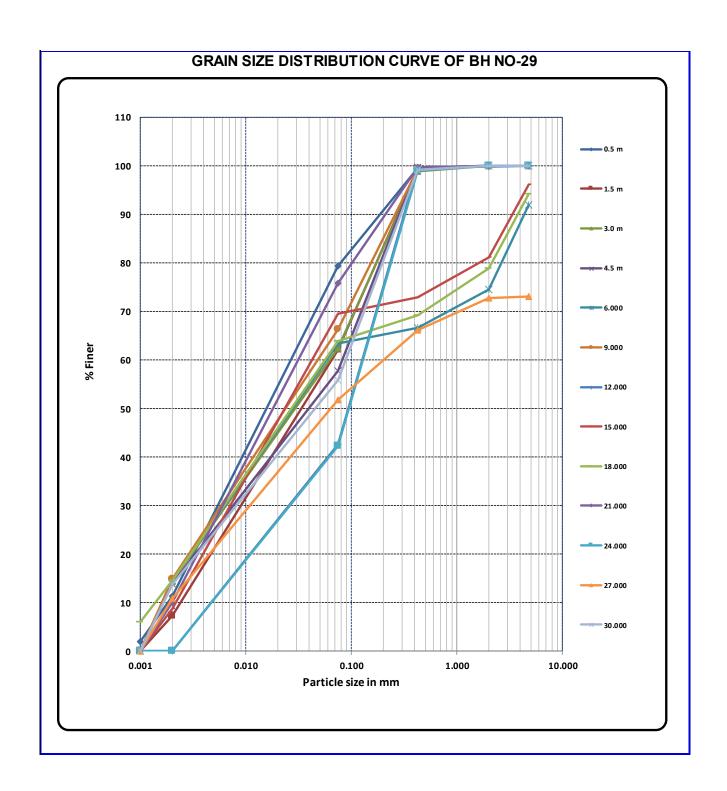

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

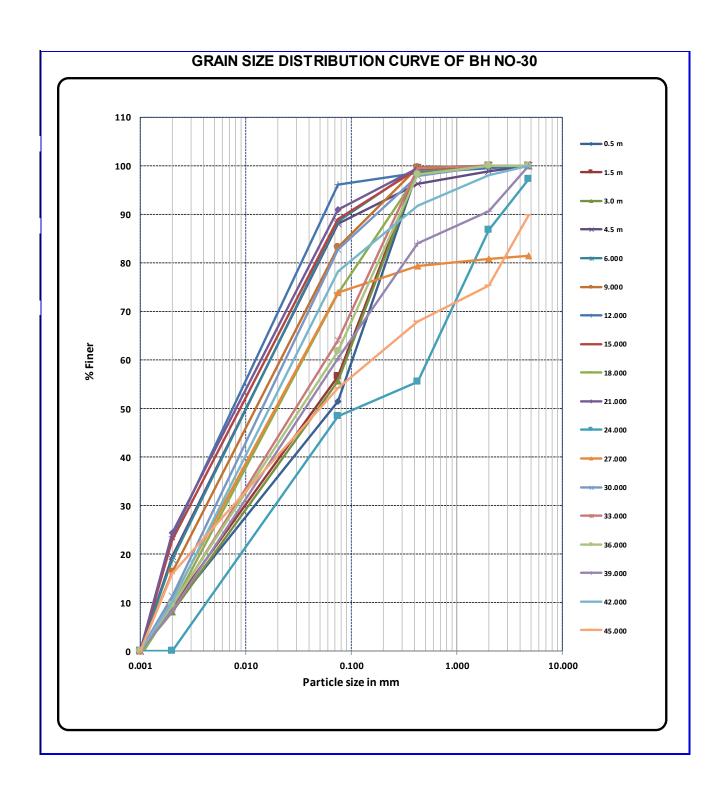

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

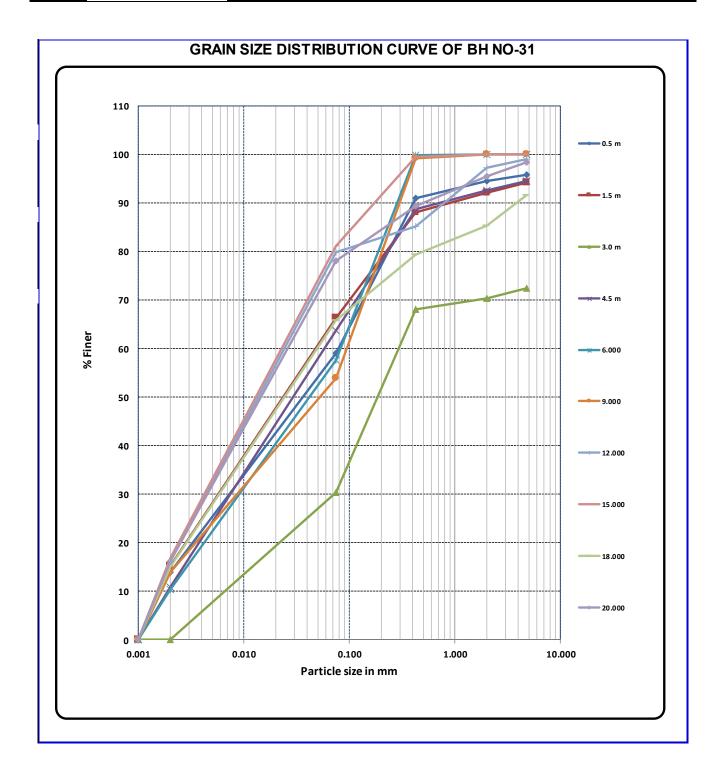

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

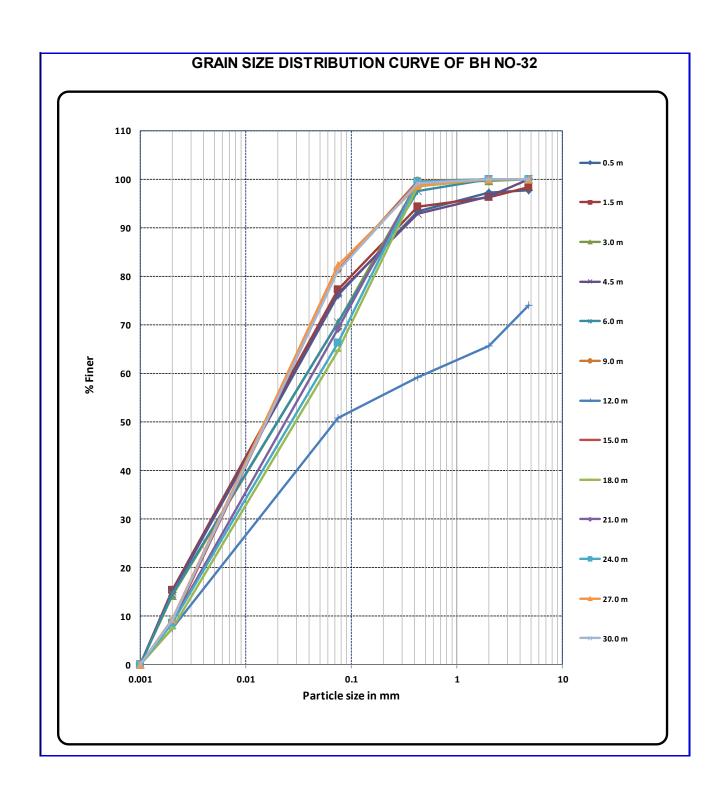

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

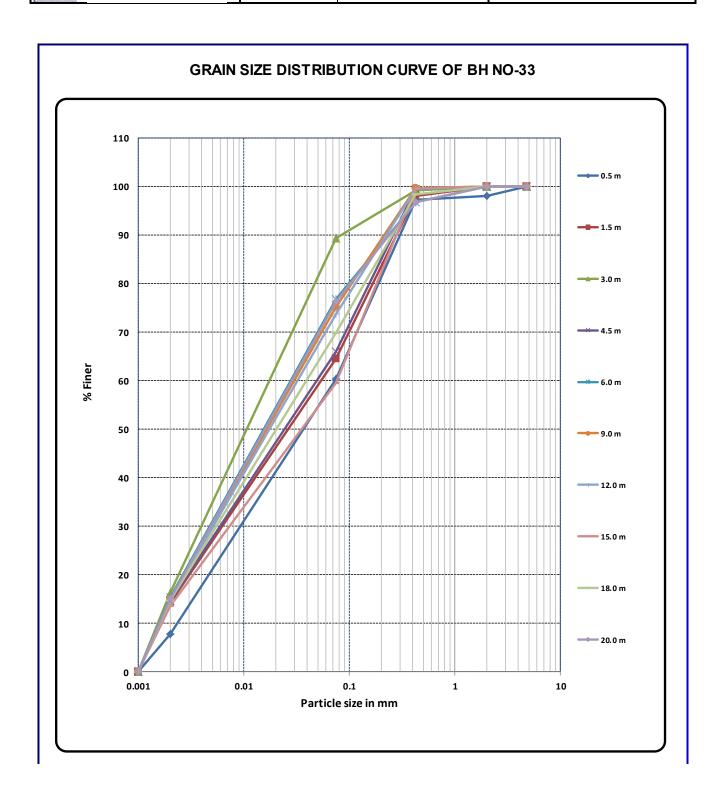

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	


Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	


Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

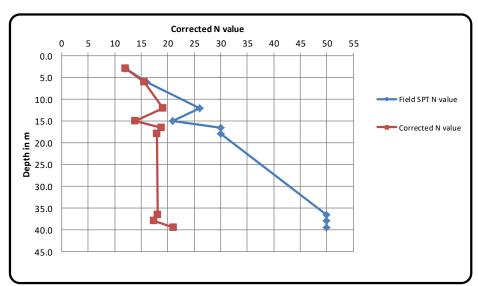

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		


Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		


Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

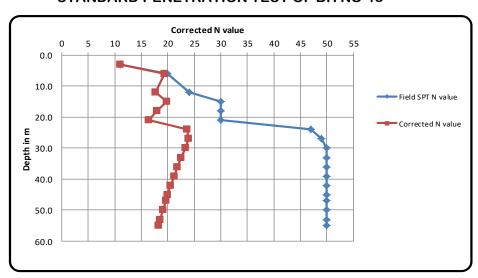

Ge	Geotechnical Investigation Report										
Consultant:			Client :								
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd								

ANNEXURE –I DESIGN PARAMETER & SPT N VALUE GRAPH

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field :		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		3.0		ML-CL	12		1.785	0.536	1.00	12.0	12.0
2		6.0		ML-CL	16		1.834	1.100	0.97	15.5	15.5
3		12.0		ML-CL	26		1.853	2.224	0.73	19.1	19.1
4		15.0		ML-CL	21		1.853	2.780	0.66	13.9	13.9
5	BH-17(CH- 25785 M)	16.5	38.6 M	ML-CL	37		1.853	3.057	0.63	18.8	18.8
6] ' ' '	18.0		ML-CL	>50	30	1.853	3.335	0.60	18.0	18.0
7]	36.5		SM	>50	50	1.853	6.763	0.36	18.1	18.1
8]	38.0		SM	>50	50	1.853	7.041	0.35	17.5	17.5
9		39.5		ML	>50	50	1.000	3.950	0.54	27.1	21.1

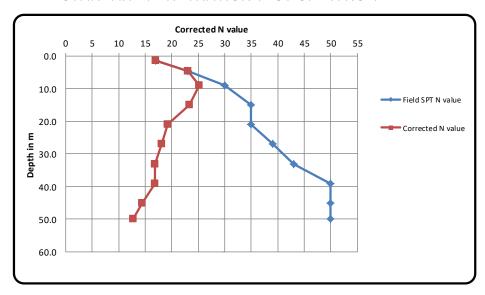
- As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- 3 In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.



Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

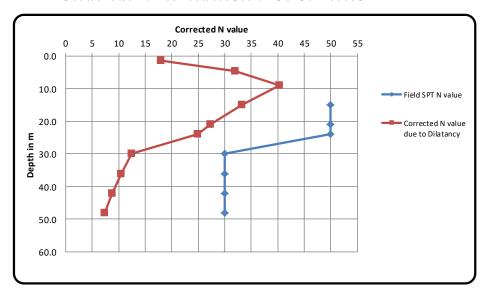
				COMP	UTATIO	N OF	CORRECT	ED N VALU	E		
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil		Field SPT N value		overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		3.0		ML	11		1.784	0.535	1.00	11.0	11.0
2		6.0		ML	20		1.828	1.097	0.97	19.4	19.4
3		12.0		ML	24		1.853	2.224	0.73	17.6	17.6
4		15.0		ML-CL	31	30	1.853	2.780	0.66	19.8	19.8
5		18.0		ML-CL	35	30	1.853	3.335	0.60	18.0	18.0
6		21.0		ML-CL	40	30	1.853	3.891	0.55	16.4	16.4
7		24.0		ML	47		1.853	4.447	0.50	23.6	23.6
8		27.0		ML	49		1.000	2.700	0.67	32.8	23.9
9	BH-18(CH-	30.0	26.2 M	ML	57	50	1.000	3.000	0.63	31.7	23.4
10	25990 M)	33.0	26.2 IVI	ML	64	50	1.000	3.300	0.60	30.1	22.6
11		36.0		ML	69	50	1.000	3.600	0.57	28.7	21.8
12		39.0		ML	77	50	1.000	3.900	0.55	27.3	21.2
13		42.0		ML	84	50	1.000	4.200	0.52	26.1	20.5
14		45.0		ML	>50	50	1.000	4.500	0.50	24.9	20.0
15		47.0		ML	>50	50	1.000	4.700	0.48	24.2	19.6
16		50.0		ML	>50	50	1.000	5.000	0.46	23.2	19.1
17		53.0		ML	>50	50	1.000	5.300	0.44	22.2	18.6
18		55.0		ML	>50	50	1.000	5.500	0.43	21.6	18.3

- Note: Above Strength parameters (C& \$\phi\$) are calculated theoritically from N value.


 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig - 1 of IS: 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- Overburden correction factor is considered as 1 whereever its value is greater than 1.

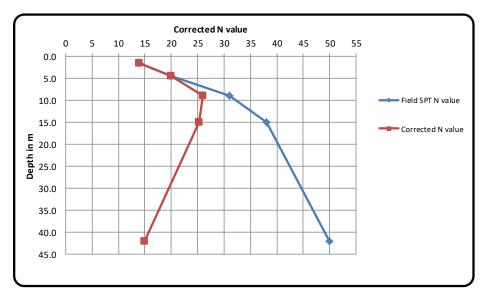
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		1.5		ML	17		1.761	0.264	1.00	17.0	17.0
2		4.5		ML	23		1.776	0.799	1.00	23.0	23.0
3		9.0		ML	30		1.802	1.622	0.84	25.2	25.2
4		15.0		ML	35		1.819	2.729	0.67	23.3	23.3
5	BH-19(CH-	21.0	NOT	ML	35		1.837	3.858	0.55	19.3	19.3
6	26210 M)	27.0	FOUND	ML	39		1.856	5.011	0.46	18.1	18.1
7	Ī	33.0		SM	43		1.871	6.174	0.39	16.9	16.9
8]	39.0		SM	52	50	1.871	7.297	0.34	16.9	16.9
9]	45.0		SM	65	50	1.871	8.420	0.29	14.5	14.5
10]	50.0		SM	80	50	1.871	9.355	0.25	12.7	12.7


- As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

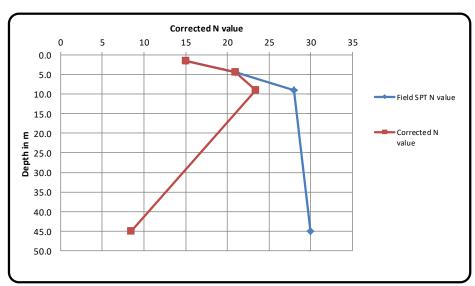
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil		Field SPT N value		overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		1.5		ML	18		1.761	0.264	1.00	18.0	18.0
2		4.5		ML	32		1.778	0.800	1.00	32.0	32.0
3		9.0		ML	48		1.795	1.616	0.84	40.4	40.4
4		15.0		ML	60	50	1.830	2.745	0.66	33.2	33.2
5	BH-20(CH-	21.0	NOT	ML	67	50	1.858	3.902	0.55	27.3	27.3
6	26387 M)	24.0	FOUND	ML	76	50	1.879	4.510	0.50	24.9	24.9
7		30.0		CL	58	30	1.918	5.754	0.42	12.5	12.5
8		36.0		CL	67	30	1.946	7.006	0.35	10.5	10.5
9		42.0		CL	75	30	1.973	8.287	0.29	8.8	8.8
10		48.0		CL	79	30	1.988	9.542	0.25	7.4	7.4


- As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 Where N is the corrected N value.
- In case of cohesionless, for angle of shearing resistance (φ), fig 1 of IS : 6403 was used.
- 3 In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

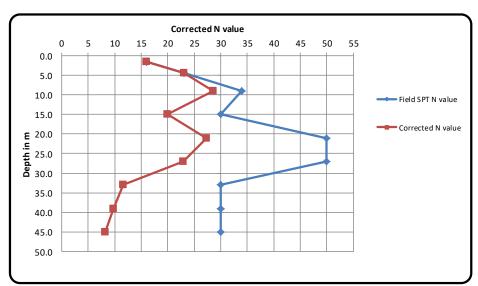
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	p of soil Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		1.5		ML	14		1.768	0.265	1.00	14.0	14.0
2	2	4.5		ML	20		1.793	0.807	1.00	20.0	20.0
3	BH-21(CH- 26587 M)	9.0	NOT FOUND	ML	31		1.821	1.639	0.84	25.9	25.9
4		15.0		ML	38		1.824	2.736	0.67	25.3	25.3
5		42.0		ML	77	50	1.942	8.156	0.30	15.0	15.0


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (\$\phi\$), fig 1 of IS: 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

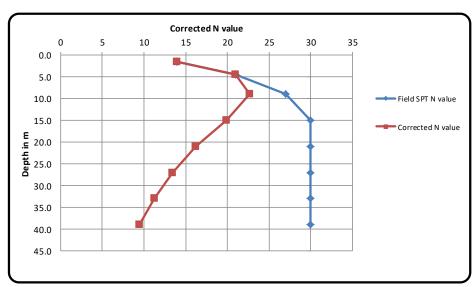
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		1.5		ML	15		1.752	0.263	1.00	15.0	15.0
2	BH-22(CH-	4.5	NOT FOUND	ML	21		1.789	0.805	1.00	21.0	21.0
3	26787 M)	9.0		ML	28		1.826	1.643	0.84	23.4	23.4
4		45.0		CL	60	30	1.916	8.622	0.28	8.4	8.4


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

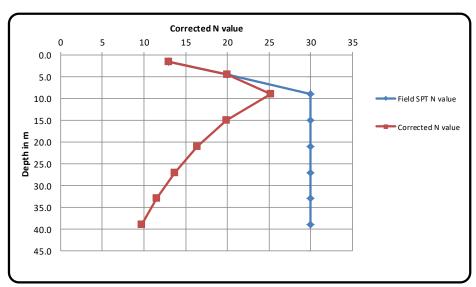
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		1.5	NOT FOUND	CL	16		1.761	0.264	1.00	16.0	16.0
2		4.5		CL	23		1.778	0.800	1.00	23.0	23.0
3		9.0		ML	34		1.795	1.616	0.84	28.6	28.6
4		15.0		CL	38	30	1.830	2.745	0.66	19.9	19.9
5	BH-23(CH- 26980 M)	21.0		SM	50		1.858	3.902	0.55	27.3	27.3
6	,	27.0		SM	63	50	1.879	5.073	0.46	22.9	22.9
7		33.0		CL	73	30	1.918	6.329	0.38	11.5	11.5
8		39.0 45.0		CL	77	30	1.946	7.589	0.32	9.7	9.7
9				CL	85	30	1.973	8.879	0.27	8.1	8.1


- As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as 1 whereever its value is greater than 1.

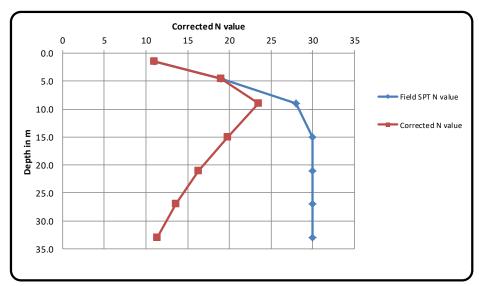
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

	COMPUTATION OF CORRECTED N VALUE										
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy
1		1.5	4.5 9.0 5.0 NOT FOUND 7.0	CL	14		1.761	0.264	1.00	14.00	14.0
2]	4.5		CL	21		1.773	0.798	1.00	21.00	21.0
3]	9.0		CL	27		1.804	1.624	0.84	22.67	22.7
4	BH-24(CH-	15.0		CL	33	30	1.831	2.747	0.66	19.92	19.9
5	27187 M)	21.0		CL	43	30	1.887	3.963	0.54	16.24	16.2
6		27.0		CL	58	30	1.946	5.254	0.45	13.41	13.4
7		33.0		CL	72	30	1.975	6.518	0.37	11.25	11.2
8		39.0		CL	89	30	2.005	7.820	0.31	9.42	9.4


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (\$\phi\$), fig 1 of IS: 6403 was used.
- 3 In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as 1 whereever its value is greater than 1.

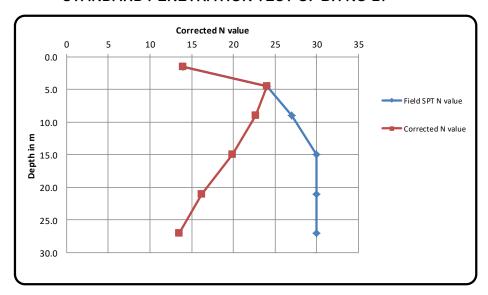
Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

	COMPUTATION OF CORRECTED N VALUE												
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy		
1		1.5		CL	13		1.758	0.264	1.00	13.00	13.0		
2]	4.5		CL	20		1.768	0.796	1.00	20.00	20.0		
3		9.0		CL	30		1.797	1.617	0.84	25.23	25.2		
4	BH-25(CH-	15.0	NOT	CL	31	30	1.831	2.747	0.66	19.92	19.9		
5	27410 M)	21.0	FOUND	CL	33	30	1.862	3.910	0.55	16.37	16.4		
6		27.0 33.0	CL	48	30	1.892	5.108	0.46	13.69	13.7			
7]		CL	68	30	1.921	6.339	0.38	11.53	11.5			
8		39.0		CL	81	30	1.944	7.582	0.32	9.73	9.7		


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (φ), fig 1 of IS: 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as 1 whereever its value is greater than 1.

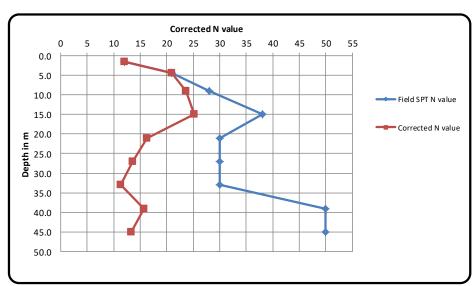
Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

	COMPUTATION OF CORRECTED N VALUE												
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field S val		Density gm/cm ³	overburden pressure in kg/cm ²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy		
1		1.5		CL	11		1.763	0.264	1.00	11.00	11.0		
2		4.5		CL	19		1.782	0.802	1.00	19.00	19.0		
3		9.0		CL	28		1.815	1.634	0.84	23.46	23.5		
4	BH-26(CH- 27550 M)	15.0	NOT FOUND	CL	34	30	1.844	2.766	0.66	19.85	19.8		
5],	21.0		CL	41	30	1.875	3.938	0.54	16.30	16.3		
6]	27.0		CL	53	30	1.913	5.165	0.45	13.58	13.6		
7]	33.0		CL	65	30	1.947	6.425	0.38	11.39	11.4		


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
- Where N is the corrected N value. In case of cohesionless, for angle of shearing resistance (\$\phi\$), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- Overburden correction factor is considered as1 whereever its value is greater than 1.

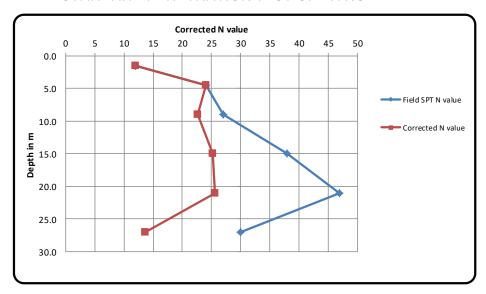
Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

	COMPUTATION OF CORRECTED N VALUE												
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field SPT N value		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy		
1		1.5		CL	14		1.758	0.264	1.00	14.00	14.0		
2		4.5		CL	24		1.768	0.796	1.00	24.00	24.0		
3	BH-27(CH-	9.0	NOT	CL	27		1.802	1.622	0.84	22.68	22.7		
4	28050 M)	15.0	15.0 FOUND 21.0	CL	36	30	1.839	2.759	0.66	19.87	19.9		
5		21.0		CL	45	30	1.885	3.959	0.54	16.25	16.3		
6		27.0		CL	54	30	1.929	5.208	0.45	13.50	13.5		


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
- Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as 1 whereever its value is greater than 1.

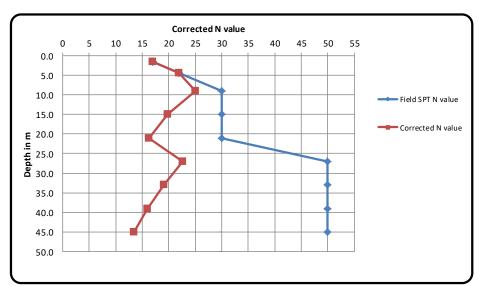
Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

	COMPUTATION OF CORRECTED N VALUE												
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field S		Density gm/cm ³	overburden pressure in kg/cm ²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy		
1		1.5		CL	12		1.763	0.264	1.00	12.0	12.0		
2]	4.5		ML	21		0.772	0.347	1.00	21.0	21.0		
3]	9.0		ML	28		1.794	1.615	0.84	23.6	23.6		
4]	15.0		ML	38		1.836	2.754	0.66	25.2	25.2		
5	BH-28(CH- 28350M)	21.0	NOT FOUND	CL	47	30	1.883	3.954	0.54	16.3	16.3		
6]	27.0		CL	53	30	1.912	5.162	0.45	13.6	13.6		
7]	33.0 39.0		CL	70	30	1.955	6.452	0.38	11.4	11.4		
8			ML	81	50	1.998	7.792	0.32	15.8	15.8			
9		45.0		ML	92	50	2.009	9.041	0.27	13.3	13.3		


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

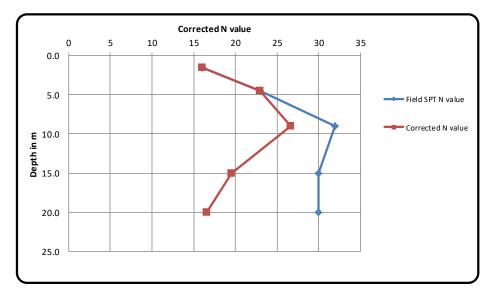
Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

	COMPUTATION OF CORRECTED N VALUE												
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field S val		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy		
1		1.5		ML	12		1.761	0.264	1.00	12.0	12.0		
2		4.5		ML-CL	24		1.778	0.800	1.00	24.0	24.0		
3	BH-29(CH-	9.0	NOT	ML-CL	27		1.798	1.618	0.84	22.7	22.7		
4	28550 M)	15.0	FOUND	ML	38		1.829	2.744	0.66	25.2	25.2		
5		21.0	ML	47		1.865	3.917	0.55	25.6	25.63			
6		27.0		ML-CL	61	30	1.898	5.125	0.46	13.7	13.66		


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
- Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as 1 whereever its value is greater than 1.

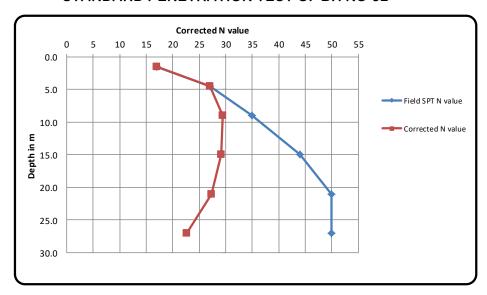
Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

	COMPUTATION OF CORRECTED N VALUE												
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field :		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy		
1		1.5		ML	17		1.768	0.265	1.00	17.0	17.0		
2		4.5		ML-CL	22		1.792	0.806	1.00	22.0	22.0		
3		9.0		ML-CL	30		1.831	1.648	0.83	25.0	25.0		
4		15.0		CL	38	30	1.855	2.783	0.66	19.8	19.8		
5	BH-30(CH- 28750 M)	21.0	NOT FOUND	CL	44	30	1.871	3.929	0.54	16.3	16.3		
6] ' ' '	27.0		ML	56	50	1.907	5.149	0.45	22.7	22.7		
7]	33.0		ML	64	50	1.941	6.405	0.38	19.0	19.0		
8]	39.0	39.0	ML	73	50	1.971	7.687	0.32	16.0	16.0		
9		45.0		ML	84	50	1.995	8.978	0.27	13.4	13.4		


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

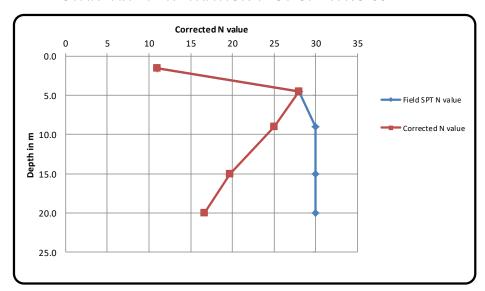
Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

	COMPUTATION OF CORRECTED N VALUE											
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field S val		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy	
1		1.5		CL	16		1.765	0.265	1.00	16.0	16.0	
2		4.5		ML	23		1.786	0.804	1.00	23.0	23.0	
3	BH-31(CH- 29050 M)	9.0	NOT FOUND	ML	32		1.845	1.661	0.83	26.6	26.6	
4		15.0		ML-CL	40	30	1.904	2.856	0.65	19.5	19.5	
5		20.0		ML-CL	51	30	1.926	3.852	0.55	16.5	16.52	


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (\$\phi\$), fig 1 of IS: 6403 was used.
- 3 In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

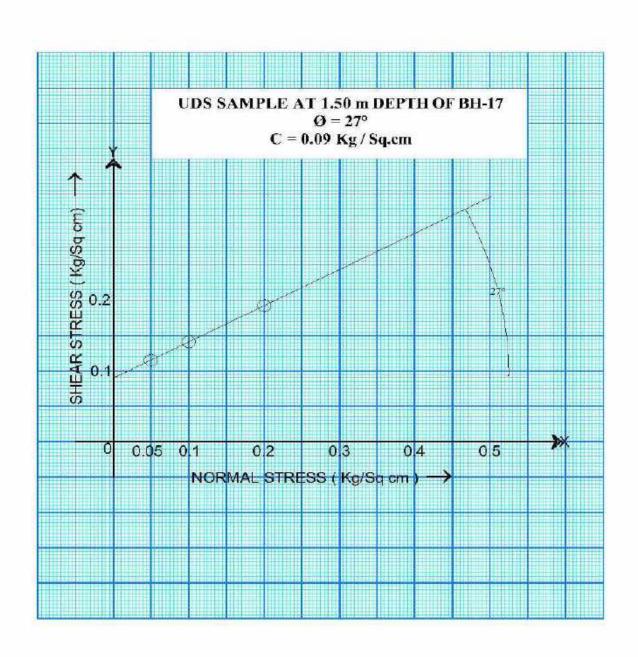
Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

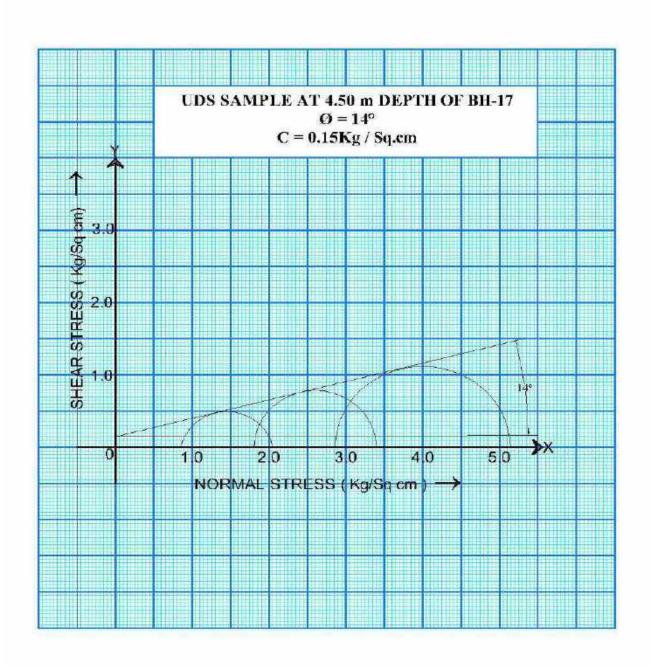
	COMPUTATION OF CORRECTED N VALUE											
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field S val		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy	
1		1.5		ML-CL	17		1.754	0.263	1.00	17.0	17.0	
2		4.5		ML-CL	27		1.769	0.796	1.00	27.0	27.0	
3	BH-32(CH-	9.0	NOT	ML	35		1.804	1.624	0.84	29.4	29.4	
4	29550 M)	15.0	FOUND	ML	44		1.835	2.753	0.66	29.2	29.2	
5	Ī	21.0		ML	54	50	1.864	3.914	0.55	27.3	27.3	
6		27.0		ML	63	50	1.909	5.154	0.45	22.7	22.7	


- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
- Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ϕ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

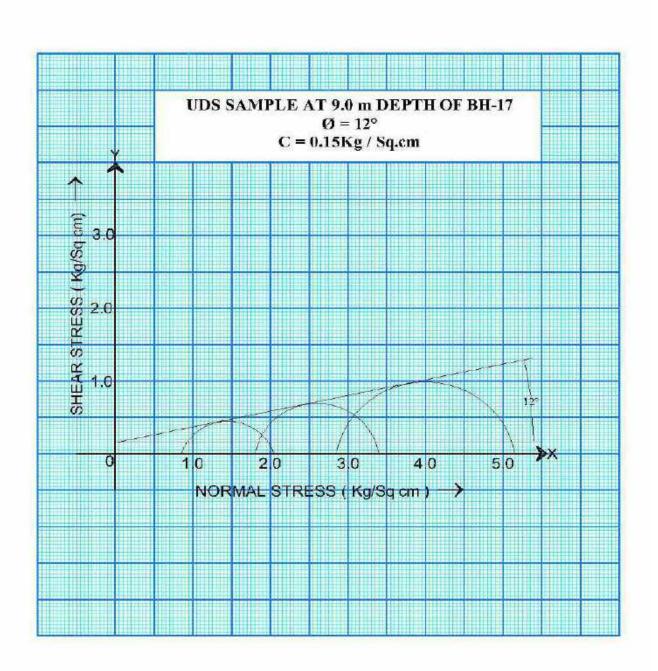
Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

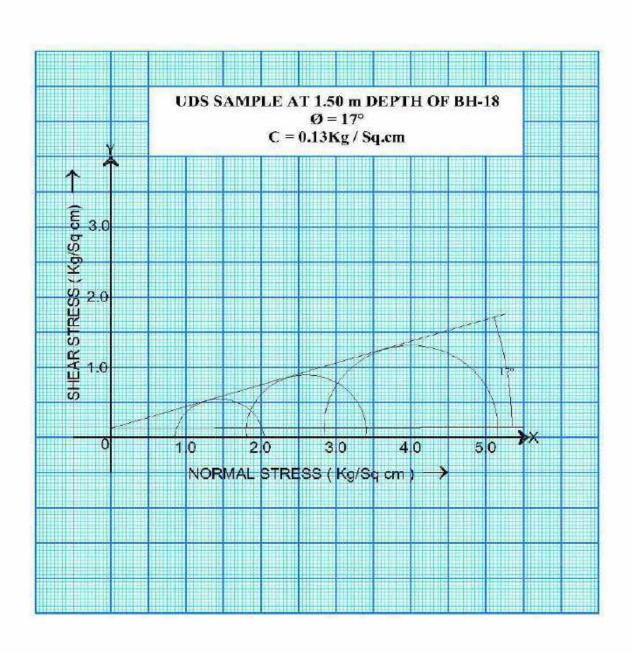
	COMPUTATION OF CORRECTED N VALUE											
SI No.	Bridge No.	Depth from G.L in m.	Water table in m	Group of soil	Field S val		Density gm/cm ³	overburden pressure in kg/cm²	overburden correction factor	Corrected N value due to overburden	Corrected N value due to Dilatancy	
1		1.5		ML-CL	11		1.772	0.266	1.00	11.0	11.0	
2		4.5		ML-CL	28		1.793	0.807	1.00	28.0	28.0	
3	BH-33(CH- 30125 M)	9.0	NOT FOUND	ML-CL	39	30	1.828	1.645	0.84	25.1	25.1	
4	,	15.0		ML-CL	50	30	1.874	2.811	0.66	19.7	19.7	
5		20.0		ML-CL	63	30	1.901	3.802	0.56	16.7	16.7	

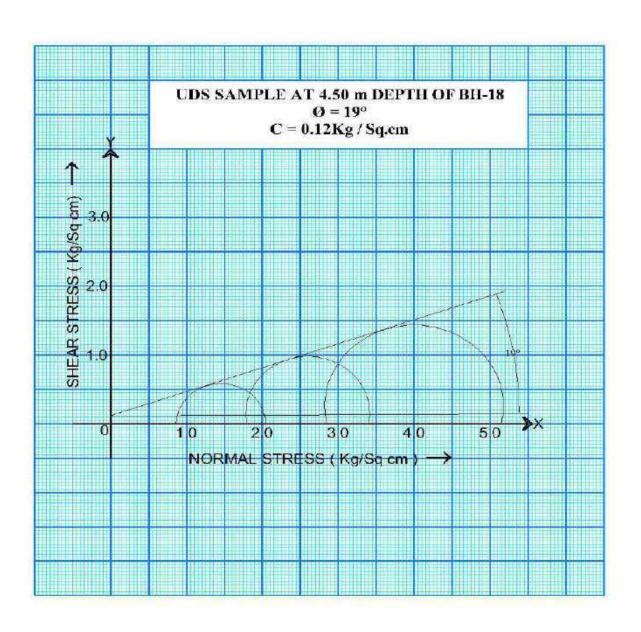

- 1. As per Terzaghi & Peck, in case of cohesive soil there is a relationship between N value & consistency.
 - Where N is the corrected N value.
- 2. In case of cohesionless, for angle of shearing resistance (ψ), fig 1 of IS : 6403 was used.
- In case of clay soil, if N>30 then it may be considered limited to 30.
- 4 Overburden correction factor is considered as1 whereever its value is greater than 1.

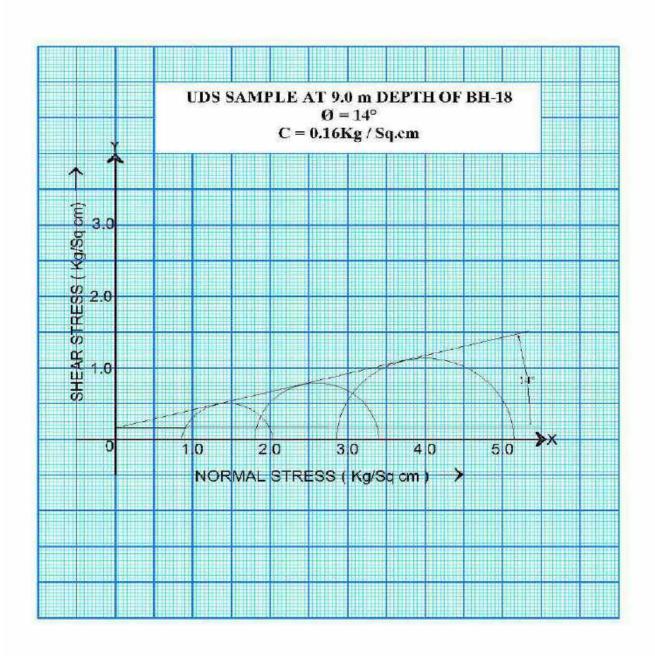

Geotechnical Investigation Report								
Consultant: Client:								
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

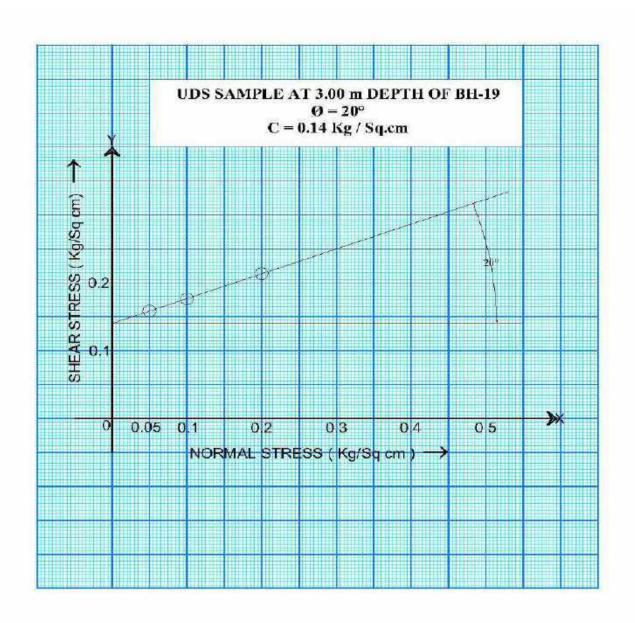
ANNEXURE –J GRAPHICAL REPRESENTATION OF SHEAR STRENGTH PARAMETER

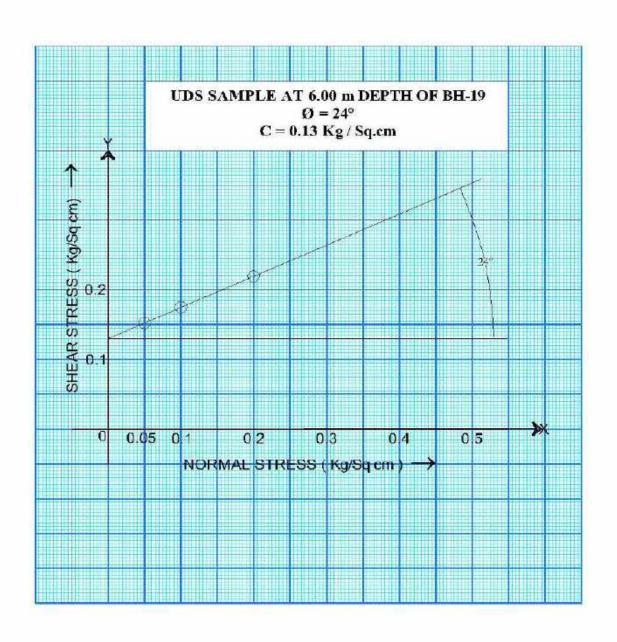

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

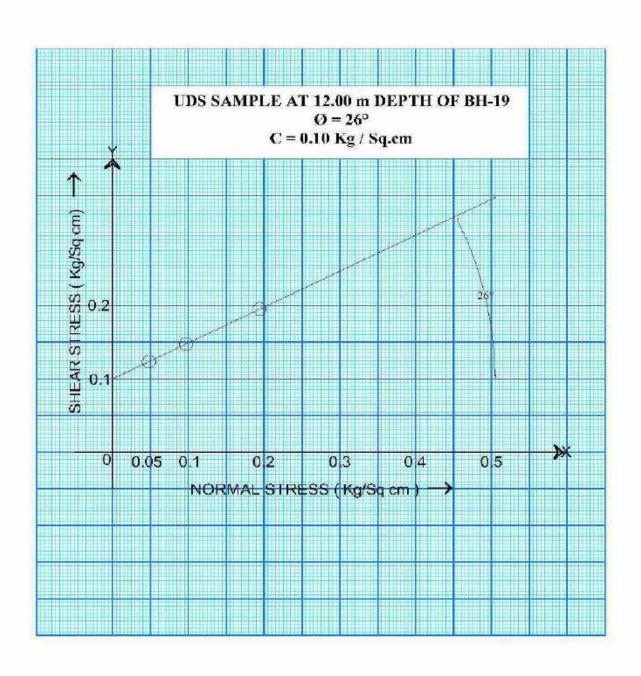

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						


Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

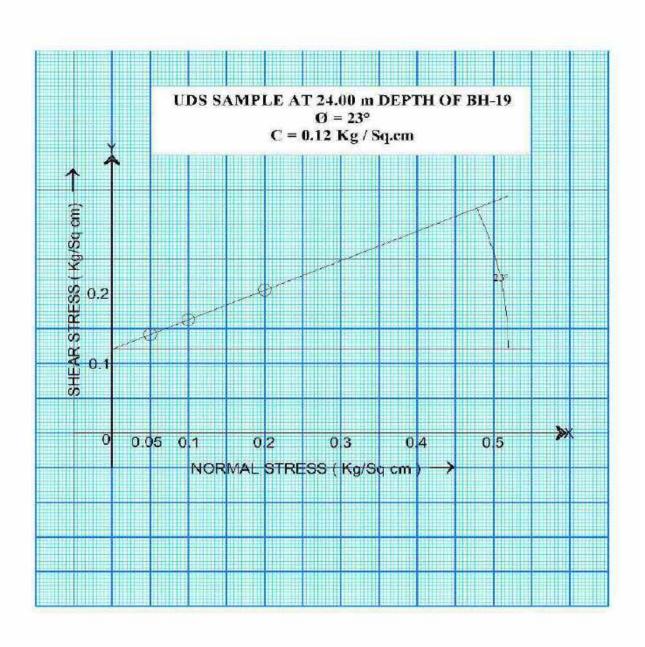

Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

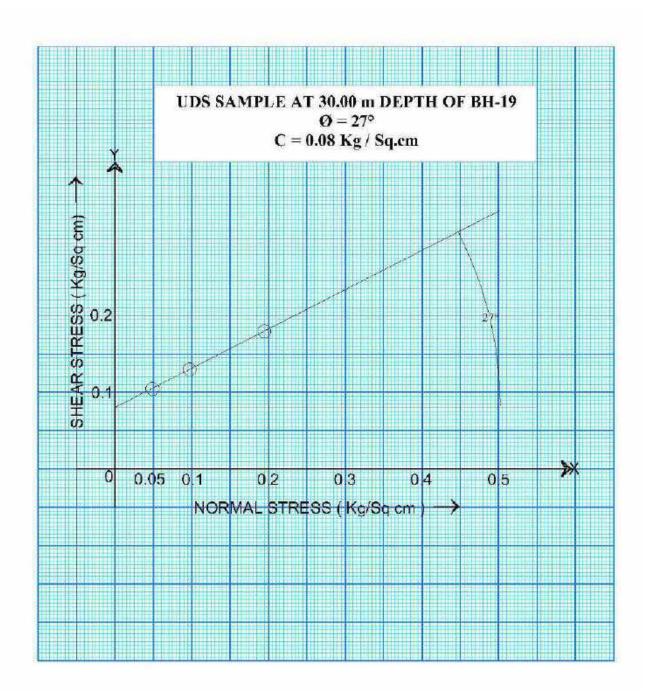

Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

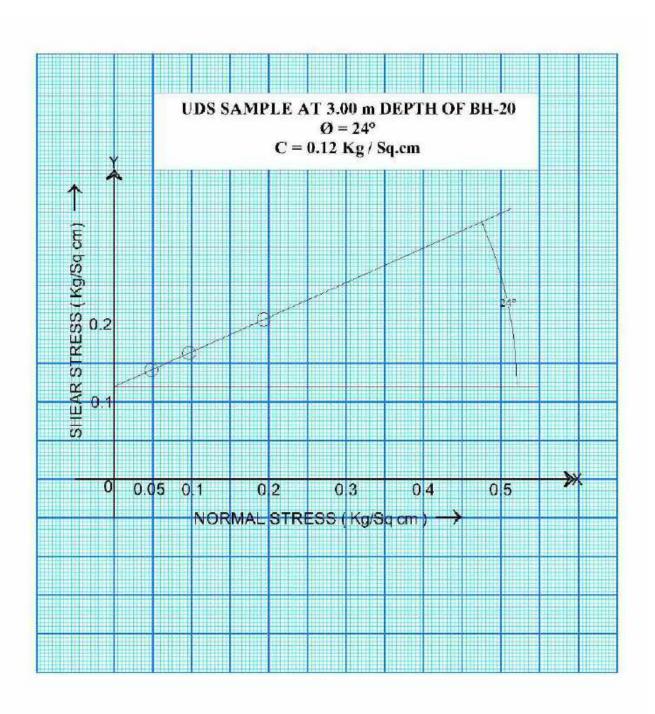

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

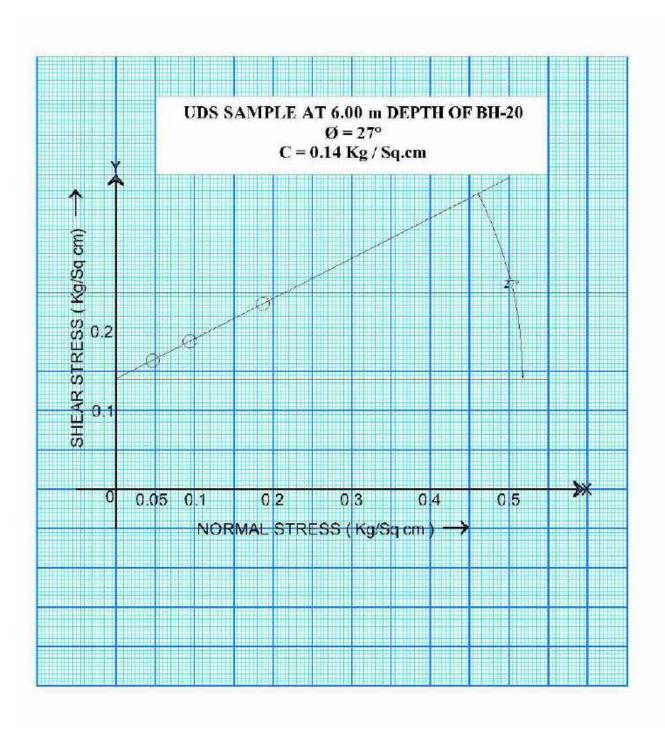

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

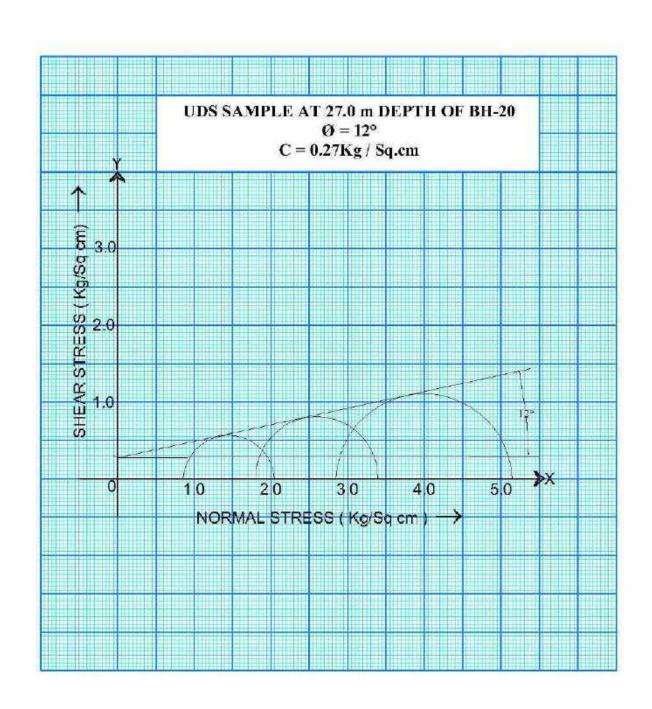

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

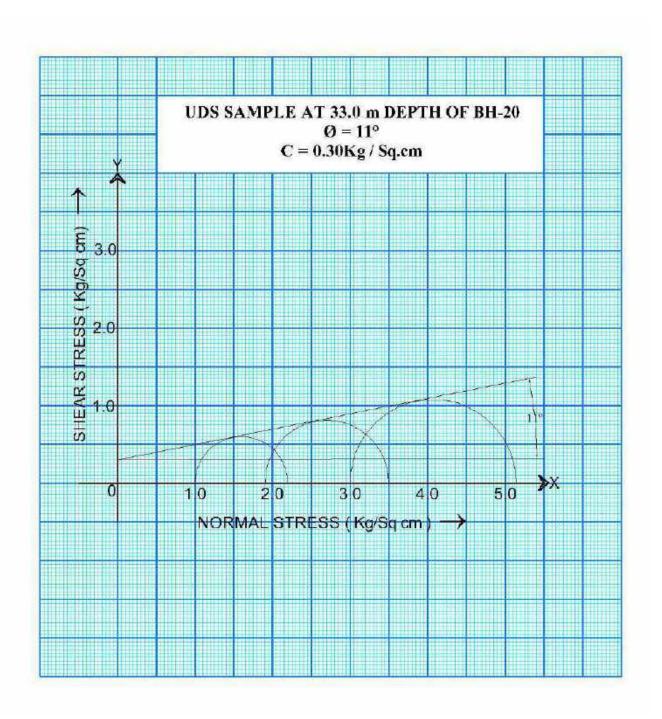

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

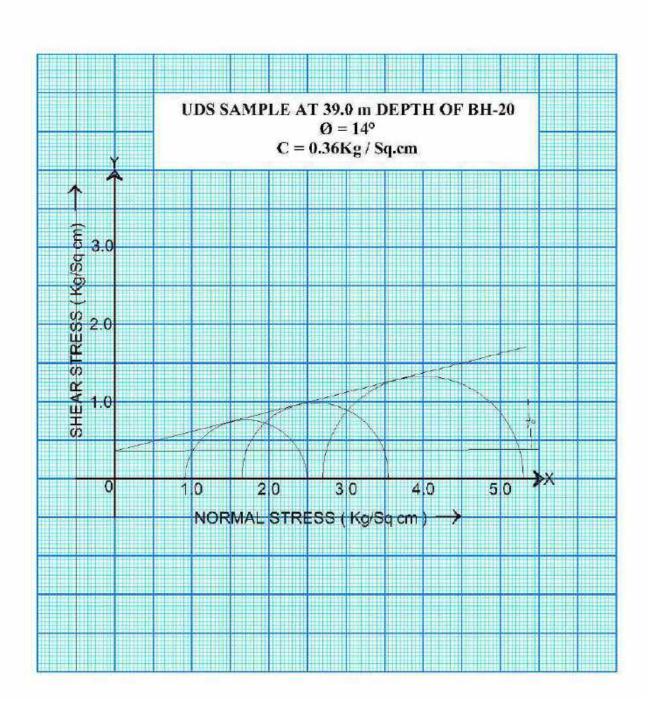

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

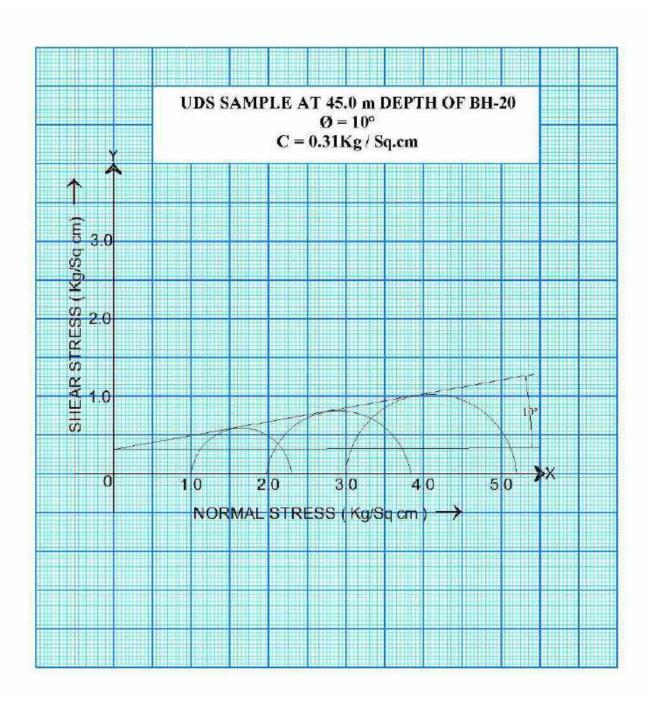

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

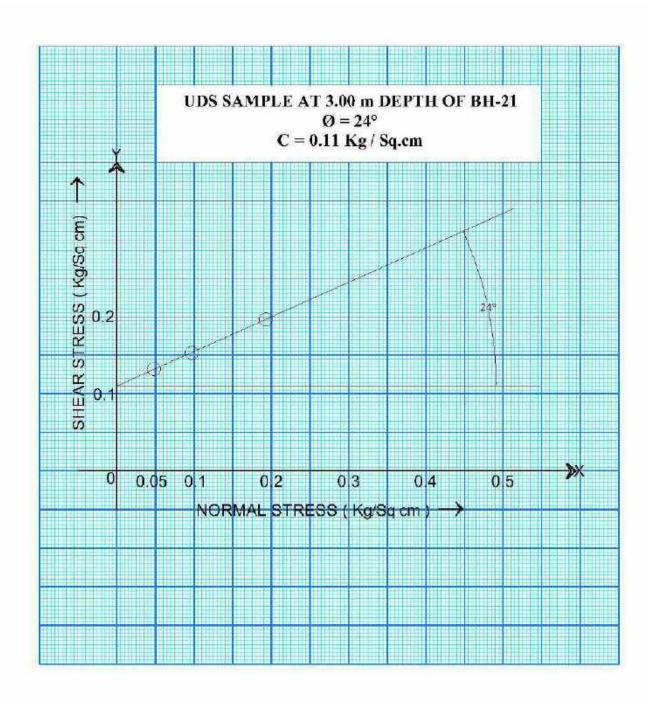

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

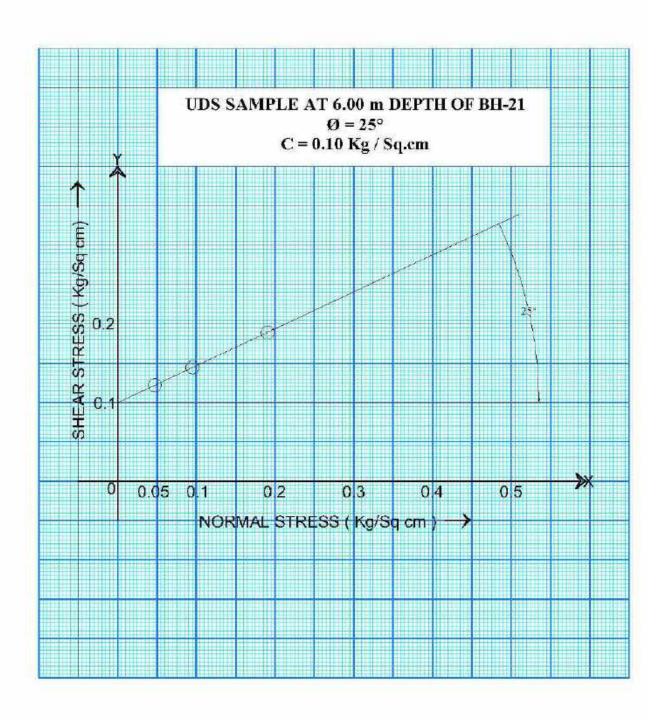

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

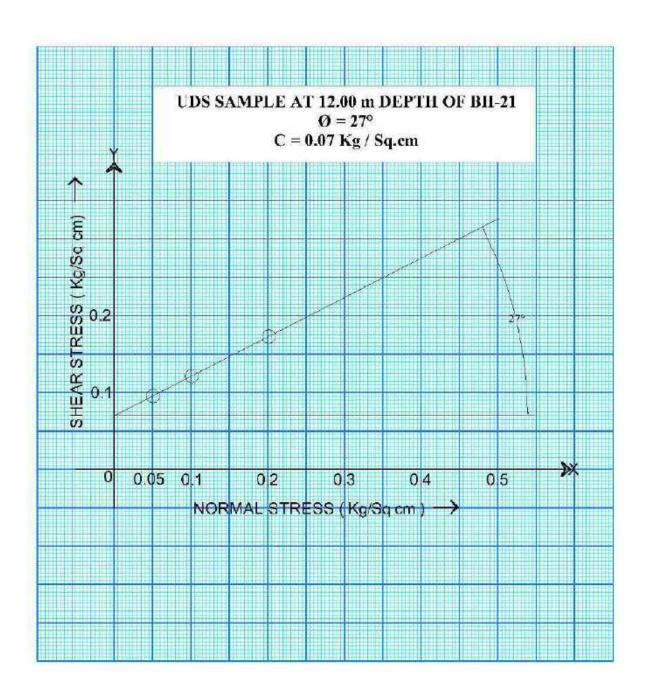

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

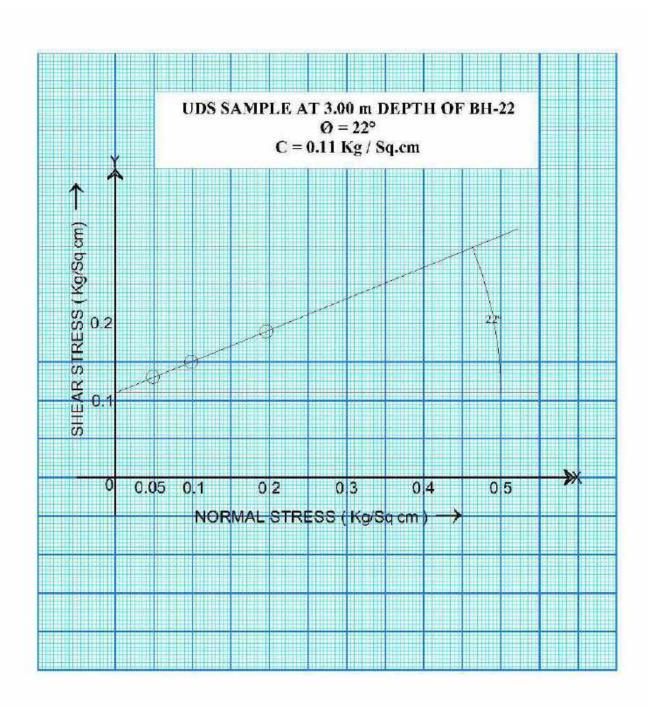

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

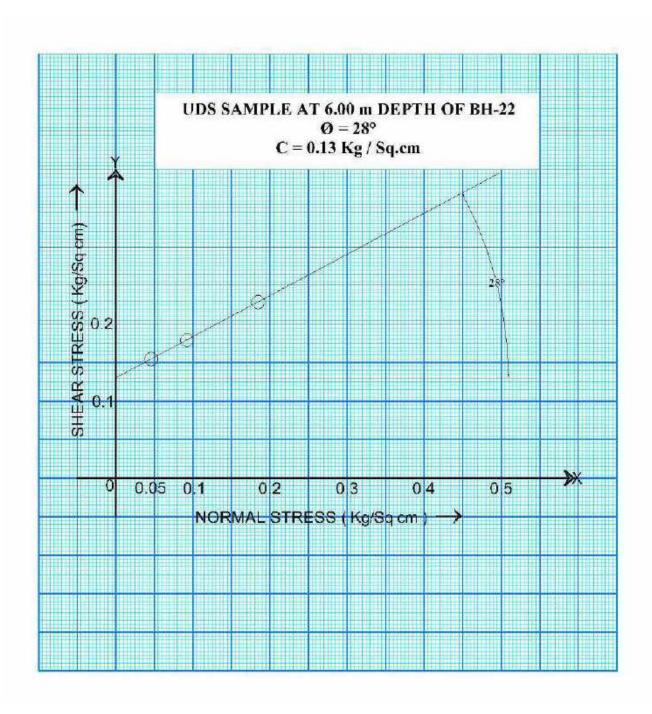

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

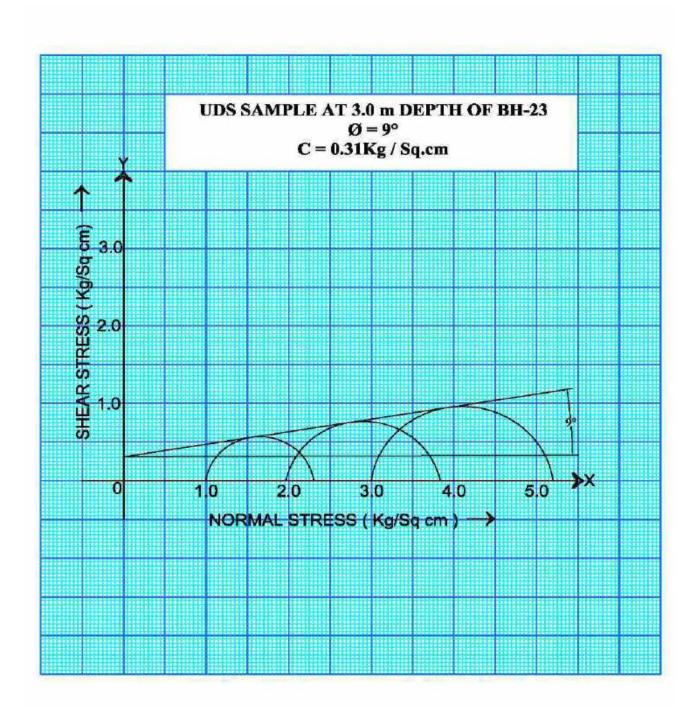

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

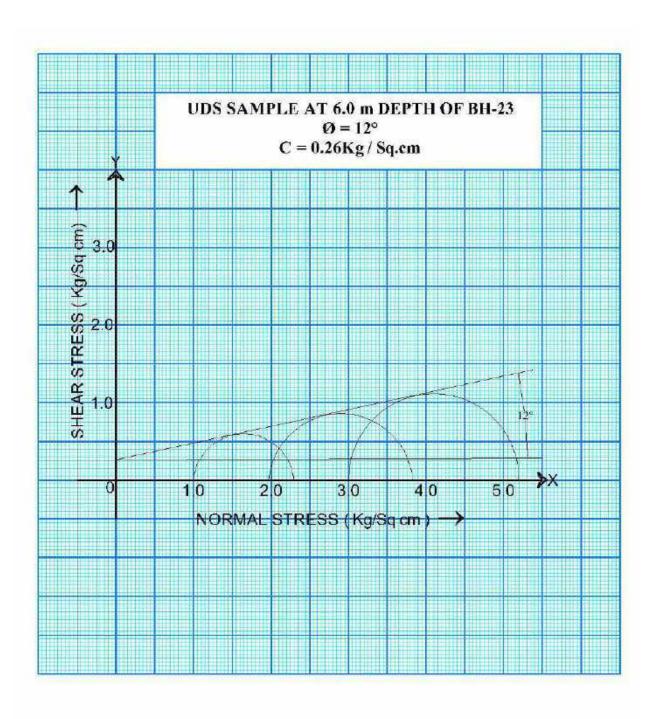

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

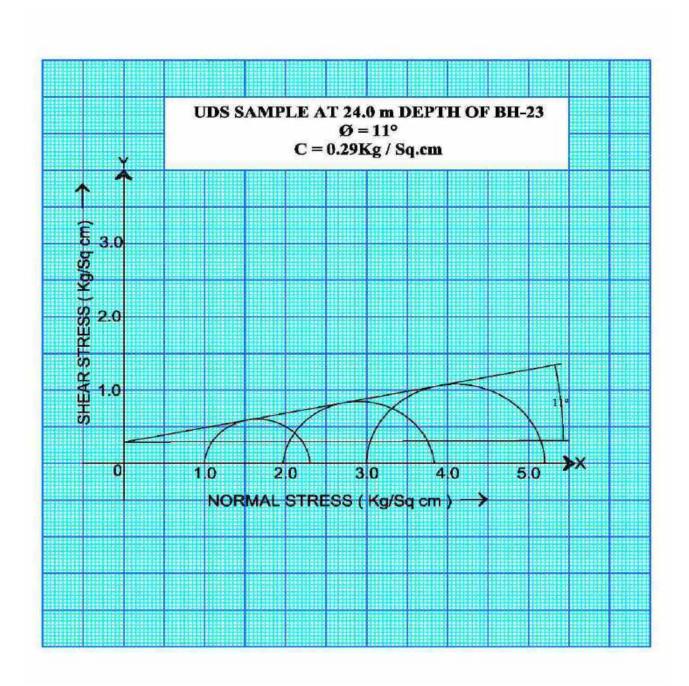

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

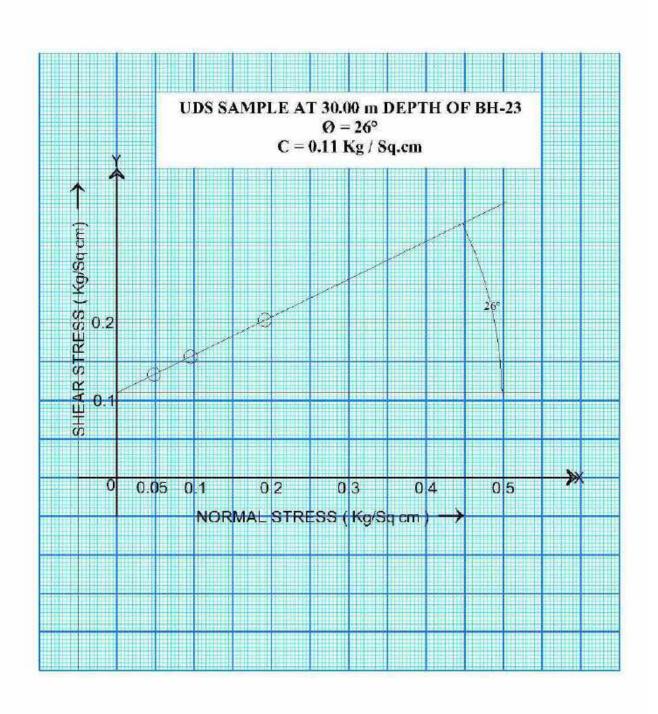

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

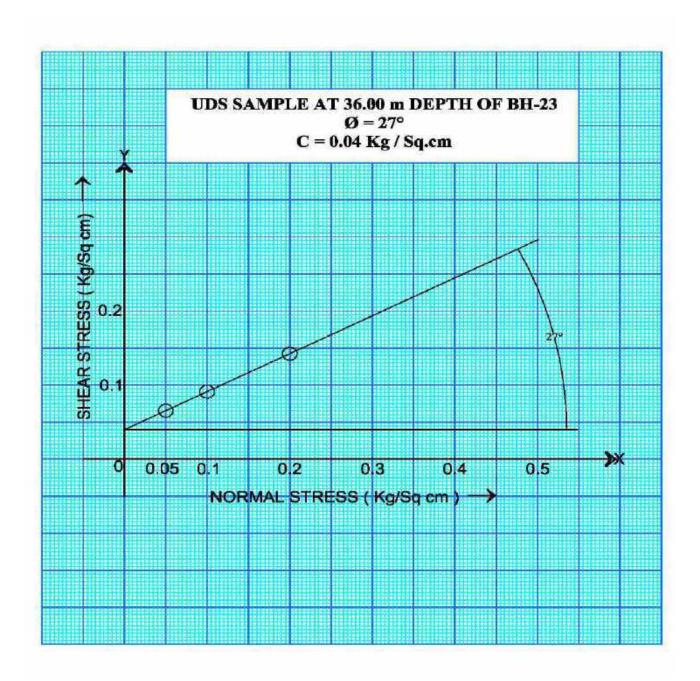

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

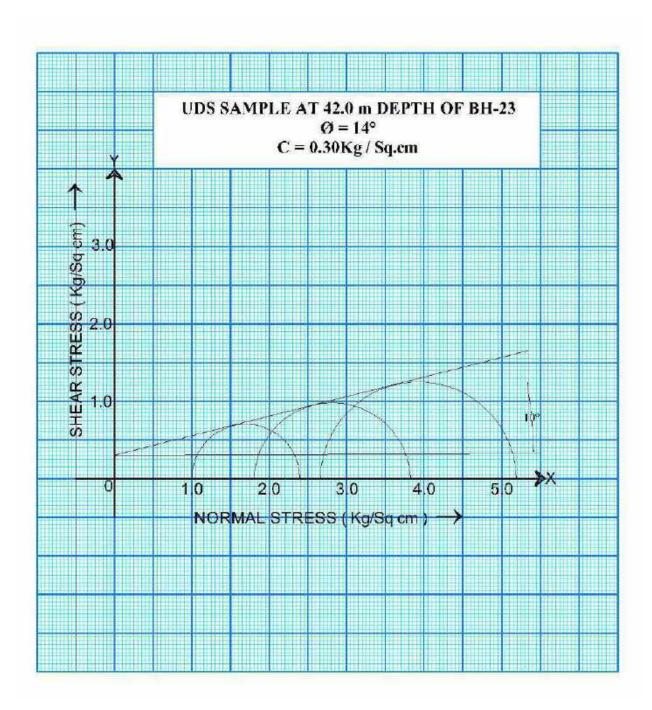

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

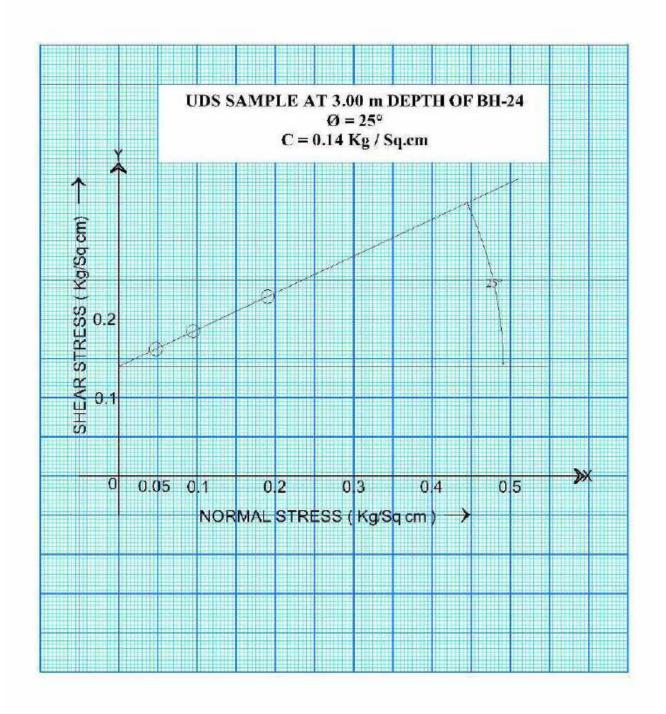

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

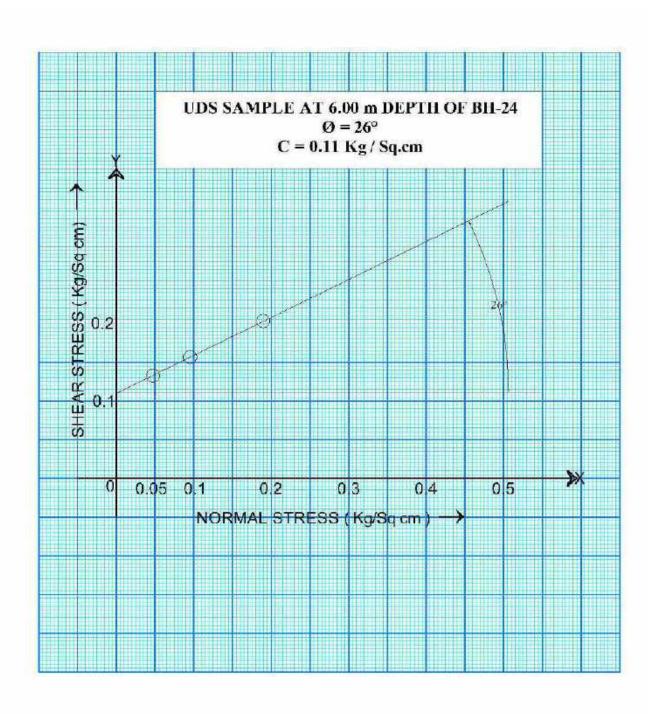

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

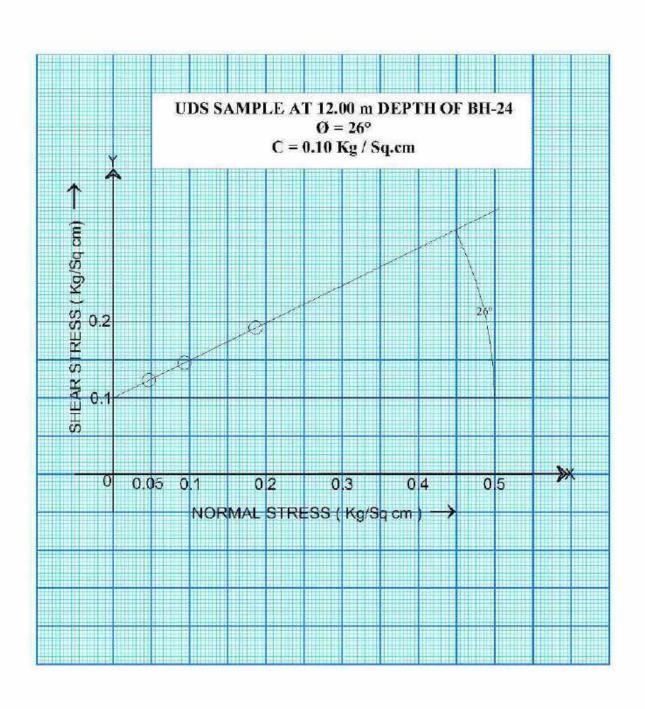

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

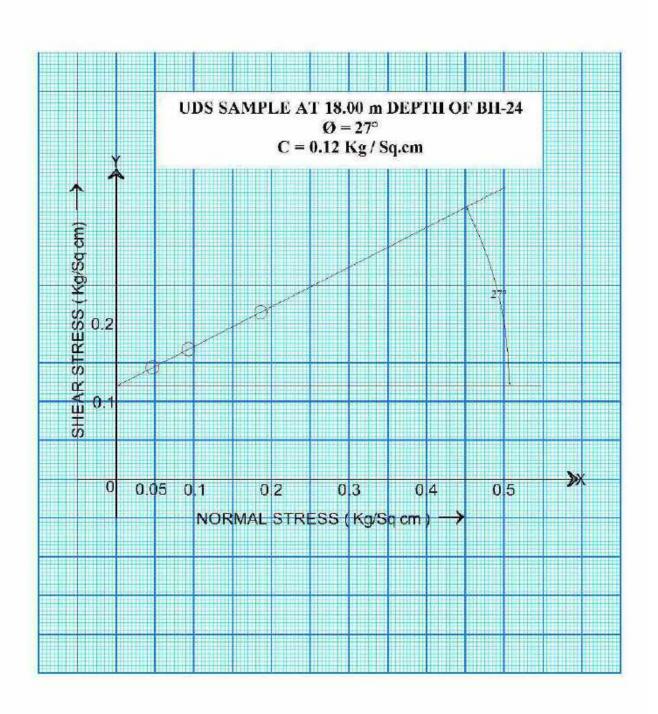

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

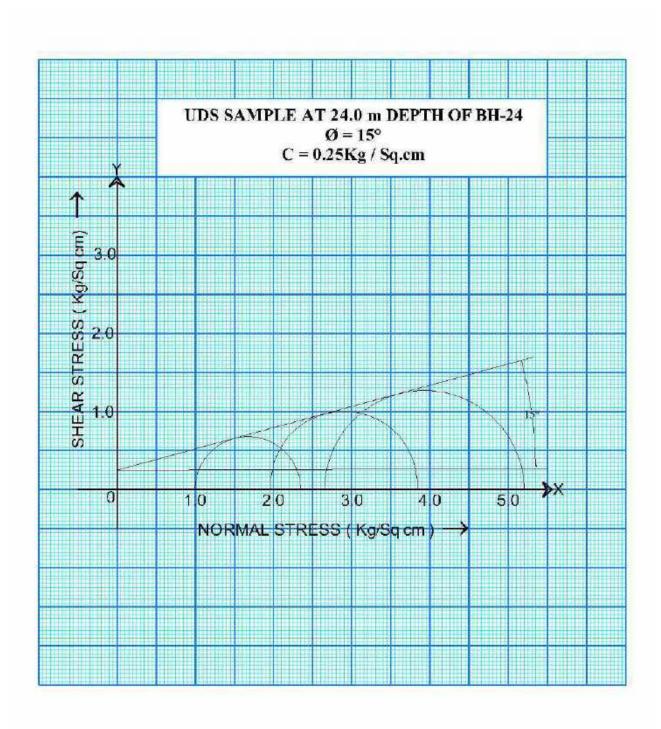

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

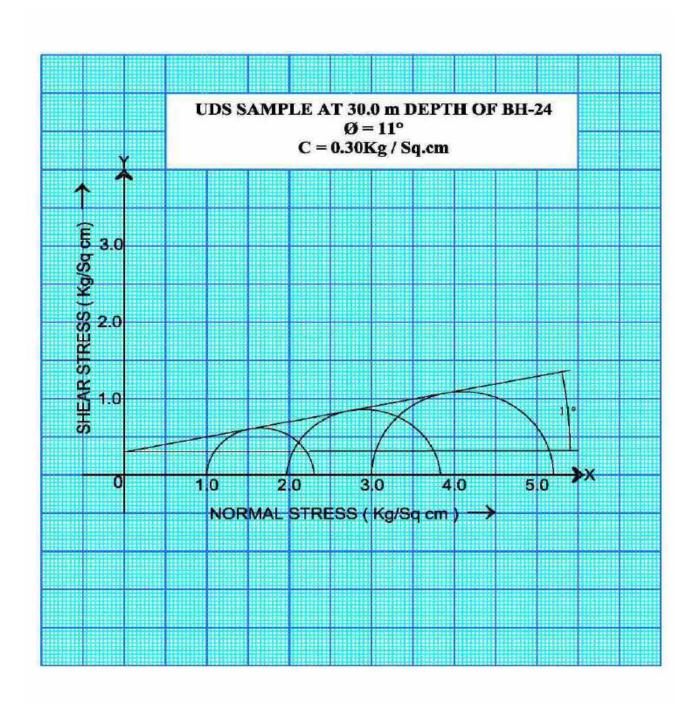

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

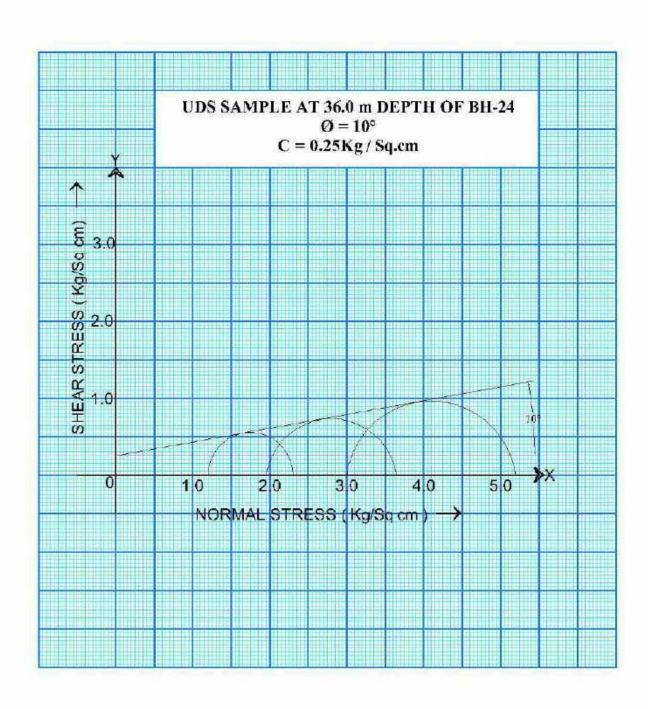

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

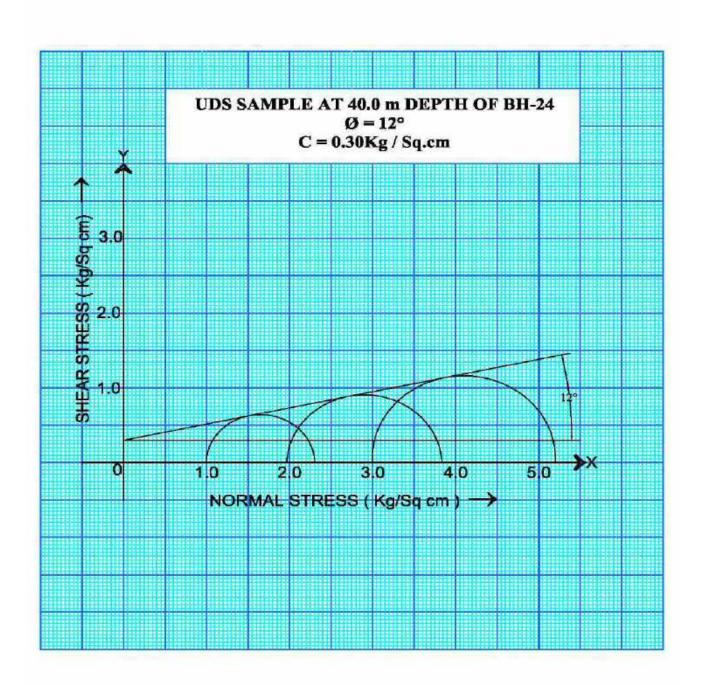

Geotechnical Investigation Report				
Consultant:			Client :	
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

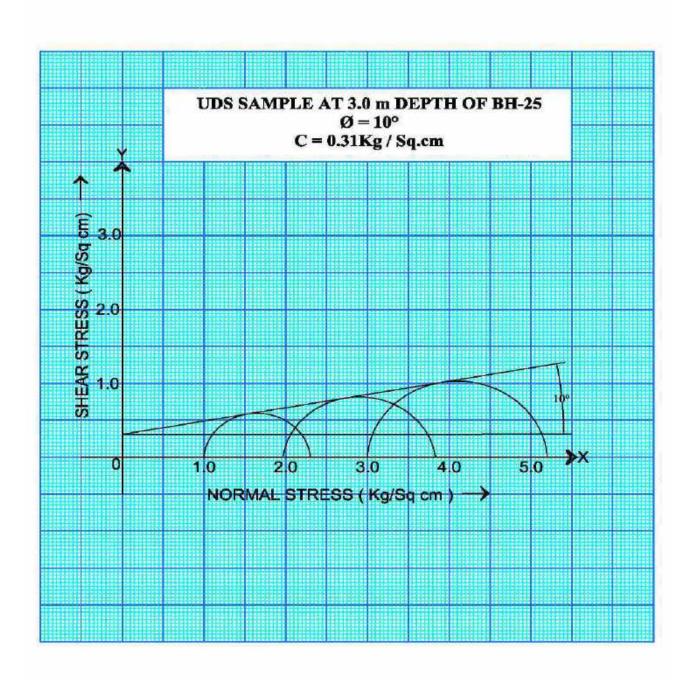

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

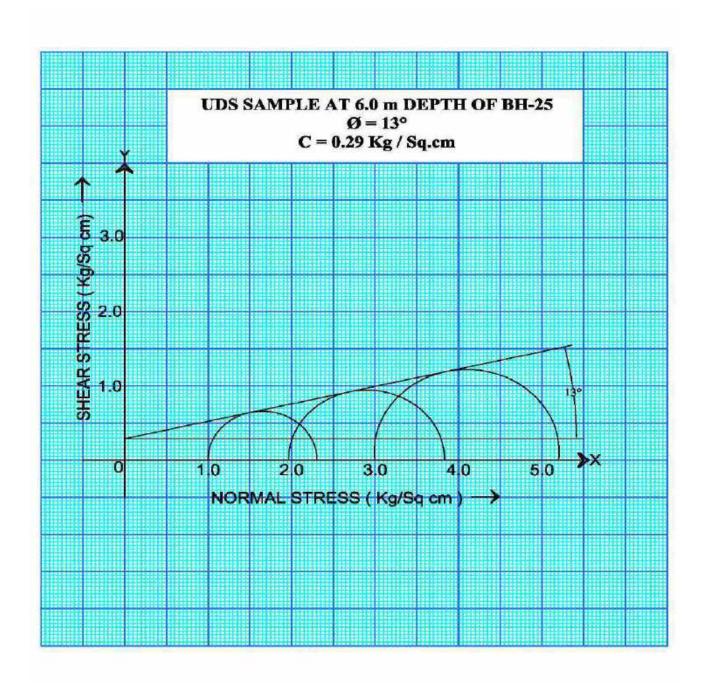

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

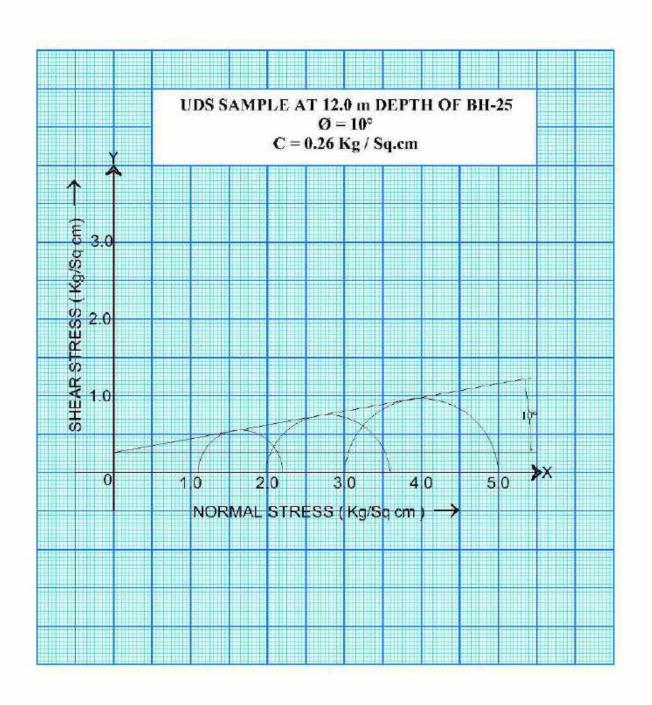

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

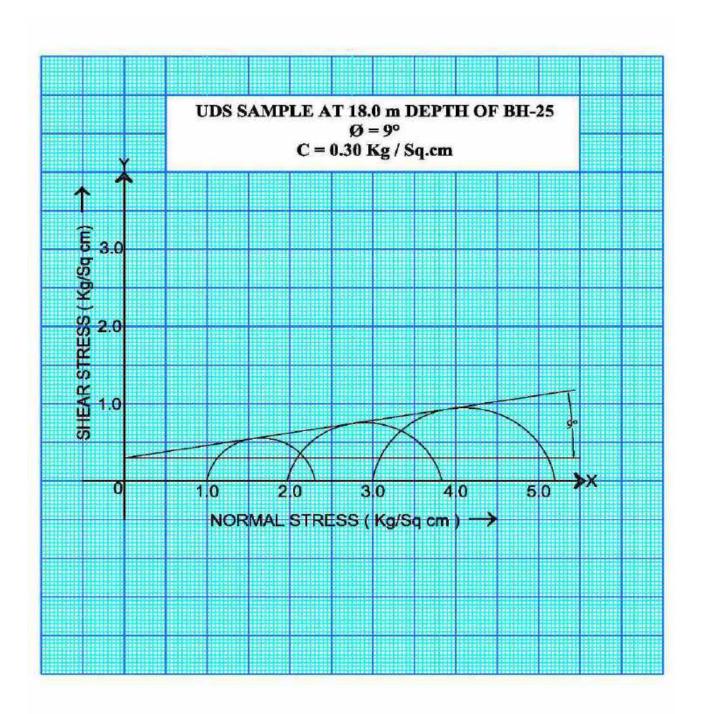

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

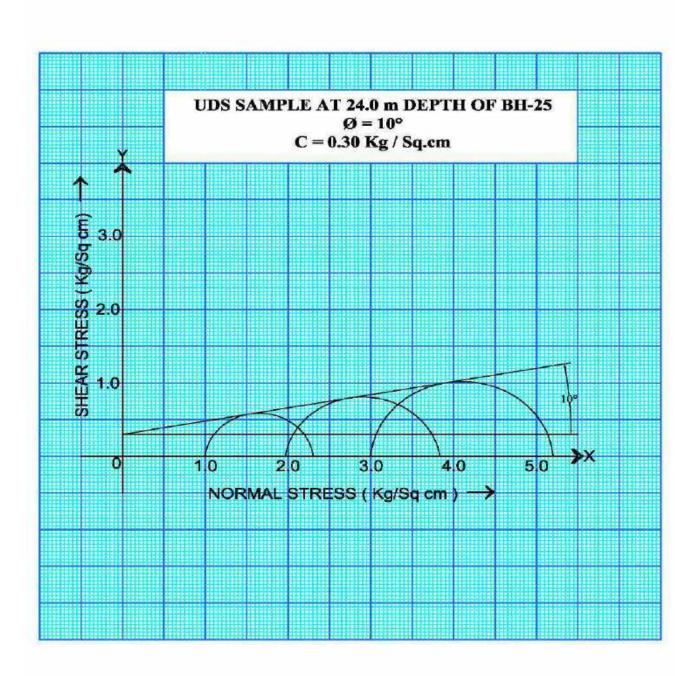

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

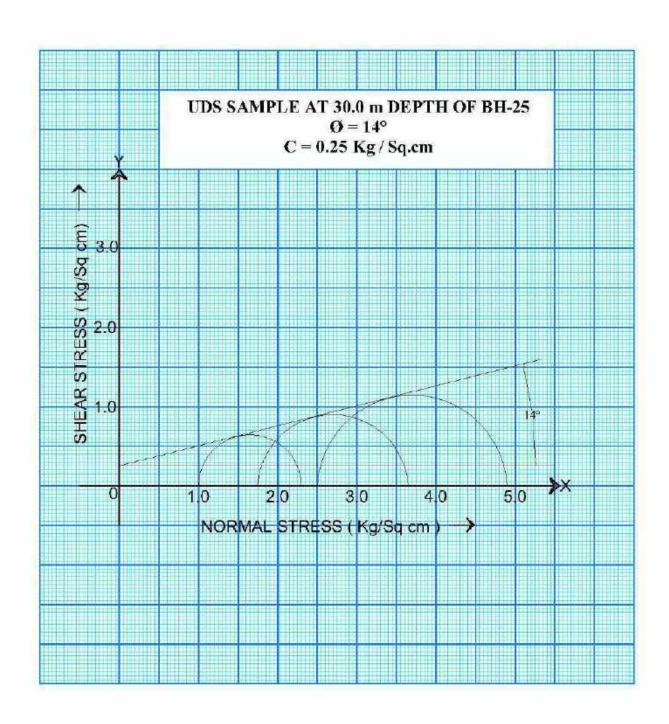

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

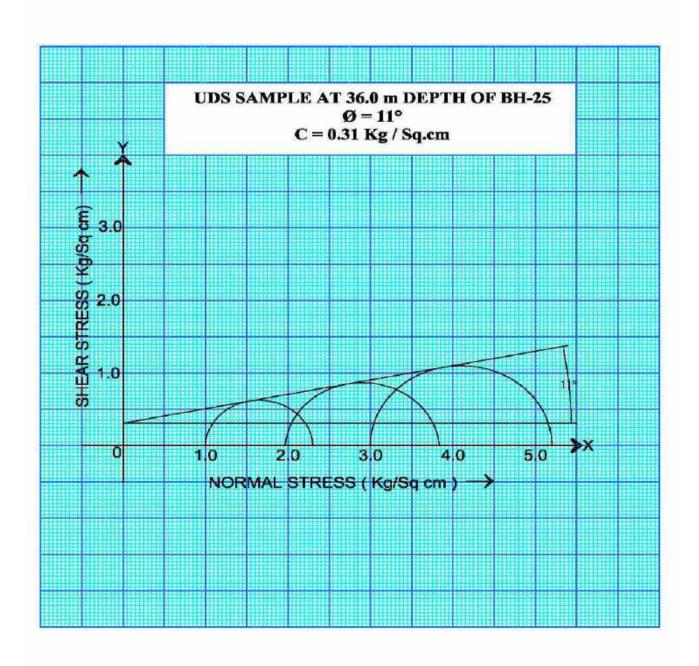

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

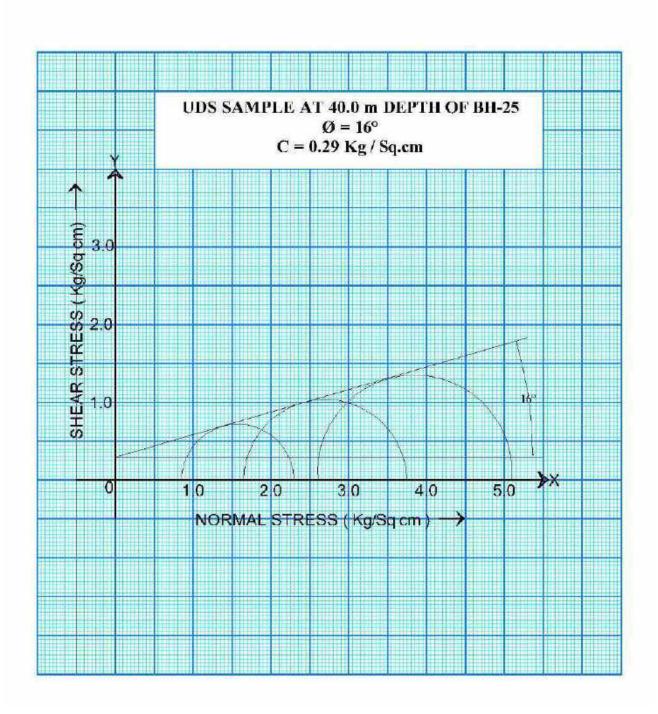

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

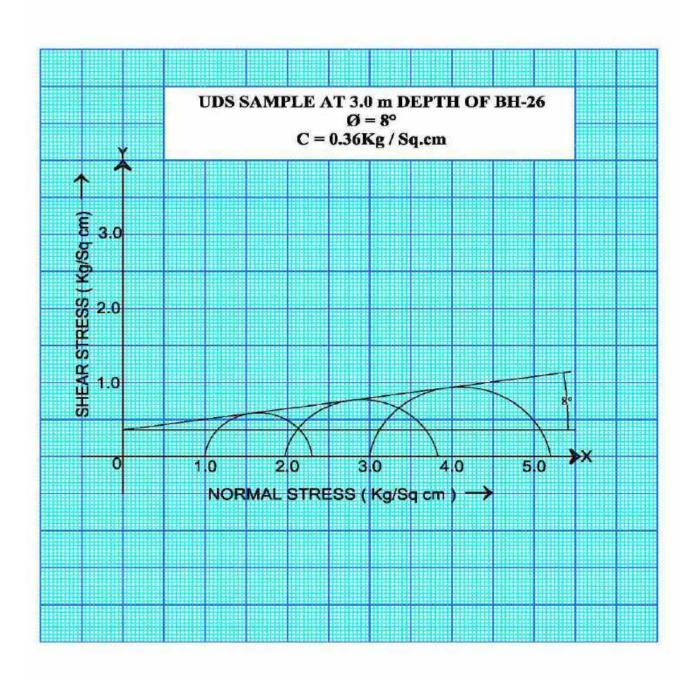

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

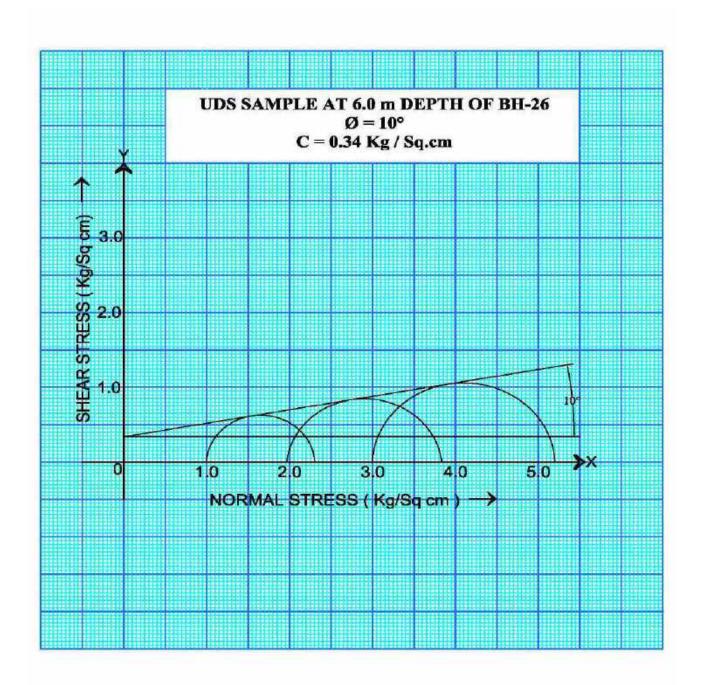

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

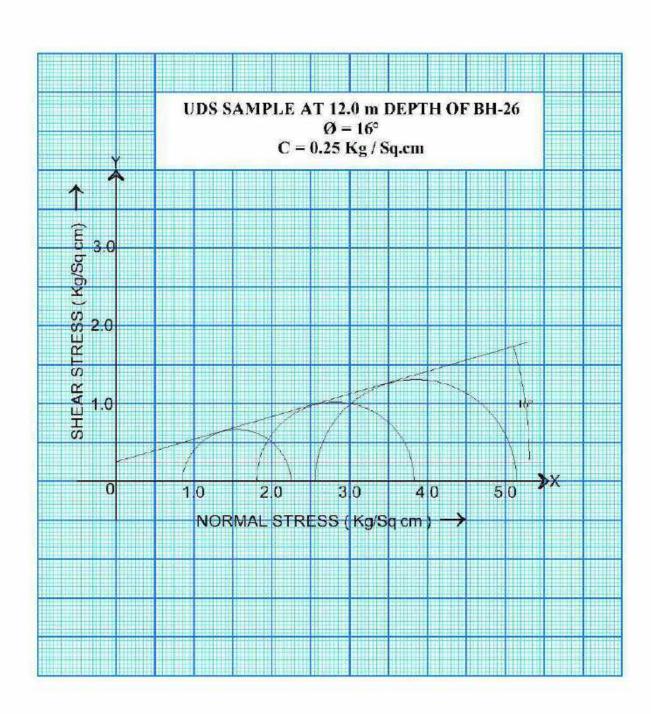

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

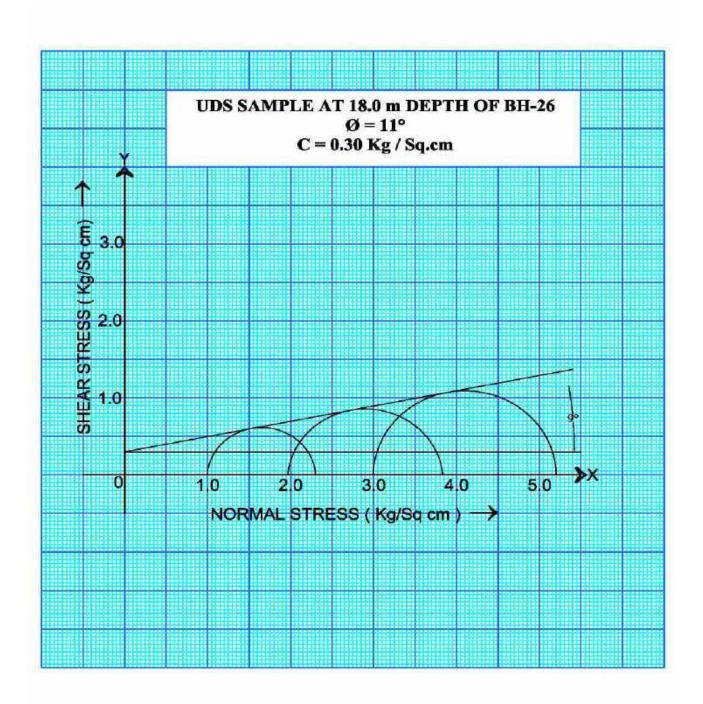

Geotechnical Investigation Report				
Consultant:			Client :	
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

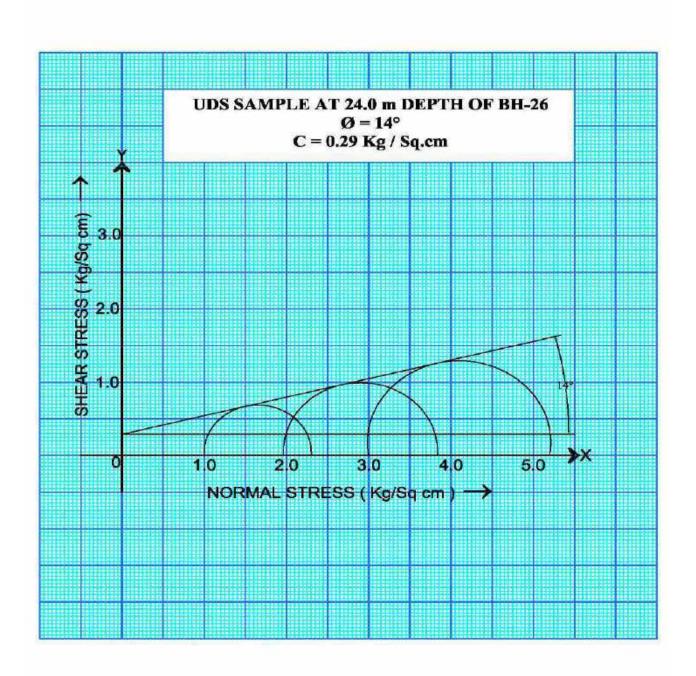

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

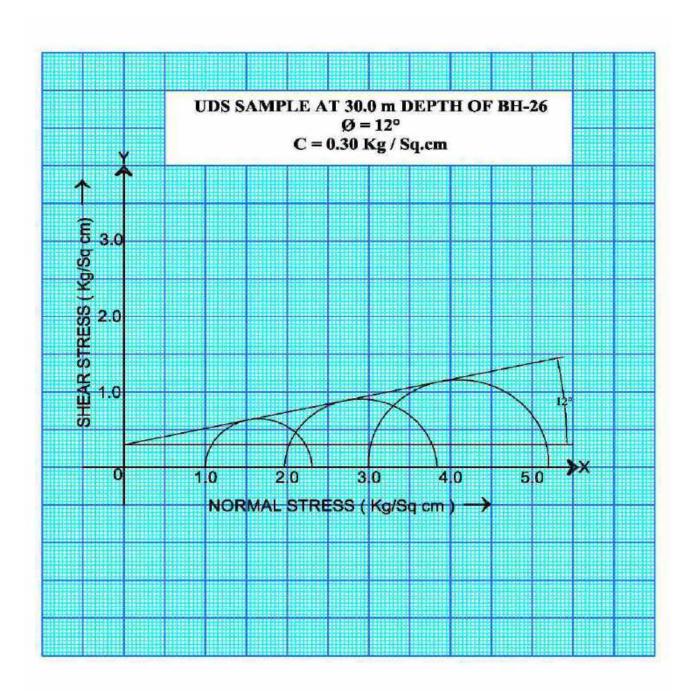

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

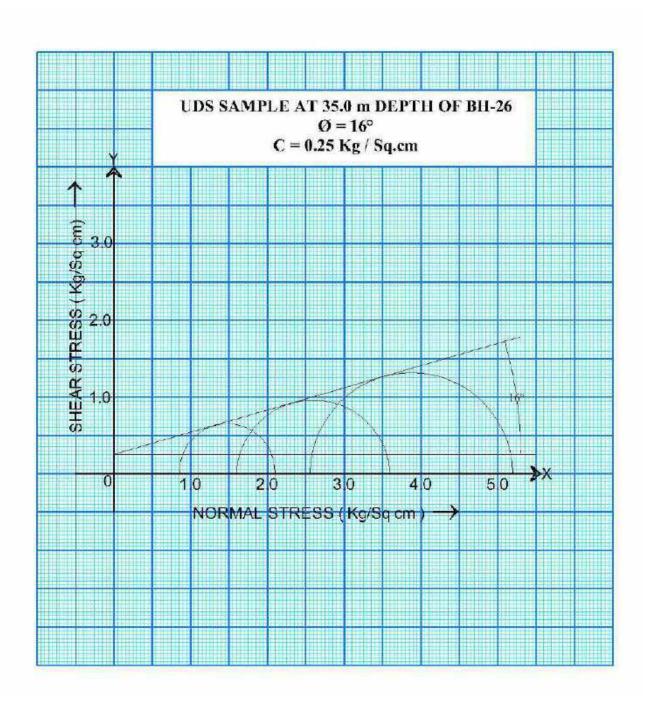

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

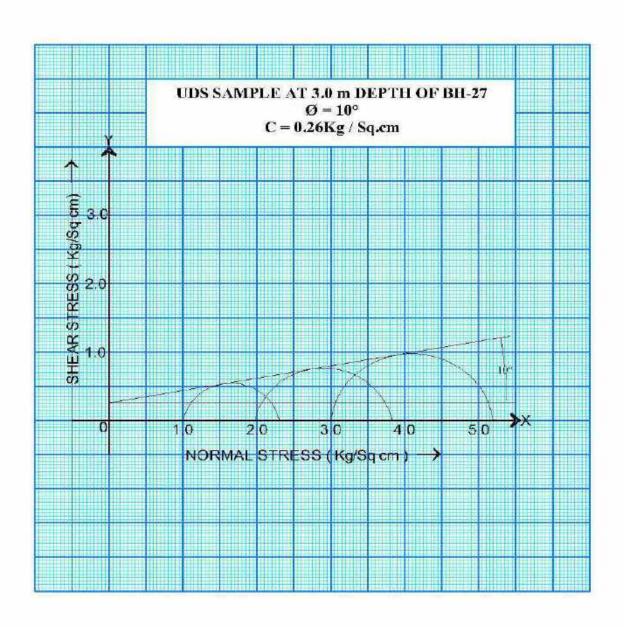

Geotechnical Investigation Report				
Consultant:			Client :	
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

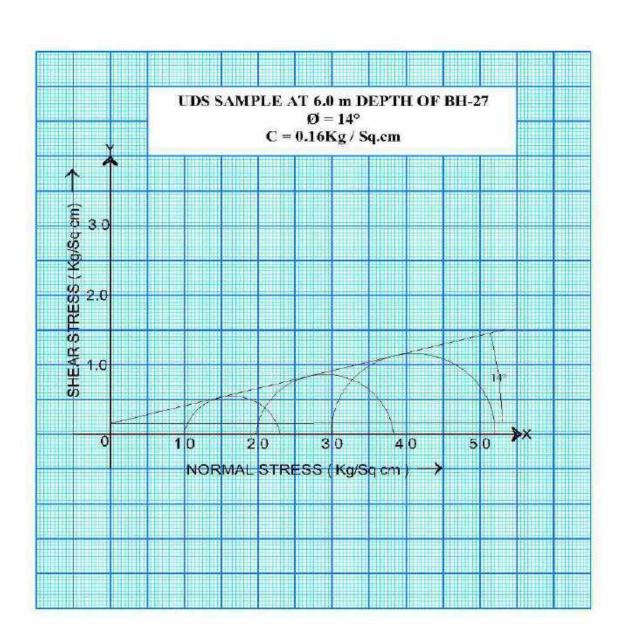

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

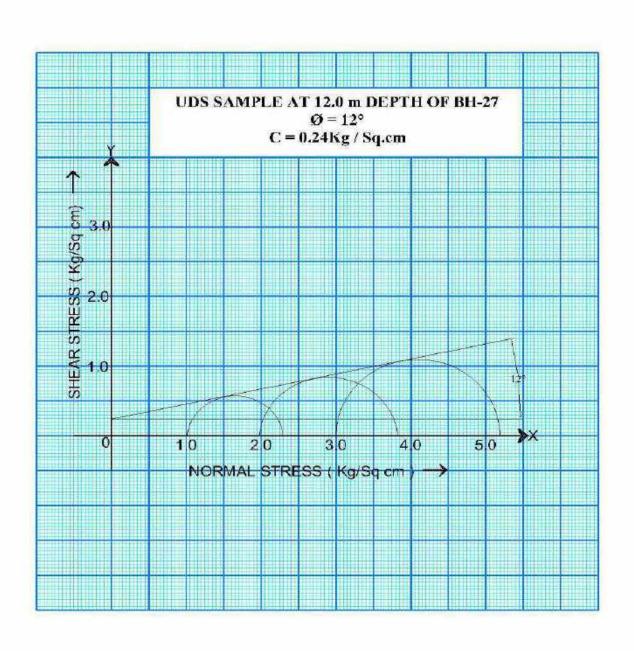

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

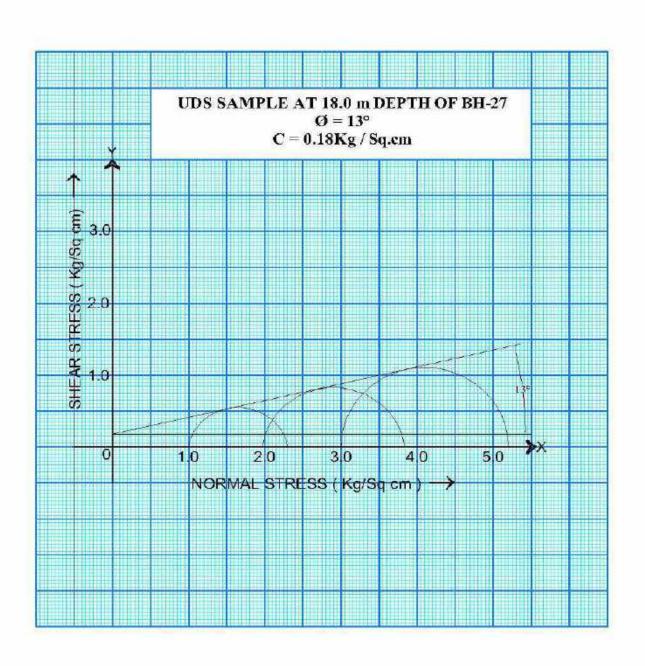

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

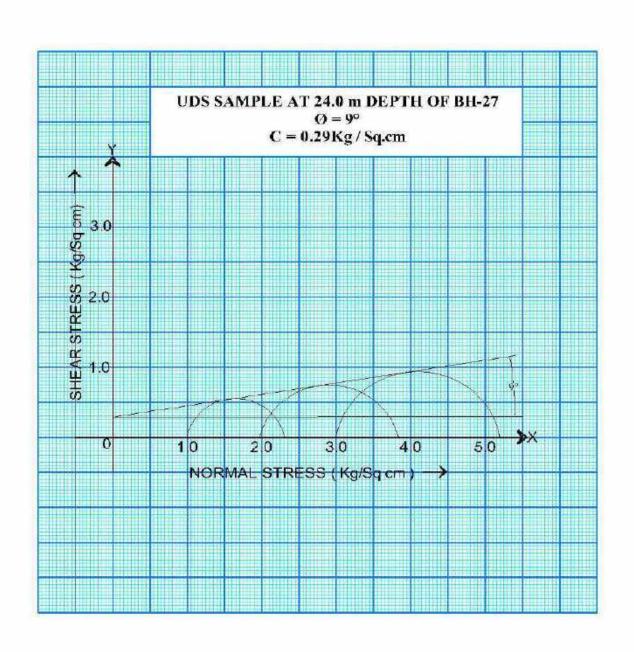

Geotechnical Investigation Report					
Consultant: Client:					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

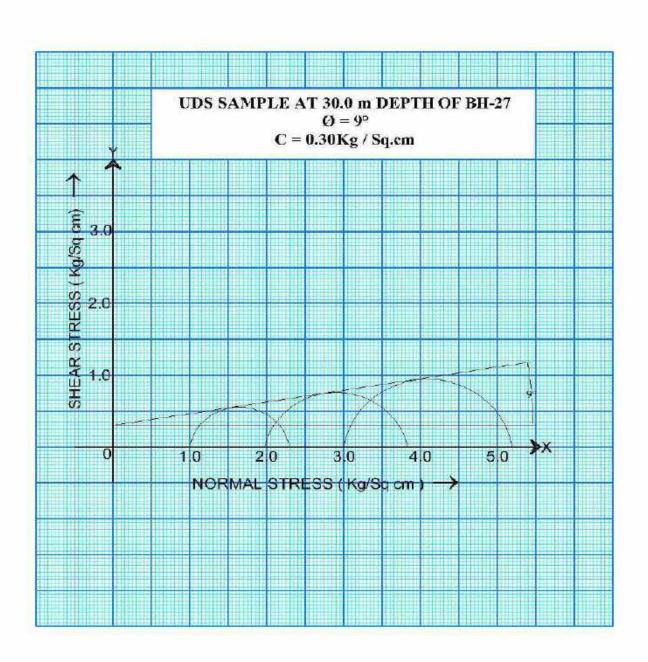

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

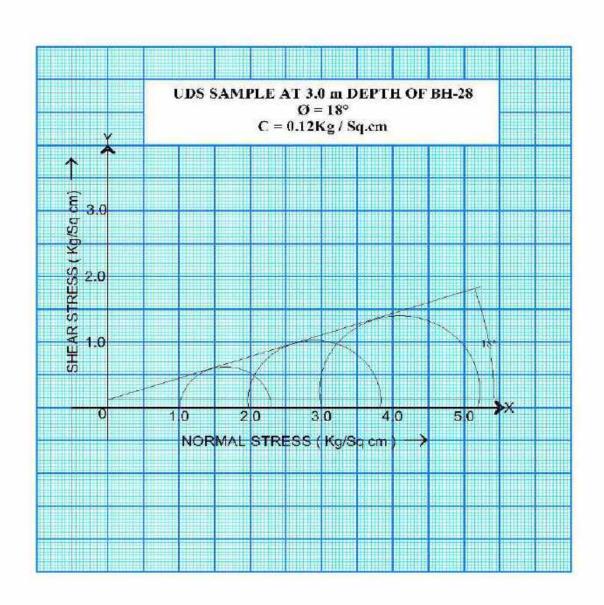

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

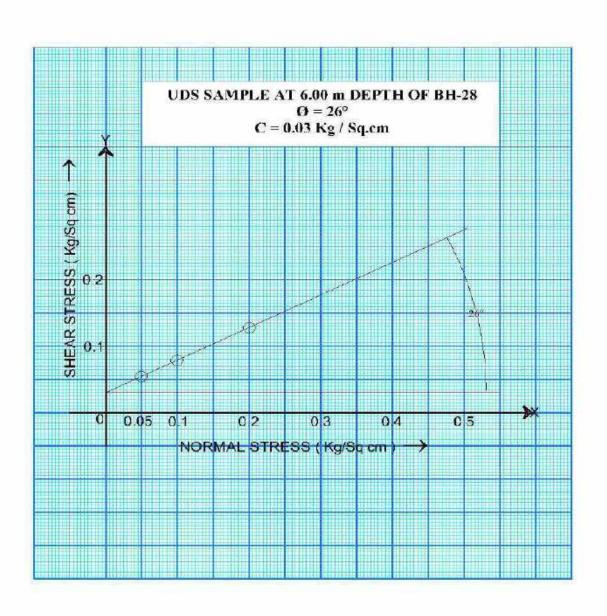

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

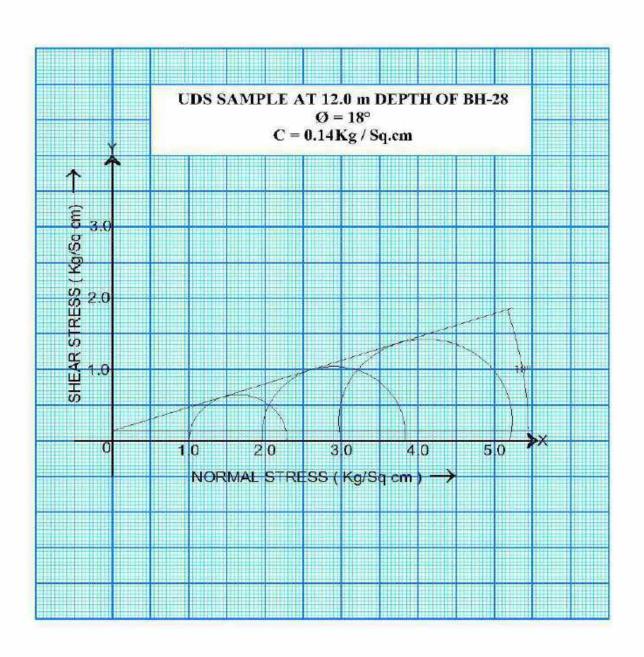

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

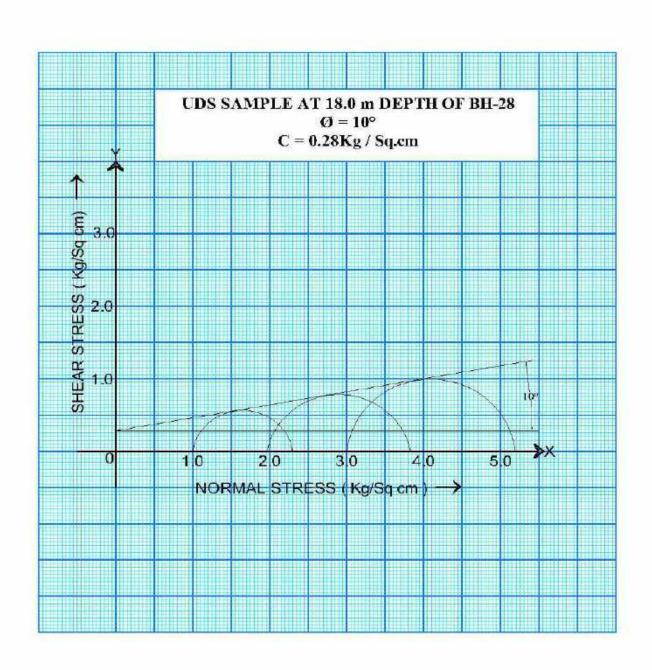

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

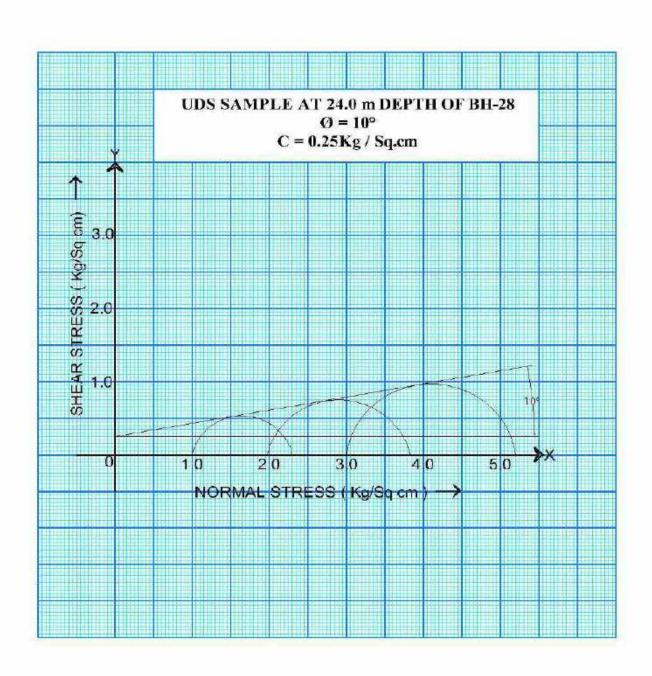

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

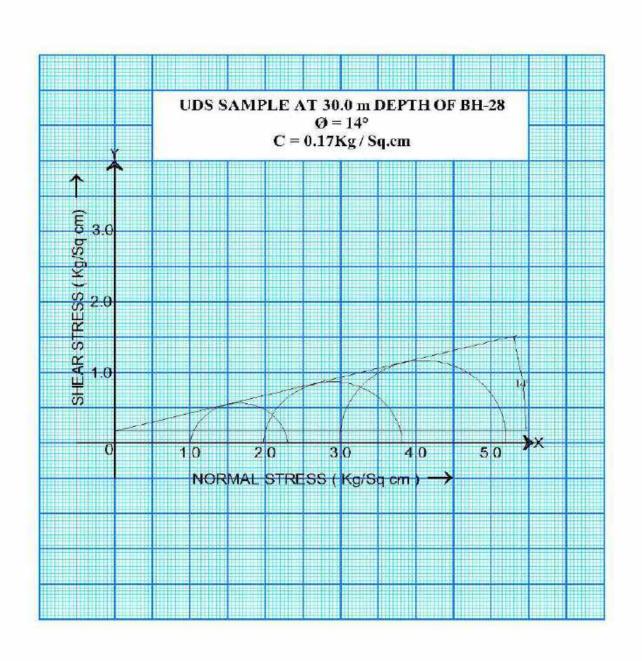

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

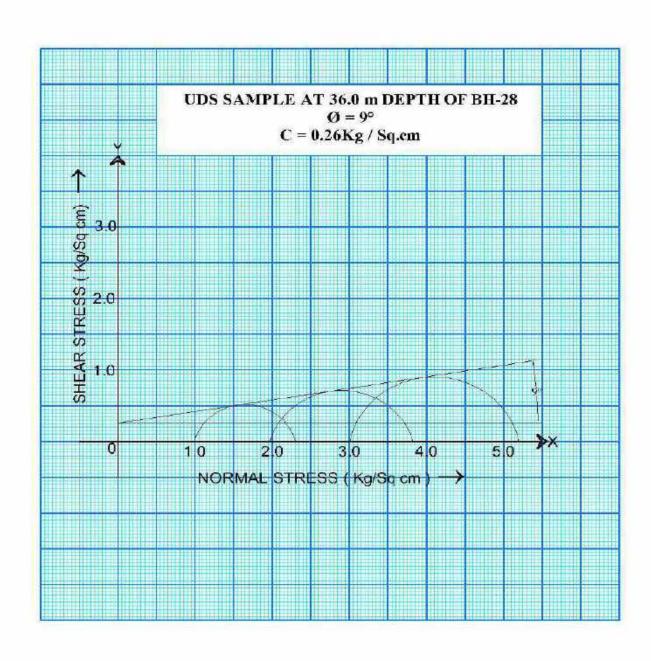

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

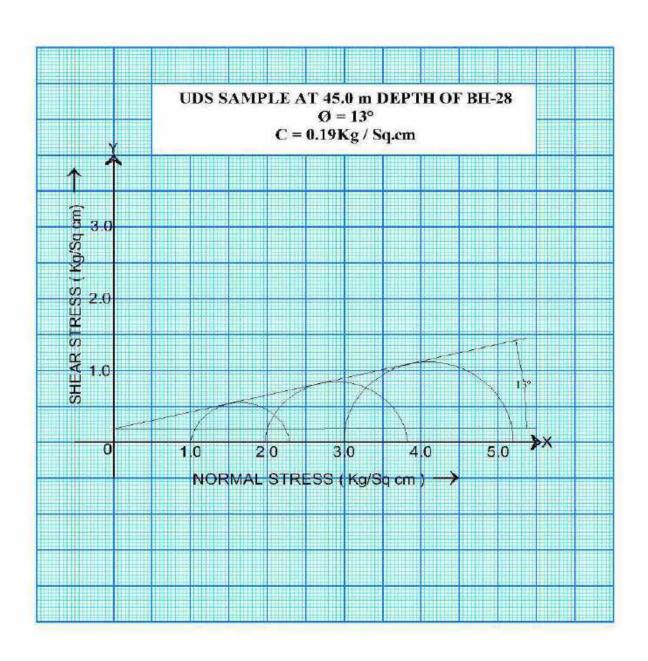

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

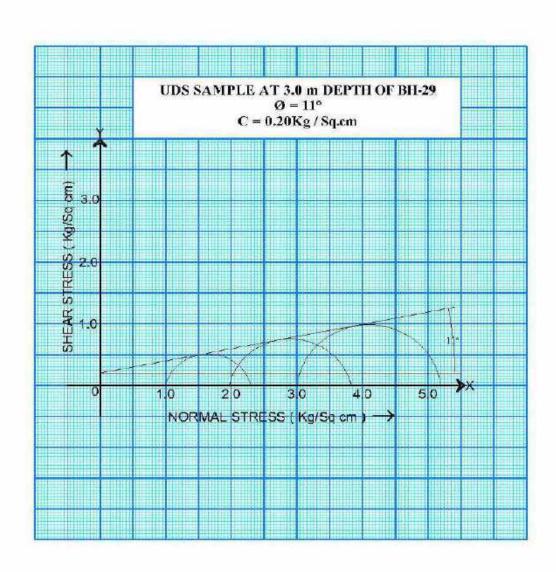

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

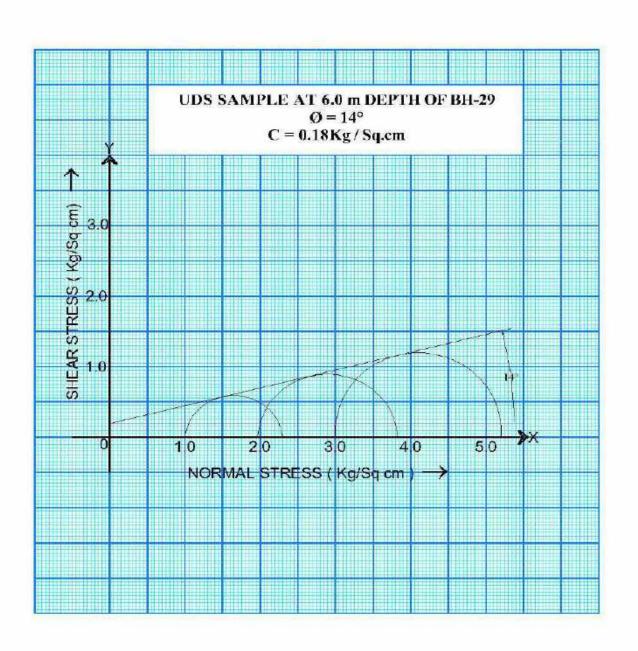

Geotechnical Investigation Report				
Consultant: Client :				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

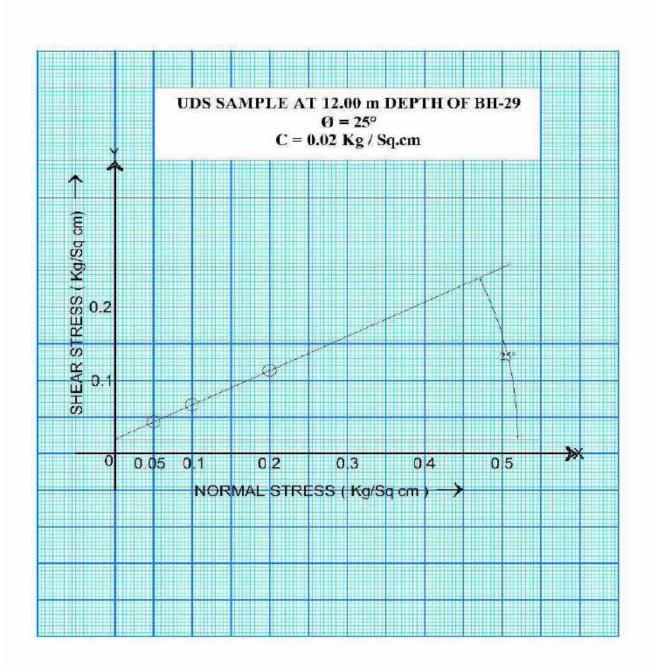

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

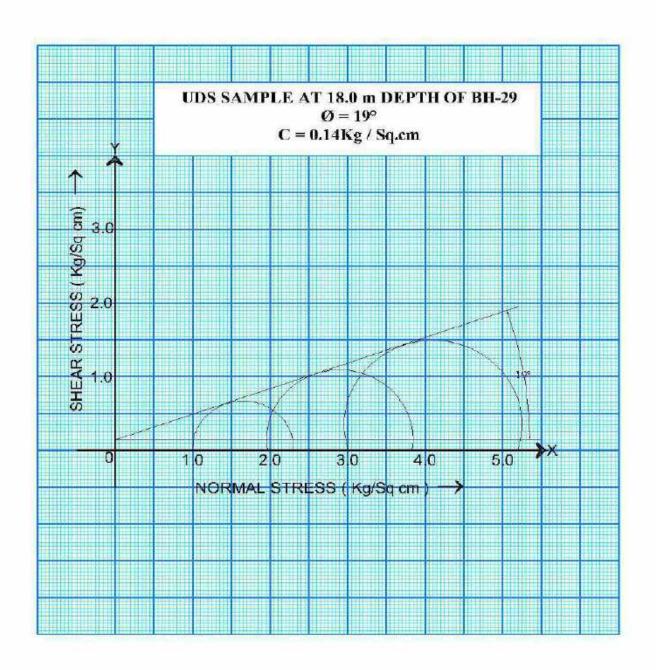

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

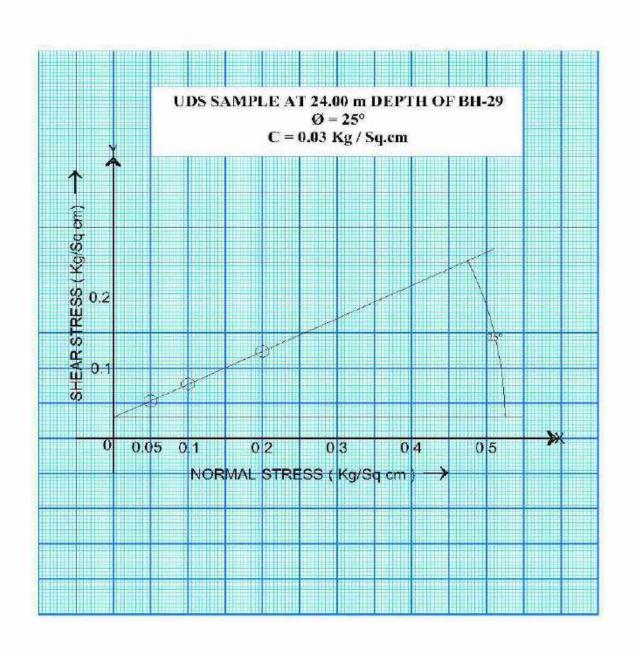

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

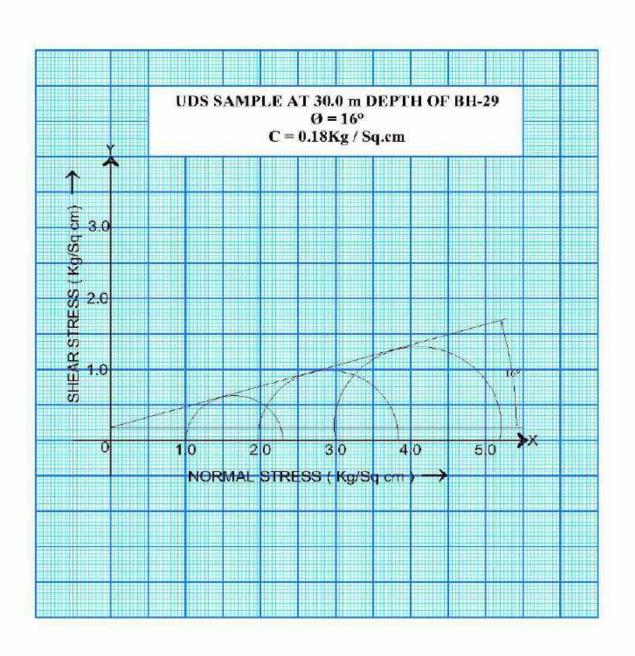

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

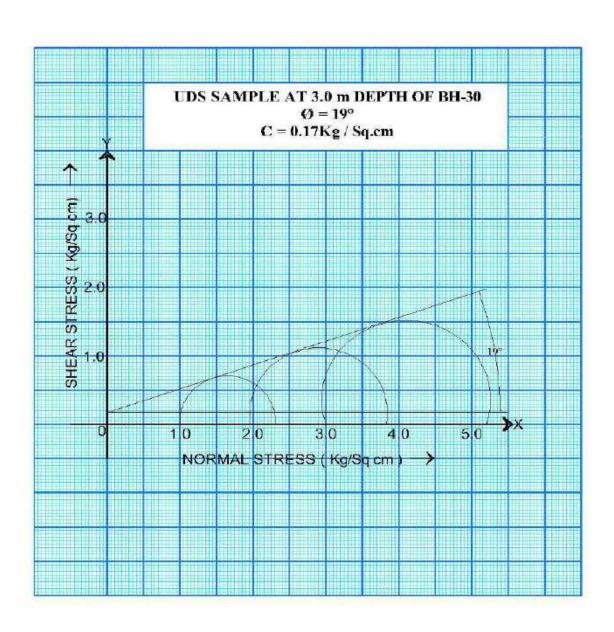

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

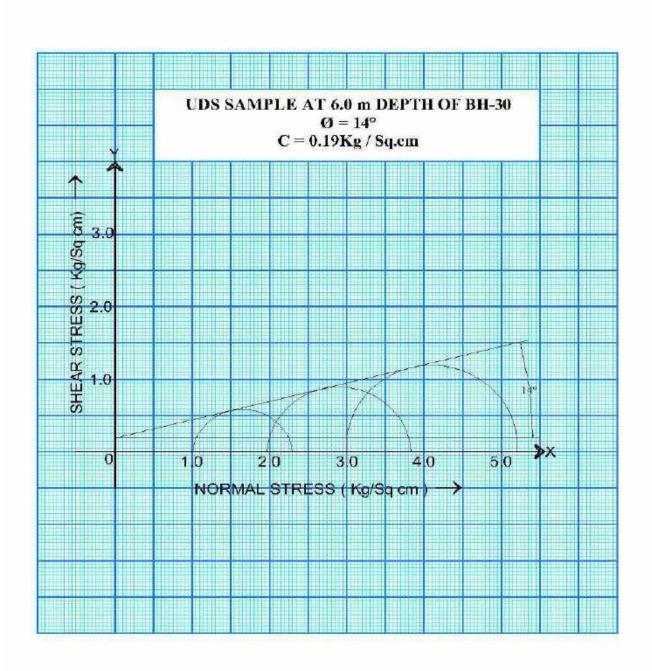

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

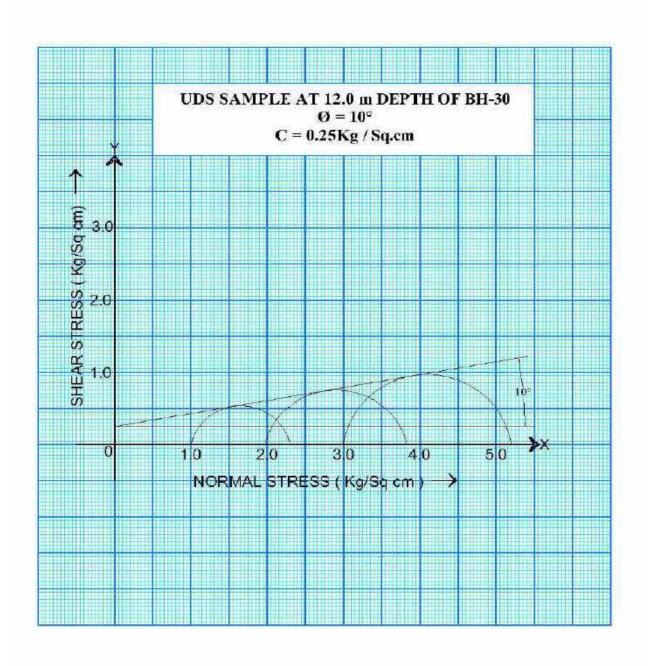

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

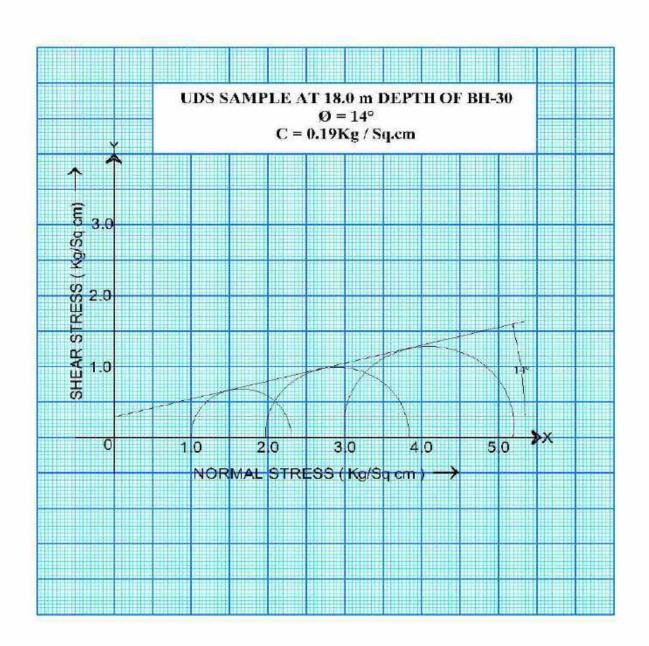

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

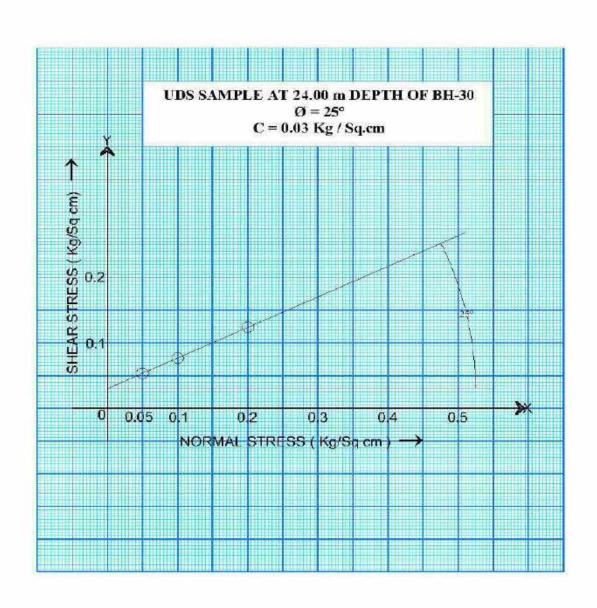

Geotechnical Investigation Report				
Consultant: Client:				
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

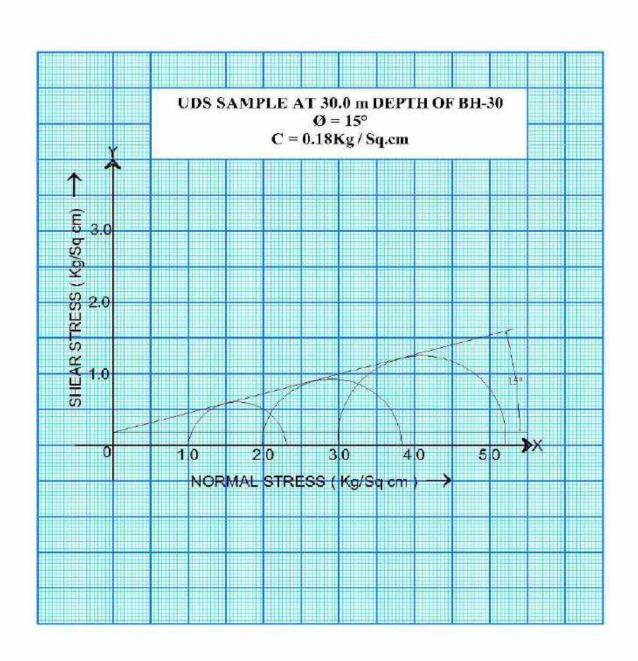

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

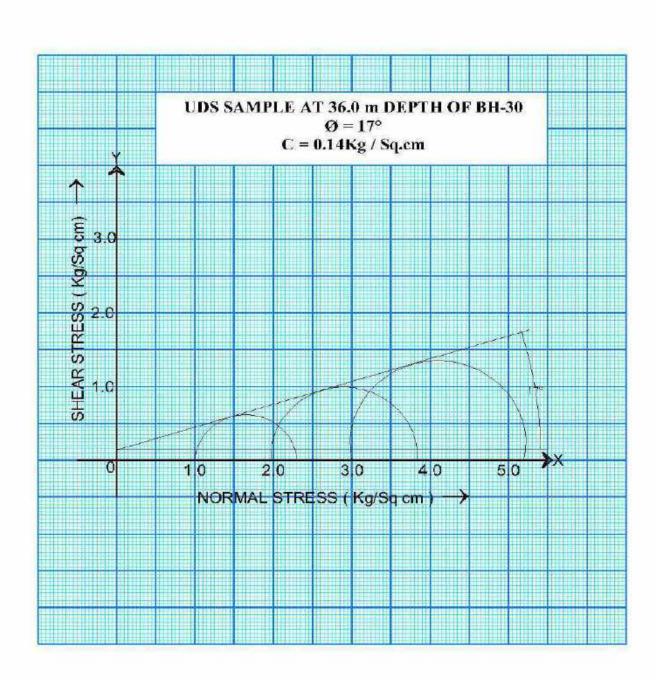

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

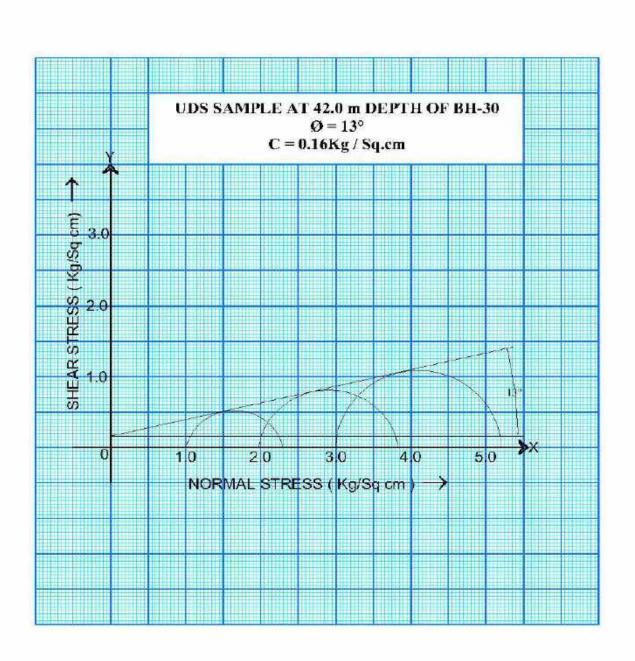

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

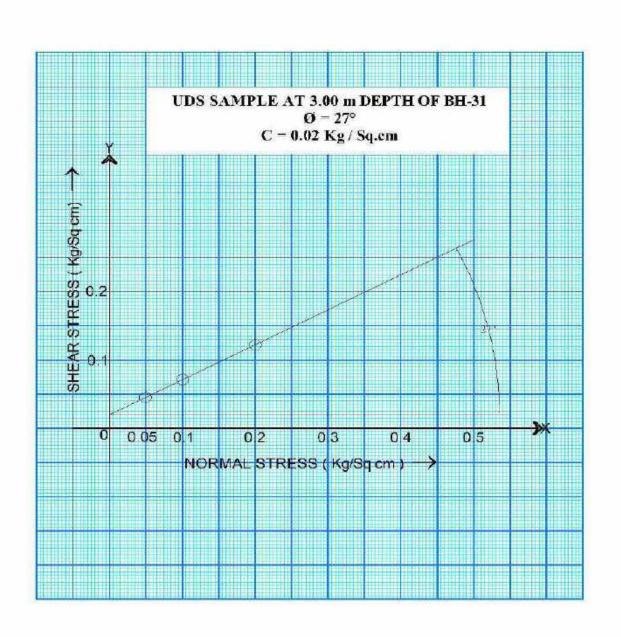

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

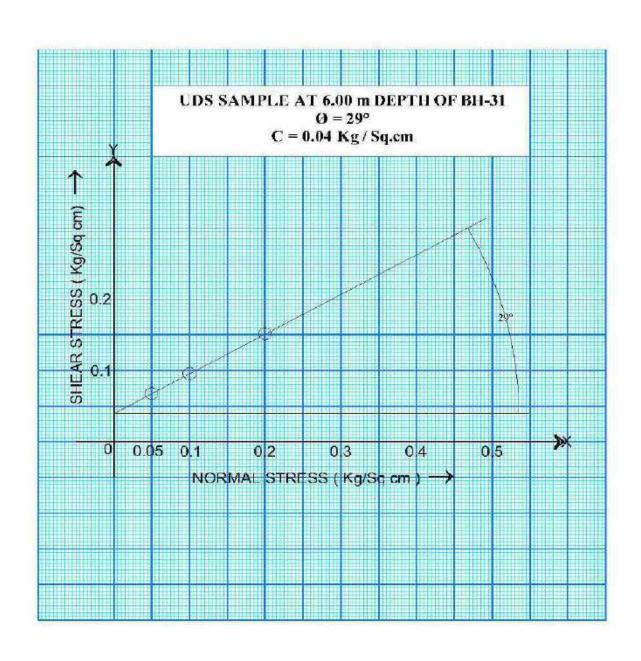

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

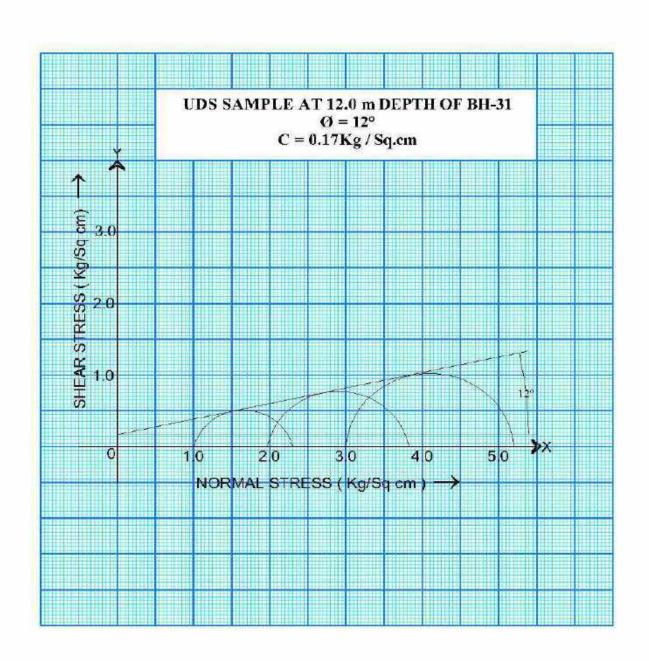

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

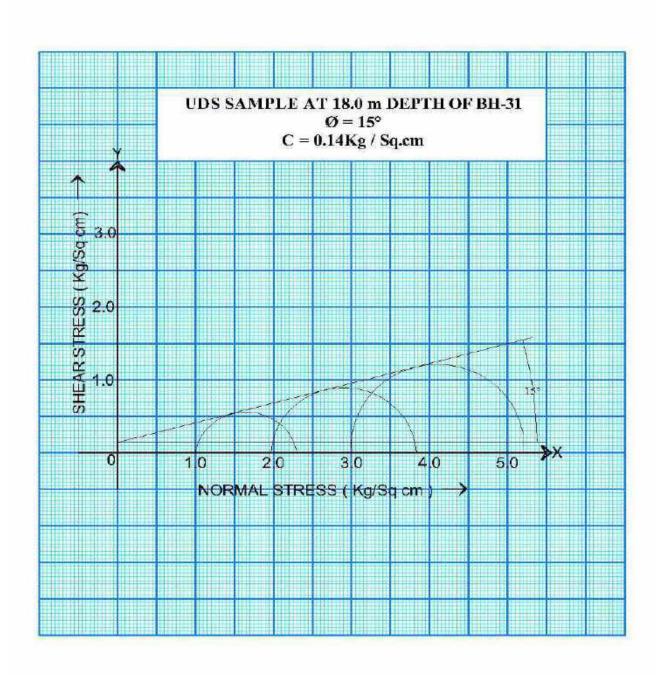

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

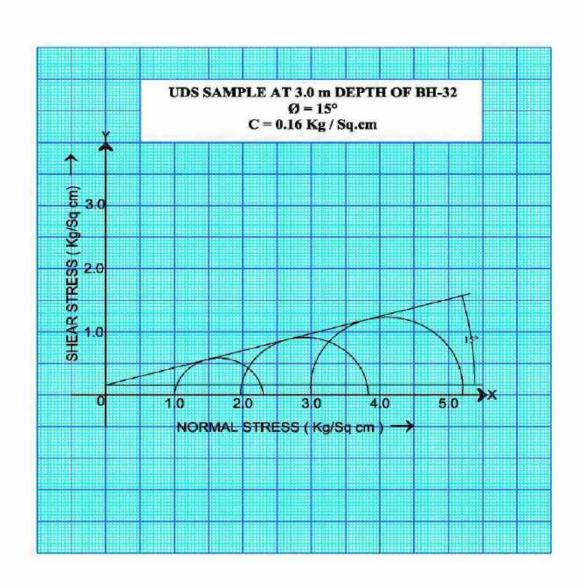

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

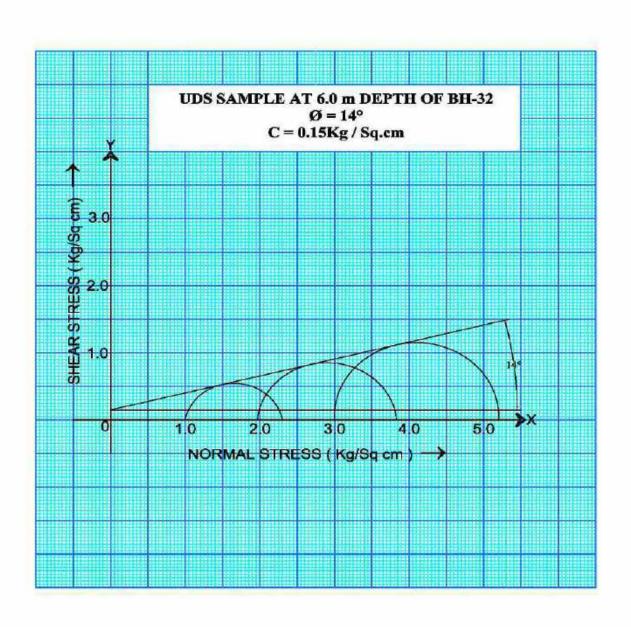

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

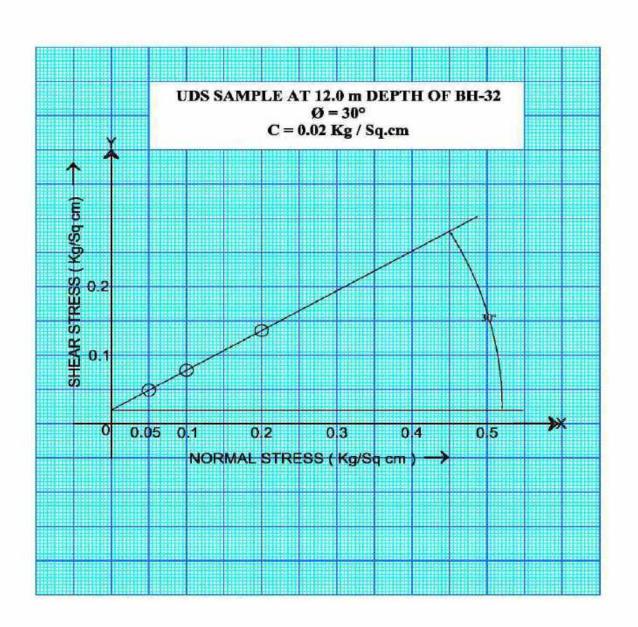

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

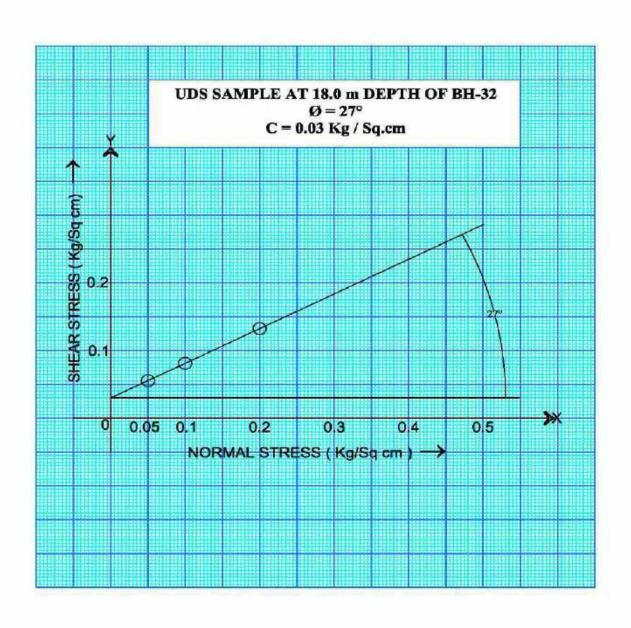

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

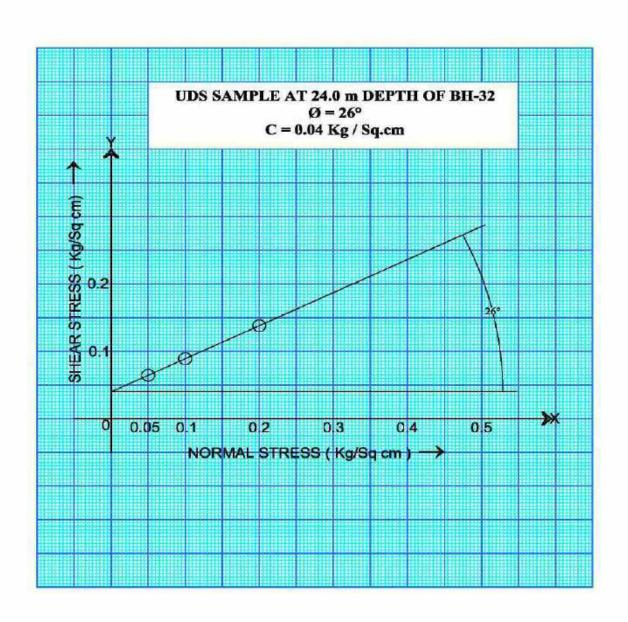

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		


Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

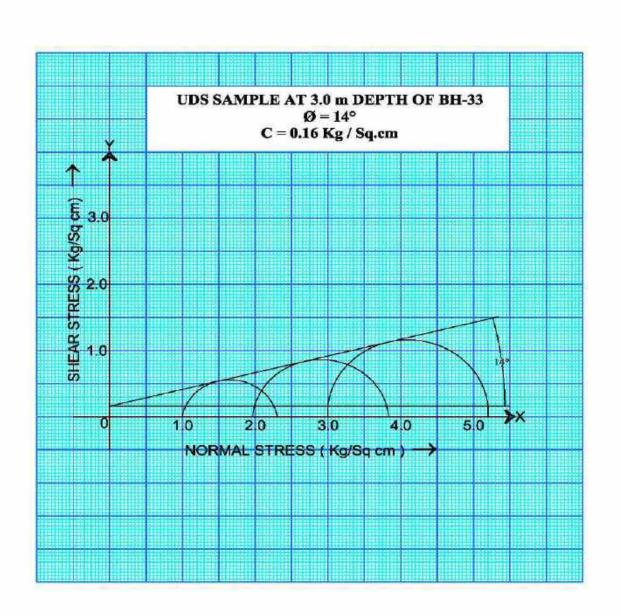

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

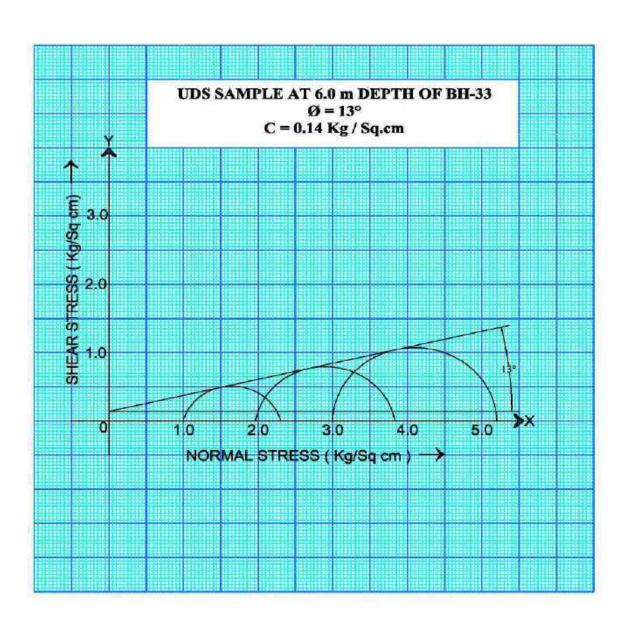

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

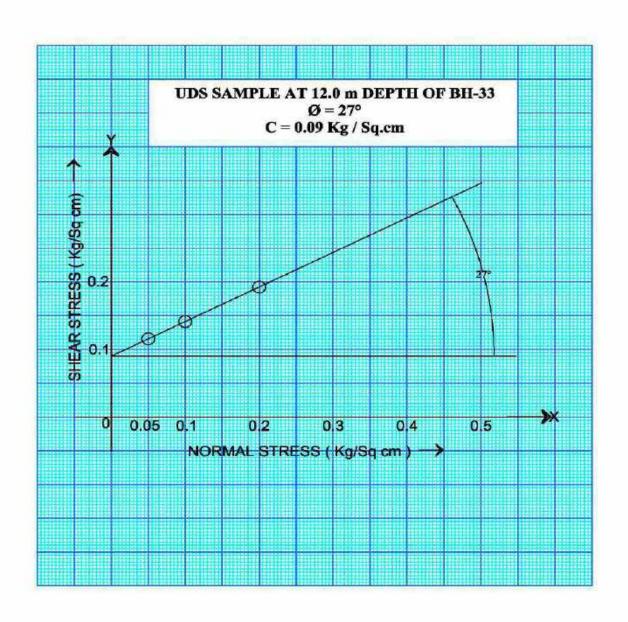

Geotechnical Investigation Report					
Consultant: Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

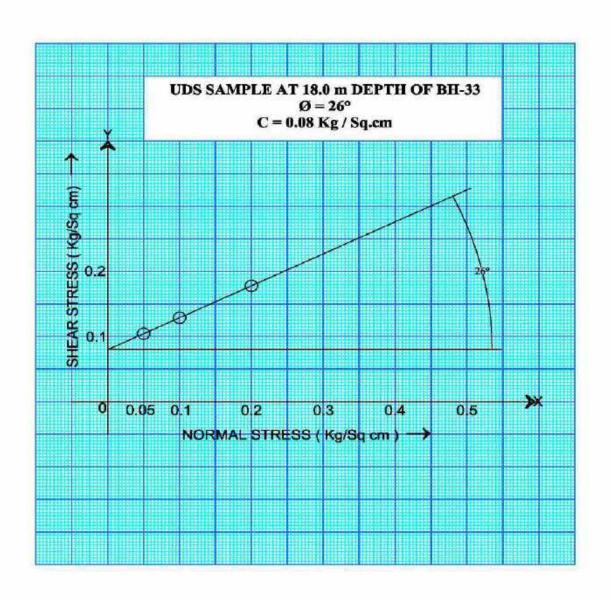

Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					


Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					


Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

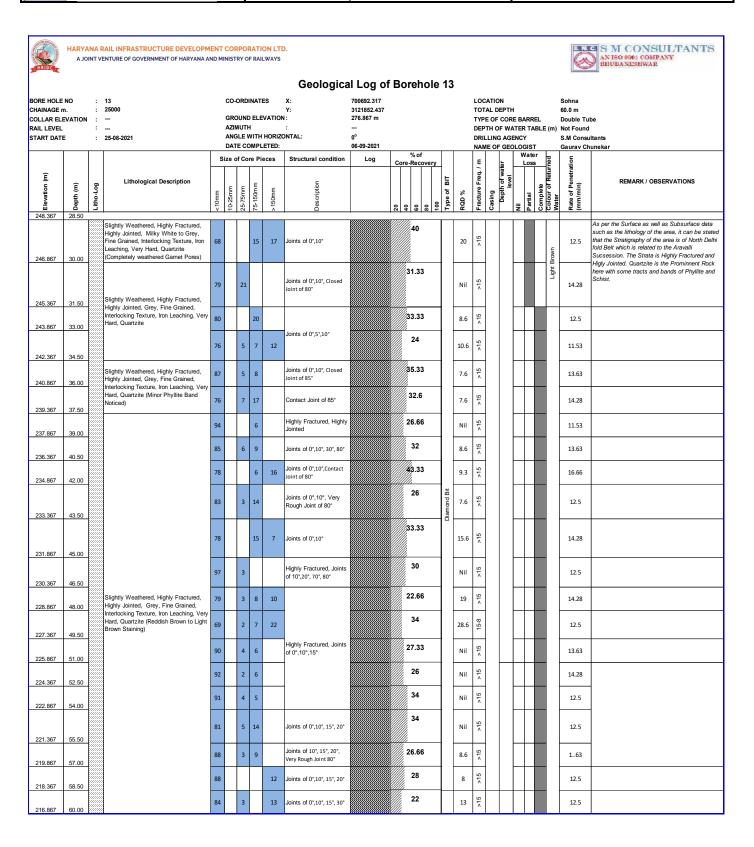

Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					


Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					


Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					


Geotechnical Investigation Report									
Consultant:			Client :						
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd						

ANNEXURE K ON-SITE LOG OF BOREHOLES

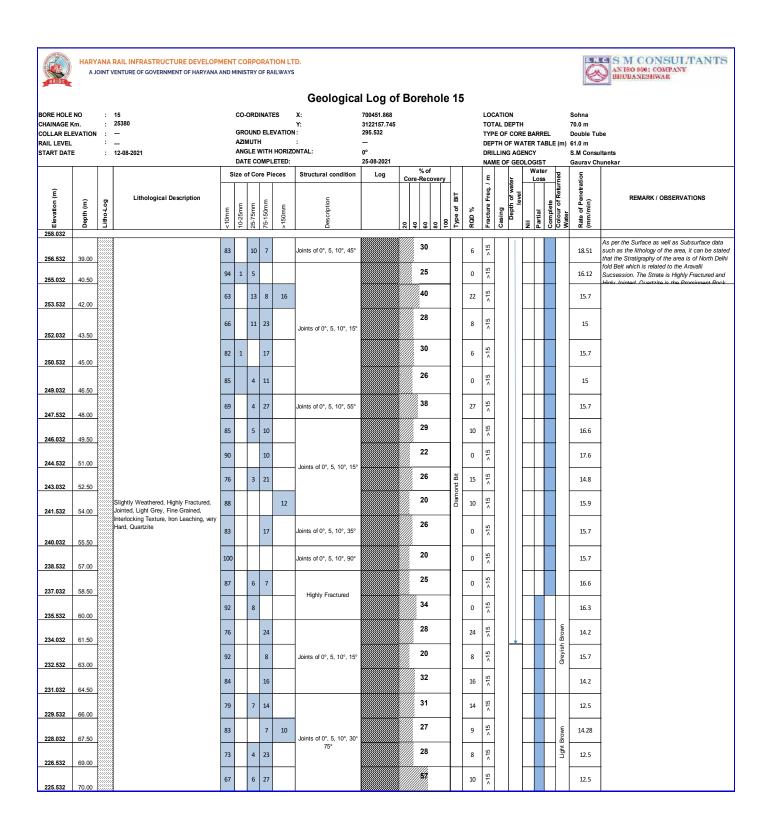
Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

THIDE			RAIL INFRASTRUCTURE DEVELOPM VENTURE OF GOVERNMENT OF HARYANA AN).						_					AS ON CONSULTANTS AS UND THE COMPANY WHITE AND THE COMPANY	
								Geol	ogical L	og of Bor	eho	ole 1	13							
RE HOLE IAINAGE r OLLAR ELI IIL LEVEL ART DATI	n. EVATION	:	13 25000 25-08-2021		AZIMU	ND E	ATES LEVATION TH HORIZ PLETED	:	700692.317 3121852.433 276.867 m 0° 06-09-2021	,			TYPE DEPT DRILL	OF C	PTH ORE WAT AGE	BARRE ER TAE ICY .OGIST	6 (n) N	ohna 0.0 m louble T lot Foun i.M Cons	d	
El evation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	Core	. T	Structural condition	Log	% of Core-Recovery	Type of BIT	RQD %	Fracture Freq. / m	Casing	Depth of water level	Wate Loss	Water	Rate of Penetration (mm/min)	REMARK / OBSERVATIONS	
276.867	0.00	=	Clayey Silt(DS), Silty Sand(DS Wash)		1.1,		, ,													
275.367	1.50		Slightly Weathered, Highly Fractured, Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	86		8 (5	Joints of 0°,5°		18		Nil	>15	X				12.5	As per the Surface as well as Subsurface data such as the lithology of the area, it can be stated that the Stratigraphy of the area is of North Delhi fold Belt which is related to the Aravalli Sucsession. The Strata is Highly Fractured and High Jointed. Quartitle is the	
73.867	3.00		Slightly Weathered, Moderately Fractured, Highly Jointed, White to Light Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	82		7 1	1	Joints of 0°,10°, One Andulating Joint		28.6		Nil	>15					13.63	Prominnent Rock here with some tracts and bands of Phyllite and Schist.	
72.367	4.50		Slightly Weathered, Highly Fractured, Highly Jointed, Light Grey to Light Brown,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	95		5		Joints of 0°,5°,10°		44.6		Nil	>15					15		
70.867	6.00		Highly Weathered, Highly Fractured, Highly Jointed, Light Grey to Light Brown,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	93	1	6		Highly Fractured, Crushed Zone		21.33		Nil	>15					12.5		
69.367	7.50		Slightly Weathered, Highly Fractured, Highly Jointed, Light Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	85		1	5	Highly Fractured, Joint of 0°,10°,15°	5	70		10	>15				Light Brown	12		
37.867	9.00		Highly Weathered, Highly Fractured, Highly Jointed, White to Light Brown,Fine Grained, Interlocking Texture, Iron	91	1 :	8		Highly Fractured, Crushed Zone		37.33 34		Nil	>15				ļ	12.5		
66.367	10.50		Leaching, Very Hard Quartzite	97		3						Nil	>15					12.5		
64.867	12.00		Moderately Weathered, Highly Fractured, Highly Jointed, Grey,Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	80	:	2 :	7 11	Joints of 0°,10°, 65°, 80°		28		17.3	>15					13.04		
	13.50		Highly Weathered, Highly Fractured,	98	2			Highly Fractured, Joint of 80°		21.33	nond Bit	Nil	>15					11.53		
33.367 31.867	15.00		Highly Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	100				Highly Fractured, Joint of 0°,10°,80°	5	34	Dian	Nil	>15					12.5		
0.367	16.50		Slightly Weathered, Highly Fractured, Highly Jointed, Reddish Brown to Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	87		8 !	5			32		Nil	>15					14.28		
8.867	18.00		Slightly Weathered, Highly Fractured, Highly Jointed, Milky White to Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	84	1 .	4 1	1	Joints of 0°,5°,10°		32.85		Nil	>15					12.5		
7.367	19.50]	Slightly Weathered, Highly Fractured,	87		3 1	0	Highly Fractured, Joint of 0°		30		9	>15					12.5		
5.867	21.00		Highly Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite (Reddish Brown to Light Brown Staining)	87		5 8	3	Joints of 0°,5°,10°		\$9.33 33.33		Nil	>15					14.28		
1.367	22.50		Slightly Weathered, Highly Fractured, Highly Jointed, Reddish Brown to Light	75		9 1	6	Joints of 0°,10°,65°, Closed Joint of 80°		\$9.33		Nil	>15					15		
2.867	24.00		Highly Jointed, Keddish Brown to Light Brown and Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite			7 1		Joints of 0°,10°,45°		28.66		Nil	>15				-	12.5		
1.367	25.50	-	Slightly Weathered, Highly Fractured, Highly Jointed, Milky White to Grey, Fine	70		4 2				34		9	5 >15				-	14.28		
9.867	27.00	-	Highly Jointed, Milky White to Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite	74		1	4 12	Joints of 0°,10°		34		18	×15			+	-	13.63		
8.367	28.50			64		3	3 28					24	>15					14.28		

Geotechnical Investigation Report								
Consultant:			Client :					
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd					

Geotechnical Investigation Report										
Consultant:			Client :							
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd							

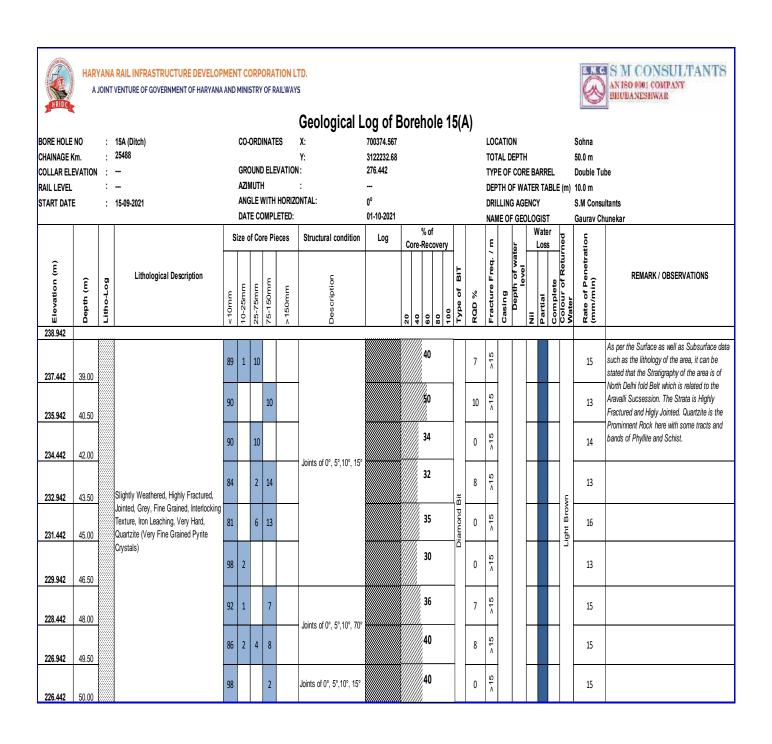
			RAIL INFRASTRUCTURE DEVELOPME																		T. M.	S M CONSULTANTS
Halbre			VENTURE OF GOVERNMENT OF HARYANA AN																		(Leve)	BRUSANEEMWAR
BORE HOLE		:	14		co-c	ORDI	NATE	s		700578.153	of I	Borehol	e 1	14		ATION					Sohna	
CHAINAGE r		:			GRO	UND	ELEV	/ATION	Y: :	3122015.421 294.218					TYPE		ORE				75m Double Tu	
RAIL LEVEL : START DATE : 11-08-2021		AZIMUTH : ANGLE WITH HORIZONTAL: DATE COMPLETED :				 0° 23-08-2021					DRIL	TH OF LING E OF	AGE	NCY		: (m)	Not Found S.M Consultants Gaurav Chunekar					
				s	Size of Core Pieces Structural cor					Log	% of Core-Recovery				m/		level	w	ater oss	med	, E	
(m) uoi	Œ	Log	Lithological Description	_	m	Ę.	150mm	ε	ption				of BIT	%	re Freq.		of water		ge	r of Retu	of Penetral	REMARK / OBSERVATIONS
Elevation	Depth	Litho		<10mm	10-25mm	25-75mm	75-150	>150mm	Description		8	8 8 8 5	Type	RQD %	Fracture	Casing	Depth of	₹	Comple	Colour of	Rate o (mm/n	
294.218	0.00	10000									277	,,										As per the Surface as well as Subsurface data such as
				100					Highly Fractured			30		Nil	×15	XX					16.6	the lithology of the area, it can be stated that the Stratigraphy of the area is of North Delhi fold Belt which is related to the Aravalli Sucsession. The Strata is Highly Fractured and Higly Jointed. Quartzite is the
292.718	1.50		Moderately Weathered, Highly Fractured, Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	82		5	13					48		Nil	>15						15	Prominent Rock here with some tracts and bands of Phyllite and Schist.
291.218	3.00	-		76		11	13		Joints of 0°,5°,10°,65°			38		Nil	>15						16.6	
289.718	4.50		Moderately Weathered, Moderately Fractured, Highly Jointed Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite (Small Talc	54		3	43					66		24	>15						20	
288.218	6.00		Amygdals Noticed) Slightly Weatherd, Highly Fractured, Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very	82		11	7		Highly Fractured			45		Nil	>15					Light Brown	16.6	
286.718	7.50		Hard, Quartzite Slightly to Moderately Weatherd, Highly Farctured, Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron	88		3	9					5 0		18	>15					Ligh	11.5	
285.218	9.00		Leaching, Very Hard Quartzite (Very Fine Grained Muscovite Flakes) Moderately Weathered, Moderately Fractured, Highly Jointed Light Grey, Fine									51		Nil	15			+			12.5	
283.718	10.50		Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite Slightly to Moderately Weatherd, Highly	76 11 13		Joints of 0°,5°,10°,65°			40		NII							12.5				
282.218	12.00		Farctured, Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite Moderately Weathered, Highly Fractured,	60		4	9	27			34	nd Bit	21	*15						13.6		
280.718	13.50		Highly Jointed Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	78		4		18				21	Diamond Bi	15	×15						16.6	
279.218	15.00		Highly Weathered, Highly Fractured,	96		4			Highly Fractured			29		Nil	>15						12.5	
277.718	16.50		Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	93		7						28		Nil	> 15						12.5	
276.218	18.00			89				11						9	× 15						16.6	
274.718	19.50	_		84			16					34		6	4	-					16.6	
273.218	21.00			81		3	16		Joints of 0°,5°,10°,65°			23		Nil	, 15 7						11.53	
271.718	22.50			78		3	19					23		13	>15			\dashv			10.71	
270.218	24.00		Slightly Weathered, Highly Fractured, Highly Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	92		8	17					20		6 Nil	>15 >15			\parallel			13	
268.718	25.50	ł			Н	2	\dashv	10				25		NII 9	>15	-		\dashv			13.6	
267.218	27.00	H		88			4	10				28	1		+			\dashv				
265.718	28.50	1		90 75		4	5	20				25		Nil 18	>15			\dashv			12.5	
264.218	30.00	1		75		4	6	15	Joints of 0°,5°,10°			28	_	14	× 15						16.3	
262.718	31.50		Moderately Weathered, Modertely Fractured, Highly Jointed, Gery, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	69			11	20				28		18	¥ 55						19.7	
261.218	33.00		coorning, very riard quartzite	87			5	8				22		6	>15						16.6	
259.718	34.50		Highly Weathered, Highly Fractured, Highly Jointed, Gery, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	96		4			Joints of 0°,5°,10°,65°			25		NII	× 15						16.6	
256.718	37.50			79		5	16					29		10	>15						12.5	


Geotechnical Investigation Report												
Consultant:	Client :											
5,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									

HRIDC			RAIL INFRASTRUCTURE DEVELOPME /ENTURE OF GOVERNMENT OF HARYANA ANI																	S M CONSULTANTS AN ISO 9001 COMPANY BHUDANESHWAR
DODE HOLE	NO				~~ ~	RDINA	TEC			Borehole 1	4		100	TION					Cabaa	
BORE HOLE	n.		25195				EVATIO	X: Y:	700578.153 3122015.421 294.218				TOT	ATION AL DEF					Sohna 75m	
COLLAR EL		:			AZIMI	UTH		:					DEP		WAT	ER T		(m)	Double Tu Not Found	
START DAT	E	:	11-08-2021				H HORIZ	UNIAL:	0° 23-08-2021					LING A		OGIS			S.M Consu Gaurav Ch	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description			25-75mm 75-150mm	Pieces	Structural condition	Log	% of Core-Recovery	Type of BIT	RQD %	Fracture Freq. / m	Casing Depth of water	level	Wa:	ss	Colour of Returned Water	Rate of Penetration (mm/min)	REMARK / OBSERVATIONS
256.718	37.50]]		Ž.	5	8 12	7	ă	Yaaaaaaaaaaa	8 8 8 2	F	ř	ũ	σ	=	<u>ة</u> ق	(0	ŭ≥	825	
255.218	39.00		Highly Weathered, Highly Fractured, Highly	84		9 7		Joints of 0°,5°,10°,65°		28		7	>15						15	As per the Surface as well as Subsurface data such as the lithology of the area, it can be stated that the Stratigraphy of the area is of North Delhi flold Belt which is related to the Aravalli Sucsession. The Strata is Highly Fractured and Highy Jointed. Quartzite is the Prominnent Rock
050.740	40.50		Jointed, Gery, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	96		4		Highly Fractured		30		Nil	>15						15	here with some tracts and bands of Phyllite and Schist.
253.718 252.218	42.00			87		6 7				28		7	>15						12.5	
250.718	43.50			81		8 11	L			25		Nil	>15						12.5	
249.218	45.00			85		6		Joints of 0°,5°,10°,65°		26 24		6	>15		-				13.6	
247.718	46.50			74		6 11		_		26		Nil Nil	>15 >15						21.12	
246.218	48.00			84	+	4	12			27		18	>15 >						178	
				90		4 6				22		Nil	>15						15.95	
243.218	51.00			90		3 7		_		22	Diamond Bit	Nil	>15		-				15.78	
241.718	52.50			70		2	28			22	Dia	Nil	>15						18.75	
240.218	54.00			84		16		Joints of 0°,5°,10°		26		Nil	>15						13.63	
238.718	55.50 57.00		Slightly Weathered, Highly Fractured,	91	1	8		_		26		Nil	>15		ŀ				18.07	
235.718	58.50		Highly Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard Quartzite	93		7				22		10	>15						20.27	
234.218	60.00			93		2 5				21		Nil	>15						18.75	
232.718	61.50			91		9				22		Nil	>15						15.78	
231.218	63.00	-		100	\downarrow			Joints of 0°,5°,10°,80°		22 25		Nil	5 >15		-	+			16.4	
229.718	64.50			86		5 9 2 7		_		28		13	>15			-			16.3	
228.218	66.00			91				Highly Fractured		28		11	2 >15		ŀ	+			19.7	
226.718	67.50			95 82		13 5		_		28		Nil	>15 >15		\mid	+			17.6	
225.218	70.50			91		9		Joints of 0°,5°,10°,65°		26		8	>15						16.6	
222.218	72.00			82		1	8	20116 O 10 , 00, 10 ,00°		27		14	>15						15.15	
220.718	73.50			80		9 1	1	Joints of 0°,5°,65°		26		14	>15						19.23	
219.218	75.00			100				Highly Fractured		22		Nil	>15						12.50	

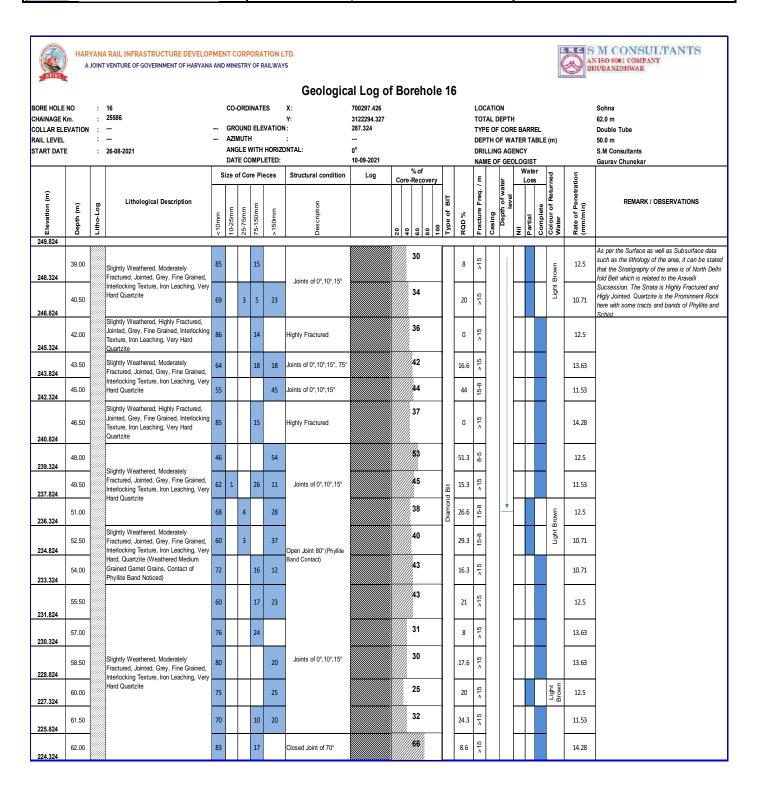
Geotechnical Investigation Report												
Consultant: Client:												
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									

			RAIL INFRASTRUCTURE DEVELOPM																		1	STORE M CONSULTANTS
HRIDC	AJ	OINT \	/ENTURE OF GOVERNMENT OF HARYANA AN	ND MIN	NISTRY	OF F	RAILW	AYS	_													AN INCOME COMPANY HILLIAN SEPREMAE
ORE HOLE	NO		15		co-o	RDIN	NATES		Geo	logical L 700451.868	og	of Bor	eh			ATION					Sohna	
HAINAGE K	ίm.	:	25380		GRO	JND	ELEV	ATION	Y:	3122157.745 295.532					TYP	AL DE	PTH ORE				70.0 m Double Tul	be
AIL LEVEL TART DATE		:	 12-08-2021			E W	тн н		: NTAL:	0°					DEP DRIL	TH OF	WAT AGEN	ER TA	ABLE	(m)	61.0 m S.M Consu	ltants
								TED :		28-08-2021		% of	Т		NAM	IE OF		Wa	ter		Gaurav Ch	unekar
tion (m)	Œ	Log	Lithological Description		Size of				Structural condition	Log	Con	e-Recovery	of BIT	%	Fracture Freq. / m	6	n of water level	Lo		Colour of Returned Water	Rate of Penetration (mm/min)	REMARK / OBSERVATIONS
Elevation (Depth	Litho-Log		<10mm	10-25mm	25-75mm	75-150mm	>150mm	Description		20	09 08 5	Type of	RQD %	Fract	Casing	Depth	Nii Mi	Som	Color	Rate (mm/	
95.532	0.00									***************************************	,,,,,,											As per the Surface as well as Subsurface data such as
294.032	1.50			91		4	5					26		0	> 15	XX				Light Brown	12.5	As per ire Judice eas well as Jouannace dead such as the lithology of the area, it can be stated that the Stratigraphy of the area is of North Delhi fold Belt which is related to the Aravall Sucsession. The Strata is I Highly Fractured and Highy Jointed. Quartzite is the Prominent Rock here with some tracts and bands of
92.532	3.00			83		9	8					28		7	>15						16.6	Promineent rock nere with some tracts and bands of Phyllite and Schist.
91.032	4.50			75		6	19					42		7	>15						16.3	
89.532	6.00			72		15	13					36		0	>15						15.6	
288.032	7.50		Moderately Weathered, Highly Fractured, Jointed, Light Grey, Fine Grained, Interlocking Texture, Iron Leaching, very	59	Ц	22	19		Joints of 0*, 5, 10*, 15*			46		0	>15						13.04	_
286.532	9.00		Hard, Quartzite	78	Н	9	13					34		7	>15						17.64	-
85.032	10.50			78		8	14					20		14	>15	$\left \cdot \right $		+			16.3	-
83.532	12.00			87	1	12						23	Bit	0	>15						16.66	-
282.032	13.50			90	Ш	10							Diamond	0	>15						18.75	_
280.532	15.00			100								16	ľ	0	>15						15	-
79.032	16.50			91		9			Joints of 0°, 5, 10°, 25°			16		0	>15						12.5	-
277.532	18.00			84		5	11					22		0	>15						12.5	-
76.032	19.50			68	2	8	22		Joints of 0°, 5, 10°, 15°			28		17	>15						14.28	_
74.532	21.00			95	Н	12 5	6					26		0	>15 >15	$\left \cdot \right $	-	+			14.28	-
73.032	22.50			80	H		7	13				36		18	>15						13.63	-
71.532	24.00		Slightly Weathered, Highly Fractured, Jointed, Light Grey, Fine Grained,	-	Н	_						27	-	_		$\left\{ \ \right $		+			40 -	_
70.032	25.50		Interlocking Texture, Iron Leaching, very Hard, Quartzite	97	Н	3			-			36	-	0	5 >15	-		+			12.5	_
68.532	27.00			85	Н	+	9					33		8	>15 >15			+			16.66	-
67.032	28.50			91	2	7			Joints of 0°, 5, 10°, 35°			20	t	0	> 15	H		\dagger			15.7	-
65.532 64.032	30.00			84	Н	16						23	l	0	>15						16.66	
				81	2	4	13					21	Ī	0	>15						16.66	
62.532	33.00			78		2	20					30	İ	7	> 15						14.7	
59.532	36.00			82	$ \ $		18					32		0	>15						17.04	
258.032	37.50			84		9	7		Joints of 0°, 5, 10°, 45°			31		0	>15						15.6	


Geotechnical Investigation Report												
Consultant: Client:												
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									

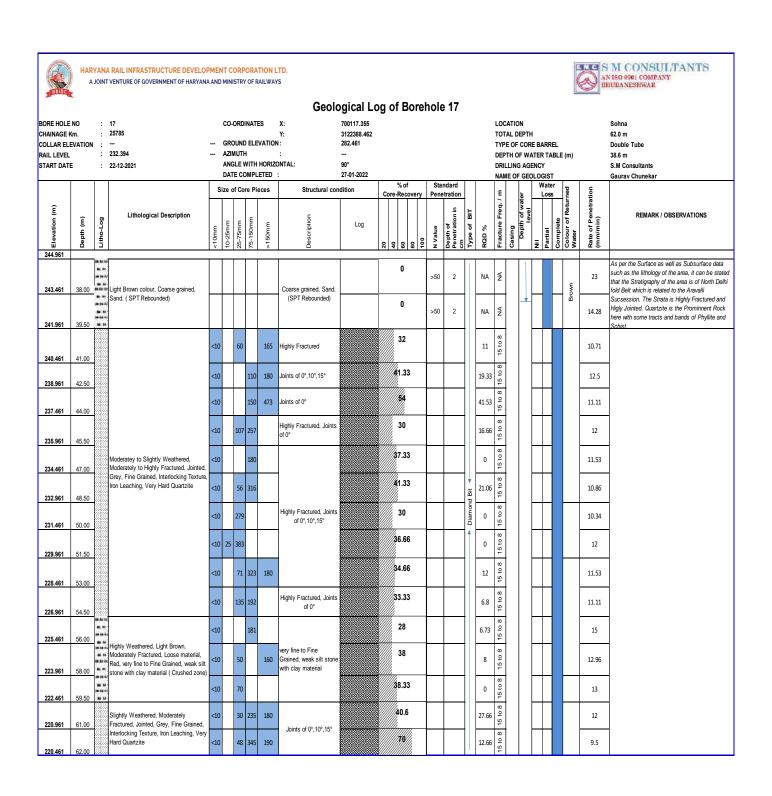
Geotechnical Investigation Report											
Consultant:	Client :										
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd								

HRIDE			RAIL INFRASTRUCTURE DEVELOPM /ENTURE OF GOVERNMENT OF HARYANA AN																		S.M. CONSULTANTS AND HEL COMPANY HILLIANS SONAE	
								Geologica	l Log of E	Bore	hole	15(A)									
BORE HOLE CHAINAGE n	n.	:	15A (Ditch) 25488			ORDINA		Y:	700374.567 3122232.681					TOTA	ATION AL DEP	тн				Sohna 50m		
COLLAR ELE RAIL LEVEL START DATE		:	 15-09-2021		AZIM	IUTH	EVATION H HORIZO	:	276.442 m 0°					DEP	OF CO TH OF V LING A	NAT	ER TA		(m)	Double Tube 10m S.M Consultants		
							LETED :		01-10-2021		% of	Т	1	NAM	E OF G	EOL			L	Gaurav Chunekar		
(iii)			Lithological Description	-	ize o	f Core I	Pieces	Structural condition	Log	Core	-Recovery	┤╴		m / ma		water level	Lo	ss	Returned	netration	REMARK / OBSERVATIONS	
Elevation (Depth (m)	LithoŁog	Entition ground Description	:10mm	10-25mm	25-75mm 75-150mm	150mm	Description				Type of BIT	>0	Fracture Freq.	Casing	pt of	E E	mplete	Colour of I	Rate of Penetration (mm/min)	NEMAKK/ OSSEKVANOKO	
ä	8	ž		,	9	75 25	,	å		9 9	9 8 3	ž į	Z G	£	రి	<u>ă</u>	Z c	కి	8 ≩	2 E		
276.442	0.00													10	•						As per the Surface as well as Subsurface data such as the lithology of the area, it can be stated that the	
274.942	1.50			90	1	4 5							0	>15						15	Stratigraphy of the area is of North Delhi fold Belt which is related to the Aravalli Sucsession. The Strata is Highly Fractured and Higly Jointed. Quartzite is the	
			Moderately Weathered, Highly Fractured,	78	4	3	15	Joints of 0°, 5°,10°,15°			39		10	>15						14	Prominnent Rock here with some tracts and bands of Phyllite and Schist.	
273.442	3.00		Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard,									4			-							
			Quartzite (Very Fine Grained Pyrite Crystals)	79		21					32		21	45						15		
271.942	4.50				Н						35	1	-									
270.442	6.00			88	Ш	12							0	> 15						13		
					П									3								
				72		28	•	Joints of 0°, 5°,10°,15°,					28	15-8						18		
268.942	7.50							30*						2	1					<u> </u>		
267.442	9.00			90	3	7							0	>15						14		
				70	3	4 23							30	15-8						15		
265.942	10.50										35	1			-	+		-	DWN			
				78		22	:						22	× 15					Light Brown	14		
264.442	12.00							Joints of 0°, 5°,15°, 45°			32	Diamond Bit		10		-						
262.942	13.50			82	1	3 14		-			,,,	Diam	8	>15				_		15		
				65	2		33				47		32	15-8						15		
261.442	15.00				П						28				-	ŀ						
259.942	16.50			89	Ш	2 9		Joints of 0°, 5°,15°, 80°					8	>15						18		
				90	1	2 7					41		7	>15						16		
258.442	18.00			90	1	2 /							Ĺ	λ,						16		
			Slightly Weathered, Highly Fractured,	81	2	17					36		16	45						15		
256.942	19.50		Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard, Quartzite (Very Fine Grained Pyrite					Joints of 0°, 5°,10°, 15°			45	1	_			-						
255.442	21.00		Crystals)	76		4	20					1	20	>15						15		
				80		5 15					30		15	45						15		
253.942	22.50										36	1			1	ŀ						
252.442	24.00			88	1	5 6		Joints of 0°, 5°,10°, 35°					0	>15						14		
250.942	25.50			99	1						27	1	0	>15		Ī			Grey	15		
249.442	27.00			83		2 15					40	1	15	>15	1	Ī				16		
				77		23		1			32	1	23	>15		Ī			İ	14		
247.942	28.50			07	Н	12		Joints of 0°, 5°,10°, 15°			34	t	_		\forall	-				10		
246.442	30.00			87	Ц	13		_				\perp	0	> 15	\sqcup	-				16		
244.942	31.50			78		22	!				34		22	15				L	Brown	15		
	22.55			83		17					30		15	>15					Light B	14		
243.442	33.00			90	П	2 8					30	T	8	5		f				13		
241.942	34.50				Н			Joints of 0°, 5°,10°, 70°			36	+		-	H			H				
240.442	36.00			94	Ц	6						L	0	>15	Ц					15		
238,942	37.50			97		3		Joints of 0°, 5°,10°, 15°			37		23	× 15						15		
238.942	37.50				Ш									_^								


Geotechnical Investigation Report											
Consultant:	Client :										
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd								

Geotechnical Investigation Report												
Consultant:	Client :											
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									

HEDE			IAIL INFRASTRUCTURE DEVELOPMENTURE OF GOVERNMENT OF HARYANA AND																				S M CONSULTANTS		
									Geologi	cal Log of	Вс	rehole	10	6											
BORE HOLE		:	16 25586		CO-	ORDI	NATI	ES	X:	700297.426						CATI							Sohna		
CHAINAGE K COLLAR ELE		:	-			UND		VATION	Y: :	3122294.327 287.324					TY	PE O	F COI	RE B.			62.0 m Double Tube				
RAIL LEVEL START DATE		:	26-08-2021	-	ANG	LE V	VITH	HORIZO	: NTAL:	0°					DF	PTH (IG AG	SENC	Y	BLE (n	n)		50.0 m S.M Consultants		
				Ι.				ETED :		10-09-2021		% of	Τ		N/	AME C			GIST Wate	er _	_		Gaurav Chunekar		
=				Ľ	size c	or Col	re Pi	eces	Structural condition	Log	Cor	e-Recovery					ter level	<u> </u>	Los			tration			
ion (m)	Ê	Fog	Lithological Description	_	ш	uu.	mm	E	ption				of BIT				ofwater			lete	5	of Penc	REMARK / OBSERVATIONS		
Elevation	Depth (m)	Litho-Log		<10mm	10-25mm	25-75mm	75-150mm	>150mm	Description		20	9 8 9	1 8		אמנט אי	Casing	Depth	li N	Partial	Complete	Water	Rate of Penetration (mm/min)			
287.324	0.00																П								
207.024	0.00		Moderately Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking									16	1		1.	1		Ī			Ì		As per the Surface as well as Subsurface data such as the lithology of the area, it can be stated that the		
	4.50		Texture, Iron Leaching, Very Hard Quartzite (DS and DS Wash Collected)	93		2	5							(0 7	ž	<u> </u>					12.5	Stratigraphy of the area is of North Delhi fold Belt which is related to the Aravalli Sucsession. The Strata is		
285.824	1.50	•••	, , , , , , , , , , , , , , , , , , , ,									25	1		1	1					ŀ		Highly Fractured and Highy Jointed. Quartzite is the Prominnent Rock here with some tracts and bands of Phyllips and Schipt		
				93			7							(0 4	2						14.8	Phyllite and Schist.		
284.324	3.00								-			32	ł	-	+	+	+	H	+		ŀ				
			Moderately Weathered, Highly Fractured,	90		4	6		Highly Fractured			32			0 4	2						13.63			
282.824	4.50		Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard		Н								1	_	+	4		F	+				4		
			Quartzite	88		5	7					32			0 4	2						13.63			
281.324	6.00	ļ			Ц													L	\downarrow						
				97		3						30			0 4	2						12.5			
279.824	7.50												ł			_		-			-		_		
				84			16					31		1	10 4	2						14.28			
278.324	9.00								-			30	ł			4		-			-		-		
			Slightly Weathered, Highly Fractured,	83	1	3	13					30			0 4	2					Brown	12.5			
276.824	10.50		Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard											-	4	4		F			Light		4		
			Quartzite	78		6	16		Joints of 0°,10°,15°,20°			34		١,	0 4	2						16.6			
275.324	12.00					Ū									` '	`									
				74		4	9	13				31	ond Bit	15	.33	2					Ì	12.5	1		
273.824	13.50					~	_	13					Diamor			`		-			ļ	11.5			
				74			11	15				27		10	0.3	2						13.04			
272.324	15.00												ł	-	+	\dashv		H			-		-		
				80				20	Closed Joint of 80°			36		1	19 4	2						13.63			
270.824	16.50															_		L							
				85				15				28		10	5.3	2						15			
269.324	18.00			85				15						1	'	`						15			
												46			۰						Ì		1		
267.824	19.50			56	1		10	33	Joints of 0°,10°,15°,20°					36	5.3	2						12.5			
				71			19	10				48			0 4	2					Ì	11.53			
266.324	21.00							10				<u>/////////////////////////////////////</u>			,	`						11.55			
				72				28				44		1	4	2						12.5			
264.824	22.50											<u></u>	-		_	_		H		Н	-		_		
			Slightly Weathered, Moderately Fractured,	74			26		Joints of 0°,10°,15°,45°			43		1	11 4	2						13.63			
263.324	24.00		Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard												\perp			L		Щ	Brown				
261.824	25.50		Quartzite	65			6	29				42		2	8 4	5					Light	13.04			
		1		78	П		22		Joints of 0°,10°,15°,20°			34	Ì	1	15	2				П	ľ	13.63	1		
260.324	27.00				Н				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			53	1	H	$^{+}$	_		\vdash		H			-		
258.824	28.50			53				47						4	17 4	2		L				15]		
				76			24		Joints of 0°,10°,15°, 70°			31	١		8 4	2					Ī	11.5			
257.324	30.00											39	\vdash	+	+	-	+	\vdash	+				-		
255.824	31.50			79				21				33		3	34 <u><u></u></u>	2						15			
200.024	01.50	1		83			17					30	T	١,	4 4	2	11	T				12.5	1		
254.324	33.00	ļ		63			-21						L	Ŧ,	`` `	`	41	L	1			14.3	_		
				71		2		27	Joints of 0°,10°,15°			36		2	25	2						16.6			
252.824	34.50				Н		_					30	H	+		,	+	\vdash	+		ł		-		
251.324	36.00			78				22				<i>x</i>	L	2	22 4			L				13.6			
				65			5	30				37		2	22 4	2			Γ		ĺ	15			
249.824	37.50	000000										Ø							1_						


Geotechnical Investigation Report												
Consultant:	Client :											
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd									

G	Geotechnical Investigation Report												
Consultant:	Client :												
5,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd										

			RAIL INFRASTRUCTURE DEVELOPMENT ENTURE OF GOVERNMENT OF HARYANA AND M																				SO S M. CONSULTANTS
HRIDC	AJO	MINI V	ENTURE OF GOVERNMENT OF HARTANA AND M	AINIS I	RY OF	GULV	WATS															K	MILINA XX-SEPTIME
BORE HOLE	NO		17		co-o	PDIN	IATES		Geo x:	logical Lo	g of Boreh	ole	17			LOCA	TION						Sohna
CHAINAGE F	Cm.	: 1	25785		GROL	IND I			Y:	3122388.462 282.461						TOTA	L DEPT		ARRE	ΞL			62.0 m Double Tube
RAIL LEVEL START DATI			232.394 22-12-2021			E WI		IORIZ	: ONTAL:	90°						DRILL	H OF W	SENC	Υ	BLE	(m)		38.6 m S.M Consultants
					DATE				Structural co	27-01-2022	% of	Sta	ndard tration	T			OF GE	OLO	Wat		Ę.		Gaurav Chunekar
Ē			Lithological Description			1			ou detailui co		Core-Recovery	T	est _⊆	┥.		m / ba		Matel 16	Los		eturne	of Penetration //min)	REMARK / OBSERVATIONS
Elevation	th (m)	Litho-Log		:10mm	10-25mm	Z5-75mm	75-150mm	>150mm	cription	Log		N Value	Depth of Penetration	Type of BIT	RQD %	Fracture Freq.	Casing	io index	Partial	nplete	Colour of Retur Water	e of Pe n/min)	
å	Depth (3		> 10	0.0	Ŕ	75	45	Des		0 4 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	ž	P P	\$ \$	2	Fra	ğ	3 2	Par	ঠ	Na Co	Rate (mm/	
282.461	0.00				Т	T	T				0			1				┝					As per the Surface as well as Subsurface data such a the lithology of the area, it can be stated that the
			Brown colour, very fine to fine grained, clayey silt deposit						very fine to fine grained, clayey silt deposit						NA	NA	×					30.61	Stratigraphy of the area is of North Delhi fold Belt which is related to the Aravalli Sucsession. The Strata is
280.961	1.50				T						0			1				F					Highly Fractured and Higly Jointed. Quartzite is the Prominnent Rock here with some tracts and bands of Phyllite and Schist.
279.461	3.00											12	45		NA	NA						33.3	
275.461	0.00	==									0			1		4						27.27	
277.961	4.50	=:	Brown colour, very fine to fine grained,						very fine to fine grained, clayey silt deposit						NA	NA.						21.21	
									ciayey siit deposit		0	16	45		NA.	¥						27.27	
276.461	6.00											Ĺ		1	<u> </u>	_				L			
			4								30				NA	NA					Brown	30	
274.961	9.00					1					0			1				┢					
273.461	12.00											26	45		NA	Ą						31.57	
			S						very fine to fine grained,		0	21	45		NA.	NA						30	
271.961	15.00		clavey silt with gravels						clayey silt with gravels							_							
											0	37	45		NA	NA						21.42	
270.461	16.50	***														_							
		=	Brown colour, very fine to fine grained, sub angular to sub rounded pebbels with						It shows very fine to fine grained, sub angular to sub rounded pebbels		0	>50	23	nd Bit	NA	NA						21.12	
268.961	18.00		clayey silt.						clayey silt.		17			Diamon				-					_
267.461	19.50			<10	23	35			Joints of 0°,45°						0	>15						12	
207.401	18.30										22			Ī				F					
265.961	20.50			<10	20	31			Closed Joint of 10*						0	>15						6.89	
			Highly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking								25			Ī		2							
264.461	22.00		Texture, Iron Leaching, Hard Quartzite.	<10				174							11.6	>15						10	
				<10		70			It shows highly fractured weathered rock		32				0	15-8						11.11	
262.961	23.00															1		╽	-				-
				<10			175				33				0	>15						10.71	
261.461	24.50						125		Joints of 0°,10°,15°		48			1	25	5 to 8		巾					
259.961	25.00					,,,	125		Jones Of U*, 10", 15"					1	25	151						5.5	
			Moderately Weathered, Moderately Fractured, Jointed, Grey, Fine Grained,	<10		42		376	Joints of 0°, 15°,80°		59				32.6	15 to 8						7.4	
258.461	26.00	1	Interlocking Texture, Iron Leaching, Very Hard Quartzite.											1					-				
256.961	27.50			<10		56	175	190	Joints of 0°,10°,15°,20°		44				12.66	15 to 8						12.5	
255.461	28.00					70	214		310,10,10,20		68				25.8	15 to 8						6.6	
200.401	20.00		Highly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking	<10	1	30			It shows highly fractured		58			1	7.6	15 to 8		巾	t			11.53	1
253.961	29.50	-	Texture, Iron Leaching, Hard Quartzite.						weathered rock					H			4	-	╀		H		-
252.461	30.00			<10		49	93		Joints of 0°,10°,15°, 70°		716				0	>15						7.14	
			Slightly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard	<10		30	191	153			47				17.13	>15		Г				7.4	
250.961	31.00		Quantzite		\dashv						54						\dashv		+				-
249.461	32.50		CE-tab. Washing It is a S	<10		50	80		It shows highly angular fractured and jointed, weak						0	>15			L			11.53	
			Slightly Weathered, Moderately Fractured, Jointed, Grey, Fine Grained, Interlocking Texture, Iron Leaching, Very Hard	<10		50	395		strength		54				15.53	>15						11.11	
247.961	33.50		Quartzite Slightly Weathered, Highly Fractured, Jointed, Grey, Fine Grained, Interlocking								34.66			\vdash	-	to 8	\dashv	╟	\dagger			41.5	-
246.461	35.00		Texture, Iron Leaching, Very Hard Quartzite.(crushed zone)	<10	17	75	90								0	15 tc						11.53	
		-	Light Brown colour, Coarse grained, Sand. (SPT Rebounded)						Coarse grained, Sand. (SPT Rebounded)		0	>50	3		NA	¥					Brown	21.42	
244.961	36.50	-					_		1		1			1				ш		_			1

•	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

G	eotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

	A JOINT VENTUR		TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARVANA AND MINISTRY OF RAILW. BH-18	AYS	co-c	G			cal Log of I	7	Hol	e B			ATION					S M CONSULTANTS AN ISO 6001 COMPANY BHUBANESHWAR
HAINAGE (m. OLLAR ELEV AIL LEVEL		:	25990 		AZIM			TION	Y : 3122515.20 : 280.253 :)4				TYPI	AL DEI E OF C TH OF	ORE		EL BLE (m	:	55m Double Tube 26.20m
TART DATE NDING DATE	1	:	02-02-2022 07-02-2022		ANG	LE WI	гн но	RIZON	TAL : 90°						LING A				:	S.M. Consultants Gaurav Chunekar
				Si	ze of	Core	Piec	es	% of Core-Recovery	Penet	dard ration est			Freq. / m		er level		ater oss	turned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20 40 60 80 100	N Value	Depth of Penetration in cm	Type of BIT	RQD %	Fracture Fred	Casing	Depth of water level	Partial	Complete	Colour of Returned Water	REMARK / OBSERVATIONS
280.253																1	1		1	General Description: This Borehole is Located on the upland part of the Alignmen
279.753	0.50																			on a ground elevation of 280.253 m. The stratigraphy of area is prominently of Silty
278.753	1.50																			clay which comes under Alluvial Type of Category. Silty clay and with gravels is majorly tracked in the borehole.
277.253	3.00									11	45									
275.753	4.50																			
274.253	6.00									20	45									
271.253	9.00		Brown colour, fine grained,medium to dense																	
			compacted, silty clay with none to low plasticity							24	45									
268.253	12.00																			
265.253	15.00									31	45									
262.253	18.00									35	45									
259.253	21.00									40	45									
										47	45						ia		NW N	
256.253	24.00									40		Nx					— Partial		- BROWN	
253.253	27.00									49	45									
250.253	30.00									57	45									
247.253	33.00									64	45									
244.253	36.00									69	45									
241.253	39.00									77	45									
238.253	42.00		Brown colour, fine grained, dense to very densed compacted, Silty clay with gravels.							84	45									
			oray with gravers.							>50	41									
235.253	45.00									>50	36									
233.253	47.00										29			-						
230.253	50.00									>50										
227.253	53.00									>50	22									
225.253	55.00									>50	17						↓		 	

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILWA			G	eol	ogi	cal	Log of	Dril	l Hol	le E	3H-1	9				(S M CONSULTANTS AN ISO 0001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	:	BH-19 26210 25-07-2021 26-07-2021		GROI AZIM		LEVA	TION	Y	: 699776.4 : 3122635 : 278.116 :					TOTA TYPE DEPT DRIL	ATION AL DEF E OF C TH OF LING A	PTH ORE WAT AGEN	ER TA	BLE (m	: : : : :	Patuka 50m Double Tube Not found S.M. Consultants Gaurav Chunekar
Ê			Lithological Description	Siz	ze of	Core	Pied	es	Co	% of ore-Recovery	, Pen	ndard etration est	_		Freq. / m		ater level	ı	ater oss	Returned	REMARK / OBSERVATIONS
Elevation (m)	Depth (m)	Litho-Log		<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40 60 80	100 N Value	Depth of Penetration	Type of BIT	RQD %	Fracture Fr	Casing	Depth of water level	Partial	Complete		
278.116 277.616	0.50																	1		1	General Description: This Borehole is Located on the upland part of the Alignment on a ground elevation of 278.116 m. The
276.616	1.50										17	45									Stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly
275.116	3.00																				tracked in the borehole.
273.616	4.50										23	45									
272.116	6.00																				
269.116	9.00										30	45			-						
266.116	12.00		Brown colour, fine																		
			grained, medium to dense compacted, clayey silt with none to low plasticity								35	45									
263.116	15.00																				
260.116 257.116	18.00										35	45					ent	ial		WN	
207.110	21.00																Absent	Partial		BROWN	
254.116	24.00										39	45									
251.116	27.00																				
248.116	30.00										43	45									
245.116 242.116	33.00																				
239.116	39.00										52	45									
236.116	42.00		Brown colour, fine grained, dense																		
233.116	45.00		to very densed compacted,Silty sand								65	45									
230.116	48.00																				
228.116	50.00										80	45									

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW.		(Ge	olc	gi	cal	L	og	j of	Dri	II Ho	ole	ВН	-20	1					S M CONSULTANTS AN ISO 900: COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m. COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	:	BH-20 26387 16-02-2021 25-03-2021		GROI AZIM ANGL	UND E	LEVA	TION		: 3	3122	30.88 2738.2 795 m	273				TOT. TYPI DEP	TH OF	PTH CORE WAT AGEN		BLE (m	: :	Patuka 48.00 m Absent S.M. Consultants Gaurav Chunekar
				Si	ze of	Core	Piec	es	Co		% of Reco	very	Pene	ndard tration est			. / m		r level		ater oss	Returned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	09	80	N Value	Depth of Penetration	Type of BIT	RQD %	Fracture Freq. / m	Casing	Depth of water	Partial	Complete		REMARK / OBSERVATIONS
276.795																				†		†	General Description: This Borehole is
276.295	0.50																						Located on the upland part of the Alignment on a ground elevation of 276.795 m. The stratigraphy of area is prominently of Silty
275.295	1.50												18	45									Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly tracked in the borehole.
273.795	3.00		Brown Colour, Fine Grained, medium to Dense Compacted ,																				tracked in the borenole.
272.295	4.50		Clayey Silt with None to Low Plasticity										32	45									
270.795	6.00																						
267.795	9.00												48	45	=								
201.133			Brown Colour, Fine Grained, Dense Compacted, Silty Sand																				
264.795	12.00																						
261.795	15.00												60	45		1							
258.795	18.00		Brown Colour, Fine Grained, Very Dense Compacted, Clayey																¥			z	
255.795	21.00		Silt with None to Low Plasticity										67	45					Absent	Partial		BROWN	
													76	45									
252.795	24.00																						
249.795	27.00												58	45									
246.795	30.00												30	+0									
243.795	33.00								_														
240.795	36.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt and Clay with low										67	45									
237.795	39.00		Compressibility																				
234.795	42.00										_	_	75	45									
231.795	45.00																						
228.795	48.00												79	45									

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

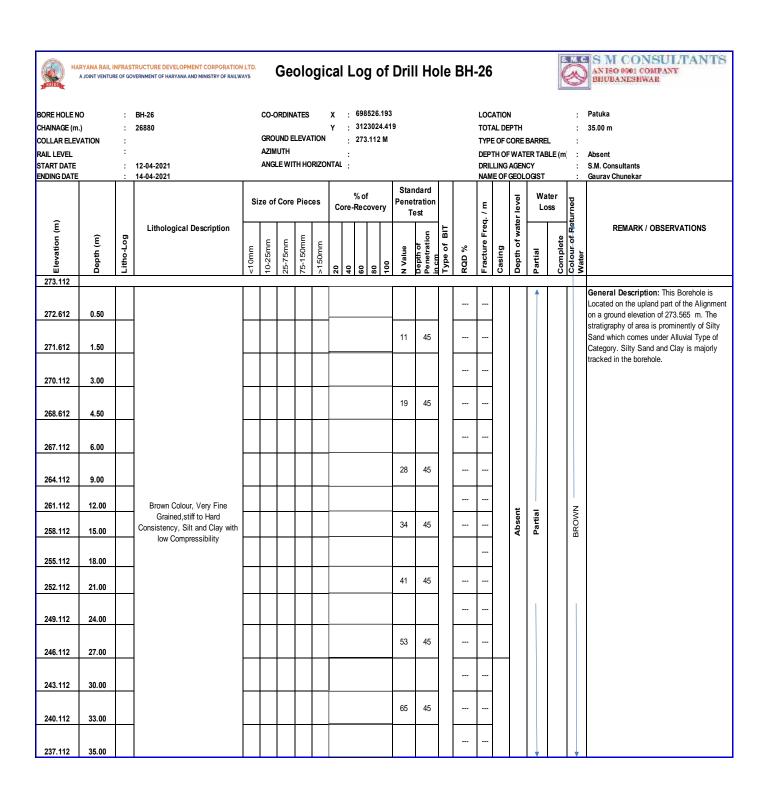
			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW			Ge	olc	gio	cal Log of	Dril	I Ho	le	вн-	-21				(8	S M CONSULTANTS AN ISO 9001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	: :	21 26587 19-02-2021 28-03-2021		GRO		LEVA		X : 699457.333 Y : 3122837.40 : 274.993 m ::					TOTA TYPE DEP	ATION AL DEP E OF CO TH OF N LING A	ORE I	ER TAI CY	BLE (m	:	Patuka 45 Absent S.M. Consultants Gaurav Chunekar
				Si	ze of	Core	Pied	es	% of Core-Recovery	Pene	idard tration est			. / m		ır level		ater oss	Returned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20 40 60 80 100	N Value	Depth of Penetration in cm	Type of BIT	RQD %	Fracture Freq. / I	Casing	Depth of water level	Partial	Complete		REMARK / OBSERVATIONS
274.993																	1		1	General Description: This Borehole is Located on the upland part of the Alignment
274.493	0.50									14	45	-								on a ground elevation of 274.993 m. The stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of
273.493	1.50											-								Category. Silty Sand and Clay is majorly tracked in the borehole. Fragmented and bouldered rock strata of
271.993	3.00									20	45									Sandstone and Quartzite has also been noticed from 18.0m to 36.0m. However sandstone was more prominent in both of
270.493	4.50		Brown Colour, Very Fine Grained, Medium to dense																	them.
268.993	6.00		Compacted, Clayey Silt with none to Low Plasticity							31	45	-								
265.993	9.00									31	45	-								
262.993	12.00																			
259.993	15.00									38	45			-						
256.993	18.00		Fragmented Rock Strata of Yeollwish Brown, Fine Grained, Hard to Medium Hard, Sandstone						6			-	4.50							
253.993	21.00		Fragmented Rock Strata of Yeollwish Brown, Medium to Coarse Grained, Hard Sandstone						3.5			•	Nil			Absent	Partial		BROWN	
			Fragmented Rock Strata of Yeollwish Brown, Fine Grained, Medium Hard, Sandstone						4			-	Nil							
250.993	24.00		Fragmented Rock Strata of Yeollwish Brown, Very Fine to Fine Grained, Medium Hard, Sandstone						6			<u>-</u>	Nil							
244.993	30.00		Fragmented Rock Strata of Very Fine to Fine Grained, Hard to Medium Hard, Sandstone and Qaurtzite						9				Nil							
241.993	33.00		Fragmented Rock Strata of Yeollwish Brown, Medium to Coarse Grained, Hard Sandstone						6				Nil							
238.993	36.00		Fragmented Rock Strata of Yeollwish Brown, Medium to Coarse Grained, Hard Sandstone						4.6				Nil							
235.993	39.00																			
232.993	42.00		Brown Coour, Very Fine Grained, Very dense Compacted, Clayey Silt with none to Low Plasticity							75	45			-						
229.993	45.00																			

G	eotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW.		(Ge	olo	gi	cal	l L	οę	g o	f Dr	ill	Но	le	ВН	-22				E	E	9	S M CONSULTANTS AN ISO 9001 COMPANY BHUBANESHWAR
BORE HOLE N	Ю	:	BH-22		CO-C	RDIN	ATES		х	. (6992	273.7	57					LOC	ATIO	N					Patuka
CHAINAGE (m	.)	:	26787						Υ	-		2916.							AL DE					: 4	45.00 m
COLLAR ELEV RAIL LEVEL	/ATION	:			GRO		LEVA	TION		: 2	274.	.321 r	n								BARR			:	About the second
START DATE			08-04-2021				тн но	RIZO	NTAI	:										AGEN		BLE (r			Absent S.M. Consultants
ENDING DATE		:	11-04-2021															NAM	E OF	GEOL	OGIST		_		Gaurav Chunekar
2				Si	ze of	Core	Piec	es	C	% ore-F	% of Reco		Pen	anda etra Test	tion			Freq. / m		ter level		ater oss	Returned		
:levation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	09	80	100 N Value	Depth of	enetration	Type of BIT	RQD %	Fracture Fre	Casing	Depth of water level	Partia 🕨	Complete	colour of Re	Water	REMARK / OBSERVATIONS
ш 274.321				V	-	7	7	٨	7	4	9	Φ.	-	_	4. ⊒	-	Œ	Į IL	О		_ Δ.	0	0	>	
273.821	0.50		Brown Colour, Very Fine Grained, Silt and Clay with Low Compressibility																				4	L	General Description: This Borehole is Located on the upland part of the Alignment on a ground elevation of 274.321 m. The stratigraphy of area is prominently of Silty
272.821	1.50												15		45									8	Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly racked in the borehole.
271.321	3.00																							F	Fragmented and bouldered rock strata of Sandstone and Quartzite has also been noticed from 18 m. to 39 m. However
269.821	4.50		Brown Colour, Fine Grained, Medium Compacted, Clayey Silt with none to Low Plasticity										21		45									8	sandstone was more prominent in both of hem.
268.321	6.00		ŕ													•									
265.321	9.00												28		45										
262.321	12.00		Gravels and Pebbles of Quartzite and Sanstone																						
259.321	15.00																								
050 004	40.00		Fragmented Rock Strata of							3.0							Nil								
256.321	18.00		Yeollwish Brown, Medium to Coarse Grained, Hard Sandstone							2.3							Nil			Absent	Partial			BROWN	
253.321	21.00									3.0			+												
250.321	24.00																Nil								
247.321	27.00									2.0)						Nil								
244.321	30.00		Fragmented Rock Strata of Yeollwish Brown, Fine Grained, Hard Sandstone							3.0			\perp				Nil								
241.321	33.00		riaiu Galiustorie							2.3	3						Nil								
238.321	36.00									4.0)						Nil								
235.321	39.00									4.0)						Nil								
232.321	42.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt and Clay with Low										1												
229.321	45.00		Compressibility										91		45										

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW		(Ge	olo	gio	cal	Log of	Dri	І Но	le	BH	-23				(S M CONSULTANTS AN 180 9001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	: :	Bh 23 26980 04-04-2021 06-04-2021		GROU AZIM ANGL	JND E UTH	LEVA	TION	Y	: 699087.90 : 3122972.1 : 274.850 M :	38				TOTA TYPE DEPT DRIL	ATION AL DEF E OF C TH OF LING A E OF C	PTH ORE WAT	ER TA CY	BLE (m	:	Patuka 45 m Absent S.M. Consultants Gaurav Chunekar
Œ)			Lithological Description	Si	ze of	Core		es	Co	% of ore-Recovery	Pene T	ndard tration est	ВІТ		Freq. / m		water level		ater oss	Returned	REMARK / OBSERVATIONS
Elevation (m)	Depth (m)	Litho-Log		<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40 60 80	N Value	Depth of Penetration in cm	o o	RQD %	Fracture Freq. /	Casing	Depth of	Partial	Complete	Colour of F Water	
274.850																		1		1	General Description: This Borehole is
274.350	0.50														-						Located on the upland part of the Alignment on a ground elevation of 274.850 m. The stratigraphy of area is prominently of Silty
273.350	1.50		Brown Colour, Very Fine								16	45									Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly
271.850	3.00		Grained, stiff to very stiff Consitency, Silt and Clay with Low Compressibilty																		tracked in the borehole.
270.350	4.50		Low Compressionly								23	45			1						
268.850	6.00		Brown Colour, Fine grained,																		
265.850	9.00		Dense Compacted, Clayey Silt with None to Low Plasticity								34	45									
262.850 259.850	12.00 15.00		Brown Colour, Very Fine Grained, Hard Consitency, Silt and Clay with Low Compressibilty								38	45									
256.850	18.00												•				Absent	Partial		BROWN	
253.850	21.00		Brown Colour, Fine grained, Dense Compacted, Silty Sand								50	45	•								
250.850	24.00		Brown Colour, Very Fine Grained, Silt and Clay with low Compressibility																		
247.850	27.00		Brown Colour, Fine grained, Very Dense Compacted, Silty Sand								63	45									
244.850	30.00		Brown Colour, Fine Grained, Clayey Silt with None to Low Plasticity																		
241.850	33.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt and Clay with low								73	45									
238.850	36.00		Brown Colour, Fine grained, Silty Sand																		
235.850	39.00		Brauer Orley V. 5								77	45									
232.850	42.00		Brown Colour, Very Fine Grained, Hard Consistencey, Silt and Clay with low																		
_02.000	72.00		Compressibility								85	45									


•	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW.		(Ge	olo	gi	cal	L	og	of	Dri	II Ho	ole	вн	-24	ļ					S M CONSULTANTS AN ISO 9001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	: : : : :	BH-24 27187 04-04-2021 08-04-2021		GROU AZIM ANGL	JND E UTH	LEVA	TION	•	: :	3123	85.64 8009.6 075 M	81				TOT TYP DEP DRIL	TH OF	PTH CORE WAT AGEN		BLE (m	: : : : : : : : : : : : : : : : : : : :	Patuka 40.00 m Absent S.M. Consultants Gaurav Chunekar
-				Si	ze of	Core	Piec	es	Со		% of Reco	very	Pene	ndard tration est	1		ą. / m		er level		ater oss	Returned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	09	100	N Value	Depth of Penetration	Incm Type of BIT	RQD %	Fracture Freq. /	Casing	Depth of water level	Partial	Complete		REMARK / OBSERVATIONS
274.075																				†		†	General Description: This Borehole is
273.575	0.50																						Located on the upland part of the Alignment on a ground elevation of 274.075 m. The
272.575	1.50												14	45									stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly
271.075	3.00																						tracked in the borehole.
													21	45									
269.575	4.50		Brown Colour, Fine Grained, Medium to dense Compacted,																				
268.075	6.00		Clayey Silt with None to Low Plasticity											45									
265.075	9.00												27	45									
262.075	12.00																						
259.075	15.00												33	45					<u>.</u>			z	
256.075	18.00																	_	Absent	Partial		BROWN	
253.075	21.00												43	45									
250.075	24.00																						
247.075	27.00												58	45									
241.015	21.00																-						
244.075	30.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt										-		-		-						
241.075	33.00		and Clay with low Compressibility										72	45									
238.075	36.00																						
235.075	39.00												89	45									
232.075	40.00																						

G	Geotechnical Investigation Report													
Consultant:			Client :											
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd											

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW		(Ge	olo	gio	cal Log of	f Dri	II Ho	ole	вн	-25	;			(3	S M CONSULTANTS AN ISO 0001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	:	BH-25 27410 12-04-2021 14-04-2021		GROU AZIMI ANGL	JND EI UTH	LEVA	TION	X : 698666.17 Y : 3123023.0 : 273.565 n :	37				TOT. TYPI DEP	TH OF	PTH ORE WAT AGEN		BLE (m	: : : : : : : : : : : : : : : : : : : :	Patuka 40.00 m Absent S.M. Consultants Gaurav Chunekar
				Si	ze of	Core	Piec	es	% of Core-Recovery	Pen	ndard etration Fest			m / ·		water level		ater oss	Returned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20 40 60 80	N Value	Depth of Penetration	Type of BIT	RQD %	Fracture Freq. /	Casing	Depth of wate	Partial	Complete	Colour of Ret Water	REMARK / OBSERVATIONS
273.565																	1		1	General Description: This Borehole is Located on the upland part of the Alignment
273.065	0.50							Н		13	45	_								on a ground elevation of 273.565 m. The stratigraphy of area is prominently of Silty
272.065	1.50									13	45	_								Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly tracked in the borehole.
270.565	3.00											_								
269.065	4.50									20	45									
267.565	6.00																			
264.565	9.00									30	45									
261.565	12.00											_								
258.565	15.00		Brown Colour, Very Fine							31	45									
255.565	18.00		Grained, stiff to Hard Consistency, Silt and Clay with													Absent	Partial		BROWN	
252.565	21.00		low Compressibility							33	45					`	_		ш	
249.565	24.00																			
246.565	27.00									48	45									
243.565	30.00									68	45									
240.565	33.00									1										
237.565	36.00									-		-								
234.565	39.00									81	45	-								
231.565	40.00																↓			

G	ieotechnical :	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW		(Ge	olo	gio	cal	Lo	og	of	Dril	I Ho	le	вн	-27				(S M CONSULTANTS AN ISO 0001 COMPANY BHUBANESHWAR				
BORE HOLE N CHAINAGE (m COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	: : : : : : : : : : : : : : : : : : : :	BH 27 28050 14-04-2021 16-04-2021		GROI AZIM	ORDIN UND E IUTH LE WI'	LEVA		Y	: 3		29.18					TOTA TYPE DEP	TH OF	PTH ORE WAT AGEN		BLE (m	: : : : : : : : : : : : : : : : : : : :	Patuka 30.00 m Absent S.M. Consultants Gaurav Chunekar				
(1				Si	ze of	Core	Piec	es	Co		of ecove	ery	Pene	idard tration est			q. / m		ter level		ater oss	sturned					
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	~10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	09	100	N Value	Depth of Penetration in cm	Type of BIT	RQD %	Fracture Freq. /	Casing	Depth of water level	Partial	Complete	Colour of Returned Water	REMARK / OBSERVATIONS				
272.210																				A		A	General Description: This Borehole is				
271.710	0.50																						Located on the upland part of the Alignment on a ground elevation of 272.210. The stratigraphy of area is prominently of Silty				
270.710	1.50												14	45									Sand which comes under Alluvial Type of Category. Silty Sand and Sandy Clay is majorly tracked in the borehole.				
269.210	3.00															-											
267.710	4.50		Brown Colour, Fine grained, Low Dense to Medium Densed										24	45													
			Compactness, Silty Sand																								
266.210	6.00												27	45													
263.210	9.00																										
260.210	12.00																										
200.210	12.00												36	45		_			Absent	- Partial		- BROWN					
257.210	15.00																										
254.210	18.00		Brown Colour, Very Fine to Fine Grained, Hard Consitency, Sand													-											
			and Clay with Low Compressibilty										45	45		_											
251.210	21.00																										
248.210	24.00																										
245.210	27.00		Brown Colour, Very Fine to Fine Grained, Hard Consitency, Sand										54	45													
240.210	21.00		and Clay with Low Compressibilty																								

G	eotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARVANA AND MINISTRY OF RAILW.		(Ge	olo	gi	cal	l Log	of	Dril	l Ho	le	BH-	-28				(S M CONSULTANTS AN ISO 0001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m. COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.) /ATION	: : : : : : : : : : : : : : : : : : : :	BH-28 27680 04-04-2021 08-04-2021		GROU AZIM		LEVA		Υ	: 6977 : 3123 : 272.7 :	032.03					TOTA TYPE DEPT DRIL	TH OF	PTH ORE WAT AGEN		BLE (m	: : : : : :	Patuka 45.00 m Absent S.M. Consultants Gaurav Chunekar
				Si	ze of	Core	Piec	es	Co	% of ore-Reco	very	Pener	idard tration			/ m		eve		ater oss	rned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	100		Depth of Penetration in cm	Type of BIT	RQD %	Fracture Freq. /	Casing	Depth of water	Partial	Complete	Colour of Returned Water	REMARK / OBSERVATIONS
272.799																			1		↑	General Description: This Borehole is Located on the upland part of the Alignment
272.299	0.50											12	45	-		_						on a ground elevation of 272.799 m. The stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of
271.299	1.50																					Category. Silty Sand and Clay is majorly tracked in the borehole.
269.799	3.00																					
268.299	4.50											21	45									
266.799	6.00		Brown Colour, Fine grained, Low Dense to Medium Densed Compactness, Silty Sand																			
												28	45									
263.799	9.00													-		_						
260.799	12.00													-								
257.799	15.00											38	45	-								
254.799	18.00																	Absent	Partial		BROWN	
251.799	04.00											47	45			1						
251.799	21.00													-								
248.799	24.00		Brown Colour, Fine Grained, Hard Consitency, Sand and Clay with Low Compressibilty.						\vdash													
245.799	27.00											53	45									
242.799	30.00																					
239.799	33.00											70	45									
255.133	33.00													-								
236.799	36.00		Brown Colour, Fine Grained,									0.4	45									
233.799	39.00		Hard Consitency, Sand and Clay with Low Compressibilty.									81	45									
230.799	42.00																					
227.799	45.00											92	45									

•	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW			Ge	olo	gio	cal	Lo	og o	of I	Dril	l Ho	ole	ВН	-29)					S M CONSULTANTS AN ISO 0001 COMPANY BHUBANESHWAR
BORE HOLE N	.)	:	BH-29 28550			ORDINA				: 3	97526.2 123034 69.964	.057	,				TOT	ATIOI AL DE	PTH		-	:	Patuka 30.00 m
COLLAR ELEV RAIL LEVEL	ATION	:			AZIM			11014		: 4										BARRE ER TA	=L BLE (m		 Absent
START DATE		:	17-04-2021		ANG	LE WIT	гн но	RIZON	NTAL	: 9	0°						DRIL	LING	AGEN	CY		:	S.M. Consultants
ENDING DATE		<u>:</u>	18-04-2021										Stan	dard			NAN	IE OF	GEOL	OGIST		:	Gaurav Chunekar
				Si	ze of	Core	Piec	es	Со		of ecover	у	Penet	ration est			n / r		er level		ater oss	Returned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	60 80	100	N Value	Depth of Penetration in cm	Type of BIT	RQD %	Fracture Freq. /	Casing	Depth of water level	Partial	Complete	Colour of Re Water	REMARK / OBSERVATIONS
269.964										•	• ~	•	_		1								
269.464	0.50																			1			General Description: This Borehole is Located on the upland part of the Alignment on a ground elevation of 269.964 m. The
268.464	1.50												12	45									stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly
266.964	3.00																						tracked in the borehole.
265.464	4.50												24	45		_							
			Brown Colour, Very Fine Grained, Hard Consistency, Silt and Sand with low																				
263.964	6.00		Compressibility.										27	45									
260.964	9.00																						
257.964	12.00																		ıt	a		×	
													38	45					Absent	- Partial		- BROWN	
254.964	15.00																						
251.964	18.00																						
248.964	21.00												47	45									
			Brown Colour, Very Fine Grained, Hard Consistency, Silt and Clay with low														_						
245.964	24.00		Compressibility						_			_]								
242.964	27.00												61	45									
239.964	30.00																						

G	Geotechnical Investigation Report												
Consultant:			Client :										
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd										

ORE HOLE N HAINAGE (m OLLAR ELEN AIL LEVEL TART DATE NDING DATE	.) /ATION	:	BH-30 28750 17-04-2021 19-04-2021		GRO AZIM	UTH	LEVA	TION	Y	: 69 : 31 : 27 :	2304 70.808	3.286	3		ı	T T D D	OTAI YPE EPTI RILL	TION L DEPT OF COI H OF W ING AG OF GE	RE B ATE ENC	R TAE		: :	Patuka 45.00 m Absent S.M. Consultants Gaurav Chunekar
=				Si	ze of	Core	Piec	es	Co	% re-Re		ry	Stan Penet Te	ration			E / ÷		1949		iter iss	turned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40	80	100	N Value	Depth of Penetration in cm	Type of BIT	RQD %	Fracture Fred. /	Casing	Depui oi wa	Partial	Complete	Colour of Returned Water	REMARK / OBSERVATIONS
270.308	0.50																			1		†	General Description: This Borehole is Located on the upland part of the Alignme on a ground elevation of 270.808 m. The
269.308	1.50		Samuel Orders Visa Fina										17	45									stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly
267.808	3.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt and Sand with low																				tracked in the borehole.
266.308	4.50		Compressibility.										22	45									
264.808	6.00																						
													30	45									
261.808	9.00														-	+							
258.808	12.00	Brown Colour, Very Fine																					
255.808	15.00		Grained, Hard Consistency, Silt and Clay with low Compressibility										38	45									
252.808	18.00															-				'			
249.808	21.00												44	45					ADSCIIL	Partial		BROWN	
249.000	21.00											_			-		_	1	ŧ	<u>~</u>		- BR	
246.808	24.00		Brown Colour, Very Fine												-								
243.808	27.00		Grained, Hard Consistency, Silt and Sand with low Compressibility.										56	45									
																	[
240.808	30.00												٠.	4-									
237.808	33.00												64	45			_						
234 900	36 00																						
234.808	36.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt 73, 45																				
231.808	39.00		and Clay with low Compressibility														-						
228.808	42.00																						
			84 45																				

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

E 100 (100 (100 (100 (100 (100 (100 (100			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW			Ge	olo	gi	cal	l Log o	f Dr	ill	Но	le	BH	-31				(S M CONSULTANTS AN 180 000: COMPANY BHUBANESHWAR
BORE HOLE NO CHAINAGE (m. COLLAR ELEV RAIL LEVEL START DATE ENDING DATE)	: :	BH-31 29050 19-04-2021 19-04-2021		GRO AZIN	ORDIN UND E IUTH LE WI	LEVA	TION	Y	: 697028.6 : 3123078. : 267.159 r :	475					TOT TYP DEP DRIL	TH OF	PTH ORE WAT AGEN	BARRE ER TAI CY OGIST			: Patuka : 20.00 m : : Absent : S.M. Consultants : Gaurav Chunekar
				Si	ze of	Core	Pie	ces	Co	% of ore-Recovery	Pai	and netra Tes	ation			. / m		r level		ater oss	nrned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40 60 80	100 N Value	Depth of	Penetration in cm	Type of BIT	RQD %	Fracture Freq. / m	Casing	Depth of water level	Partial	Complete	Colour of Ret	REMARK / OBSERVATIONS
267.159																			1		1	General Description: This Borehole is Located on the upland part of the Alignmen
266.659	0.50		_																			on a ground elevation of 267.159 m. The stratigraphy of area is prominently of Silty
265.659	1.50		16 45			Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly																
264.159	3.00																					tracked in the borehole.
262,659	4.50										23	3	45									
			Brown Colour, Very Fine Grained, Hard Consistency, Silt and Sand with low											•		_						
261.159 258.159	9.00		Compressibility.								32	2	45	•				Absent	Partial —		NAVOGE	BROWN I
255.159	12.00													-								
252.159	15.00										40)	45	-								
249.159	18.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt											•								
247.159	20.00		and Clay with low Compressibility								51	1	45	•								

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW		(Ge	olo	gio	cal	L	og	of	Dril	I Ho	le	BH	-32				6	8	S M CONSULTANT AN 180 0001 COMPANY BHUBANESHWAR				
ORE HOLE N		:	BH-32		co-c	RDIN	ATES		^	•		12.399 193.28						ATIO				:	Patuka				
IAINAGE (M. DLLAR ELEV	•	:	29550		GRO	UND E	LEVA	TION	Ť	•		84 m						AL DE		BARRE	1	:	30.00 m				
AIL LEVEL	Alloit	÷			AZIM	UTH				٠										ER TAI		:	Absent				
TART DATE		:	19-04-2021		ANG	LEWI	гн но	RIZOI	NTAL		90°						DRIL	LING	AGEN	CY	,	:	S.M. Consultants				
IDING DATE		-	20-04-2021										٠				NAN	E OF	GEOL	OGIST			Gaurav Chunekar				
				Si	ze of	Core	Piec	es	Co		6 of Recov	/ery	Pene	ndard tration est			E /.		Depth of water level		iter oss	Returned					
Elevation (m)	Ê	g.	Lithological Description		_	_	Ē	_						ion	BIT		Fracture Freq. / m		fwate		te	of Ret	REMARK / OBSERVATIONS				
/atio	Depth (m)	Litho-Log		<10mm	10-25mm	25-75mm	75-150mm	>150mm					N Value	Depth of Penetration	Type of	%	ture	Casing	ф	ia i	Complete	Colour of I	5				
Ele	Dep	Ę		<10r	10-2	25-7	75-1	>15(20	40	09	100	8 2	Depti Pener	Тур	Rab	Frac	Cas	Dep	Partial	Con	Colo					
266.684																											
266.184	0.50																			1		1	General Description: This Borehole is Located on the upland part of the Alignment on a ground elevation of 266.684 m. The				
													17	45									stratigraphy of area is prominently of Silty Sand which comes under Alluvial Type of				
265.184	1.50																						Category. Silty Sand and Clay is majorly tracked in the borehole.				
263.684	3.00																										
262.184	4.50												27	45													
260.684	6.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt																								
257.684	9.00		and Sand with low Compressibility.										35	45													
2011001																											
254.684	12.00																		Absent	Partial		BROWN -					
251.684	15.00												44	45					₹	<u>a</u>		BR					
201.004	13.00																										
248.684	18.00																ļ										
246.684	21.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt										54	45													
			and Clay with low Compressibility														_										
243.684	24.00																										
240.684	27.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt										63	45			_										
			and Clay with low Compressibility																								
238.684	30.00																			<u> </u>		+					

	Geotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			TRUCTURE DEVELOPMENT CORPORATION VERNMENT OF HARYANA AND MINISTRY OF RAILW			Ge	olo	gi	cal	l Log	of	Dril	І Но	le	BH-	-33	}					S M CONSULTANTS AN ISO 0001 COMPANY BHUBANESHWAR
BORE HOLE N CHAINAGE (m. COLLAR ELEV RAIL LEVEL START DATE ENDING DATE	.)	: : : : : : : : : : : : : : : : : : : :	BH-33 30125 20-04-2021 21-04-2021		GRO AZIN	ORDIN UND E IUTH LE WI	LEVA	TION	X Y NTAL		63.52	5				TOT TYP DEP DRII	TH OF	PTH ORE WAT	BARRE ER TAI CY OGIST	BLE (m	:	Patuka 20.00 m Absent S.M. Consultants Gaurav Chunekar
				Si	ize of	Core	Pie	ces	Co	% of ore-Recove	ery		dard ration est			. / m		r level		ater oss	Returned	
Elevation (m)	Depth (m)	Litho-Log	Lithological Description	<10mm	10-25mm	25-75mm	75-150mm	>150mm	20	40 60 80	100	N Value	Depth of Penetration in cm	Type of BIT	RQD %	Fracture Freq. /	Casing	Depth of water level	Partial	Complete		REMARK / OBSERVATIONS
265.581																			↑		1	General Description: This Borehole is Located on the upland part of the Alignment
265.081	0.50		<u> </u> 														_					on a ground elevation of 265.581 m. The stratigraphy of area is prominently of Silty
264.081	1.50		Brown Colour, Very Fine									18	45		-							Sand which comes under Alluvial Type of Category. Silty Sand and Clay is majorly
262.581	3.00		Grained, Hard Consistency, Si and Sand with low Compressibility.																			tracked in the borehole.
261.081	4.50		Compressionity.									28	45									
259.581														•								
209.001	6.00											39	45			_		Absent	Partial —		NWOAA	Z
256.581	9.00		-										70					Abs	- Par		- BRC	P P P P P P P P P P P P P P P P P P P
253.581	12.00																					
250.581	15.00		Brown Colour, Very Fine Grained, Hard Consistency, Silt and Clay with low Compressibility									50	45				-					
200.08 1	15.00																_					
247.581	18.00		-	_					-							_						
245.581	20.00											63	45									

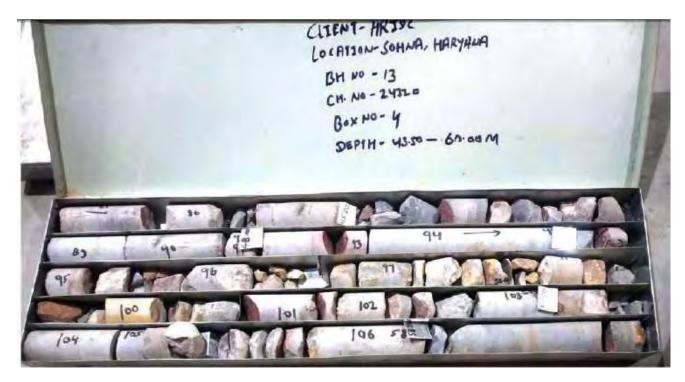
G	eotechnical	Investigation Repor	t
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

ANNEXURE L CORE SAMPLES

•	Geotechnical	Investigation Repor	t
Consultant:			Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Borehole 13 (Ch no. 25000)

BH 13. Box 1 (Depth 0m-15.0m).



BH 13. Box 2 (Depth 15.0m-28.50m)

G	eotechnical	Investigation Repor	t
Consultant:			Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH13. Box 3. (Depth 28.5m-43.5m)

BH13. Box 4. (Depth 43.5m- 60.0m)

Geotechnical Investigation Report			
Consultant:			Client :
5,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Borehole 14 (Ch no. 25195)

BH 14. Box 1. (Depth 0m-10.5m)

BH 14. Box2. (Depth 10.5m-27.5m)

Geotechnical Investigation Report			
Consultant:	Client :		
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH 14. Box 3. (Depth 27.5m-43.5m)

BH 14. Box 4. (Depth 43.5m-63.0m)

Geotechnical Investigation Report			
Consultant:		Client :	
S.M. CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Borehole 15 (Ch no. 25380)

BH 15. Box 1. (Depth 0m- 16.5m)

BH 15. Box 2. (Depth 16.5m -33.0m)

Geotechnical Investigation Report			
Consultant:		Client :	
S.M. CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH 15. Box 3. (Depth 33.0m- 48.0m)

BH 15. Box 4. (Depth 48m-66m)

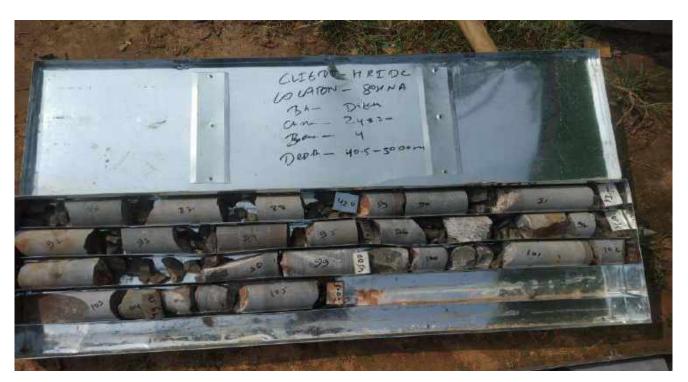
Geotechnical Investigation Report			
Consultant: Client:			
5,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH 15. Box 5. (Depth 66.0m-70.0m)

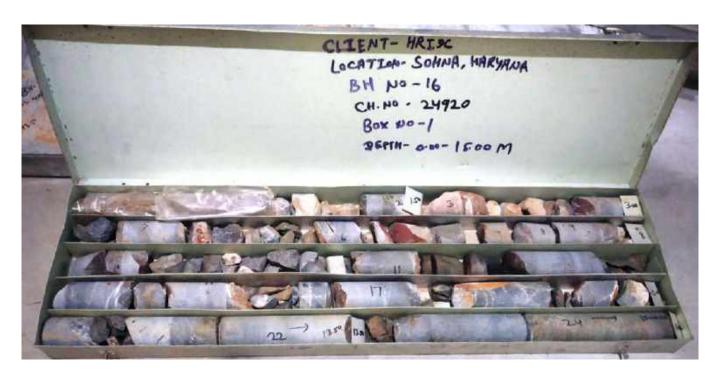
Borehole 15(A) (Ch no. 25488)

BH 15(A) Box 1. (Depth 0-13.5m)

Geotechnical Investigation Report			
Consultant:			Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd



BH 15(A) Box 2. (Depth 13.5m-27.0m)


Bh 15(A) Box 3. (Depth 27.0m-40.5m)

Geotechnical Investigation Report			
Consultant: Client:			
5,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH 15(A) Box 4. (Depth 40.5m-50.0m)

Borehole 16. (Ch no. 25586)

BH 16. Box 1. (Depth 0 m- 15.0m)

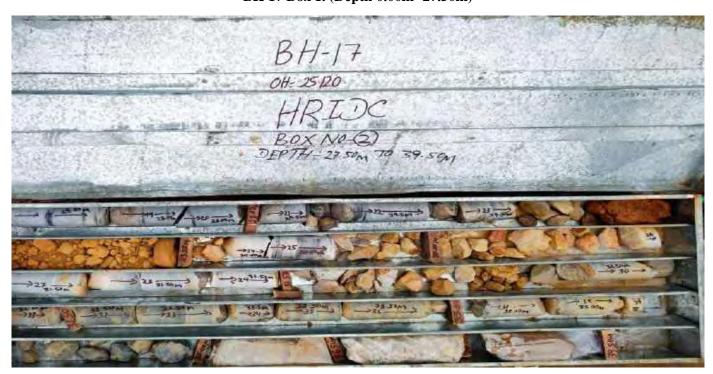
Geotechnical Investigation Report			
Consultant:	Client :		
S,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH 16. Box 2. (Depth 15.0m-27.0m)

BH 16. Box 3. (Depth 27.0m- 40.5m)

Geotechnical Investigation Report				
Consultant: Client :				
S.M. CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

BH 16. Box 4. (Depth 40.5m -51.0m)


Bh 16. Box 5. (Depth 51.0m- 62.0

Geotechnical Investigation Report					
Consultant:			Client :		
S.M. CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd		

Borehole 17. (Ch no. 25785)

BH 17 Box 1. (Depth 0.00m -27.50m)

BH 17 Box 2. (Depth 27.50m -39.50m)

Geotechnical Investigation Report				
Consultant:	Client :			
5,M, CONSULTANTS BHUBANESWAR	Job No:- 830	Report No:- SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd	

BH 17 Box 3. (Depth 39.50m -51.50m)

BH 17 Box 4. (Depth 51.50m -62.00m)

Bid No. HORC/HRIDC/TPC-01/2023

ii. Geological Interpretive Report No. SMC/2050

GEOLOGICAL INTERPRETIVE REPORT

EXPLORING ALTERNATE ALIGNMENTS, FINAL LOCATION SURVEY, GEOLOGICAL MAPPING, GEO-TECHNICAL INVESTIGATION, DETAIL DESIGN OF TUNNEL & ITS APPROACHES INCLUDING VIADUCT IF ANY AND OTHER ANCILLARY WORK IN SOHNA-MANESAR SECTION OF HRDC PROJECT.

Client:

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

Prepared By:

S.M. CONSULTANTS, S.M.TOWER, PLOT NO.-130, MANCHESWAR INDUSTRIAL ESTATE, RASULGARH, BHUBANESWAR-751010, ODISHA

GEOLOGICAL INTERPRETIVE REPORT

Prepa	red & Submitted By
M/s	S. M. Consultants
GEOTECHNICAL ENGINEER	Shreesta Bhattacharia
GEOLOGIST	Dr Dipanjan-Bhattacharje Assistant Professor Department of Galdiene
SENIOR CONSULTANT	Senior Consultant Indira Gandhi National Trush Land National University established by an act of Amarkantak, Madhya Pradesh-48
	For S.M. Consultants
Ger	neral Consultant
PD/GC	
DPD/GC/CIVIL	
	Client
CPM/HRIDCL	
DGM/CIVIL/S/ HRIDCL	
EXE/CIVIL/ HRIDCL	
Client	

HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LIMITED.

S.M. CONSULTANTS, S.M.TOWER, PLOT NO.-130, MANCHESWAR INDUSTRIAL ESTATE, RASULGARH, BHUBANESWAR-751010

Co	onsultant:	Geotechnical Investigation Report		Client :
P	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Table of Contents

L	ist of T	Γable	s:	4
L	ist of I	Figur	es:	4
1	Int	roduc	ction:	7
	1.1	Sco	pe of the Geological Interpretative Report	7
	1.2	Ref	erence of Published Literature	7
	1.3	Indi	an Standard codes	8
2	Ge	ologi	cal Overview:	9
	2.1	Intr	oduction:	9
	2.2	Seis	smicity	.13
	2.3	Reg	rional Geology:	.14
3	PR	OJE	CT GEOLOGY	.16
	3.1	Loc	al Site Geology:	.16
	3.2	Stru	ectural Study:	.16
4	GE	EOTE	CHNICAL INVESTIGATION OF ROCK MASS:	.40
	4.1	Sun	nmary of the Boreholes within ROCK MASS:	.41
	4.2	Fiel	d Tests for ROCK MASS:	.41
	4.3	Fiel	d Test Result for ROCK MASS:	.41
	4.4	Lab	oratory Tests:	.43
	4.5	Lab	oratory Test Result for Rock Mass:	.43
	4.5	5.1	Uniaxial Compressive Strength	.44
	4.5	5.2	Assessment of Rock Mass Rating (RMR):	.45
	4.5	5.3	Point Load Index:	.48
	4.5	5.4	Tensile Strength:	.49
	4.5	5.5	Modulus of Elasticity:	.50
	4.5	5.6	Poison's ratio:	.51
	4.5	5.7	Hardness:	.52
	4.5	8.8	Abrasive Index:	.53
	4.5	5.9	Angle of Internal Friction (ϕ):	.54
	4.5	5.10	Cohesion:	.55
	4.5	5.11	Lugen Value:	.56

Consultant:	Geotechnical Investigation Report		Client :
5,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

	4.5	5.12	Wet Density:	.56
4	4.6	Peti	rographic Test:	.57
5	GE	EOTE	CHNICAL INVESTIGATION OF SOIL MASS:	.58
	5.1	Sun	nmary of the Boreholes within SOIL:	.59
	5.2	Fiel	d Tests for SOIL:	.60
	5.3	Lab	oratory Tests for SOIL:	.60
	5.4	Lab	oratory Test Result of SOIL:	.61
	5.4	1.1	Cohesion:	.61
	5.4	1.2	Natural Weight:	.63
	5.4	1.3	Modulus of Elasticity (E):	.65
	5.4	1.4	Angle of internal friction (ϕ) for non-cohesive soil	.66
	5.4	1.5	Angle of internal friction (ϕ) for cohesive soil	
5	Co	nclus	sion and Recommendations:	

Co	onsultant:	Geotechnical Investigation Report		Client :
P	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

List of Tables:

Table 3.1: Orientation of the joints at places around the site	21
Table 3.2: Details of joint sets.	25
Table 3.3: Abstract of Safe Bearing Pressure for cut and cover portion (BH-32 & 33)	39
Table 4.1: Details of Boreholes drilled for the project along the tunnel line	
Table 4.2: Details of test conducted at site.	41
Table 4.3: Result for the field tests.	42
Table 4.4: Result for permeability tests	42
Table 4.5: The laboratory tests conducted for rock.	43
Table 5.1: Details of Boreholes drilled for the project along the tunnel line within SOIL	59
Table 5.2: Details of laboratory test conducted for soil	60
Table 6.1: Recommended values for engineering properties of rock	71
Table 6.2:Recommended values for engineering properties of soil.	72
List of Figures:	
Figure 2.1: District Map of Haryana.	10
Figure 2.2: Graph showing month wise rainy days for Gurgaon district. (Climate-data.org)). 11
Figure 2.3: Wind Hazard map of Haryana (adopted from BMTPC.	12
Figure 2.4: Seismic map of state Haryana (adopted from National Centre for seismology).	13
Figure 2.5: Regional structure of Delhi fold belt (Naha and Mohanty 1988)	15
Figure 3.1: Superposed fold observed at 28 12' 33.57", 77 02'57.08"	18
Figure 3.2: Shear zone observed at location 28 12' 20.93", 77 02' 40	19
Figure 3.3: Gash veins showing a dextral slip.	20
Figure 3.4: Multiple joint sets observed throughout the area.	20
Figure 3.5: Multiple joint sets were observed throughout the area	
Figure 3.6: Rose and contour diagram of the orientation of the 6 sets of joints (no. of samp	oles
N=125)	
Figure 3.7: Geological map of the area at 1:25000 scale.	27
Figure 3.8: Detailed structural map of the major rocky area at 1:2000 scale. Joint sets are	
schematically drawn with their actual orientation. Average spacing between the joints are	as
follows J ₁ : 300 cm, J ₂ :252.78cm, J ₃ :160cm, J ₄ :80cm, J ₅ :32cm, J ₆ :100cm	28
Figure 3.9: L-Section along the tunnel alignment (1:25000 H and 1:2500 V). Joint sets are	į.
	29
Figure 3.10: Graphical representation of the distribution of RQD, Core Recovery, SPTN	
Values and Soil types along each boreholes intersecting the tunnel (BH13-BH32). Thick	
black lines indicate the position of the tunnel	
Figure 3.11: Chainage-wise variation in RQD and RMR (Samples from 2D depth consider	red
only)	
Figure 3.12: Chainage-wise variation in C and ϕ . (Samples from 2D depth considered on	•
	32

Consultant:		Geotechnical Investigation Report		Client :
8. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Figure 3.13: Chainage-wise variation in C and ϕ . (Samples from 2D depth considered only).
Figure 3.14: Chainage-wise variation in C and ϕ . (Samples from 2D depth considered only).
Figure 3.15: Chainage-wise variation in C and ϕ values, along the cut & cover region, for the strata below formation level
Figure 3.18: Cut and Cover structure at the end of tunnel – Portal II (CH29600)
Figure 4.3: Graphical representation of RMR of rock mass from entire borehole length with depth. (Refer to Annexure A in Geotechnical Report for detail)
Figure 4.7:Tensile Strength of rock mass from entire borehole length vs RL. (Refer to Annexure B in Geotechnical Report for detail)
Figure 4.10: Pareto Chart showing recommended Modulus of Elasticity (E) value for the rock mass within 2D depth
Figure 4.13: Hardness of rock mass from entire borehole length vs RL. (Refer to Annexure H in Geotechnical Report for detail)
Annexure I in Geotechnical Report for detail)

Co	nsultant:	Geotechnical Investigation Report		Client :
Q	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Figure 4.16: Pareto Chart showing recommended Abrasiveness index value for the rock mass within 2D depth
Figure 4.17: Angle of internal friction of rock mass from entire borehole length vs RL (Refer
to Annexure G in Geotechnical Report for detail)
Figure 4.18: Pareto Chart showing recommended angle of internal friction value for the rock
mass within 2D depth. (The straight cumulative frequency curve, in orange, indicates that all
of the classes contribute significantly. Therefore, entire range of the population needs to be
considered.)
Figure 4.19: Cohesive strength of rock mass from entire borehole length vs RL (Refer to
Annexure F in Geotechnical Report for detail)
Figure 4.20: Pareto Chart showing recommended Cohesion value for the rock mass within 2D
depth. (The straight cumulative frequency curve, in orange, indicates that all of the classes
contribute significantly. Therefore, entire range of the population needs to be considered.)55
Figure 4.21: Pareto Chart showing recommended Lugeon value for the rock mass within 2D
depth56
Figure 4.22: Wet Density for rock mass from entire bore hole length vs RL. (Refer to
Annexure D in Geotechnical Report for detail)56
Figure 5.1 Graph showing laboratory tested cohesion for soil from entire borehole length vs
RL. (Refer to Annexure J in Geotechnical Report for detail)
Figure 5.2: Pareto Chart showing recommended cohesion value for the non-cohesive soil
within 2D depth62
Figure 5.3: Pareto Chart showing recommended cohesion value for the cohesive soil within
2D depth
Figure 5.4: graph for Natural weight of soil from entire borehole length vs RL (Refer to
Annexure J in Geotechnical Report for detail)
Figure 5.5: Pareto Chart showing recommended density value for the non-cohesive soil
within 2D depth64
Figure 5.6: Pareto Chart for recommended density value for the cohesive soil within 2D
depth64
Figure 5.7: graph for Modulus of elasticity for soil from entire borehole length vs RL. (Refer
to Annexure J in Geotechnical Report for detail)65
Figure 5.8: Pareto Chart for recommended E value for the non-cohesive soil within 2D depth.
66
Figure 5.9: Distribution of non-cohesive soil Phi value within 2D overburden depth (Detail
distribution of phi values along chainage are graphically shown in the Figure 4.12 to 4.14). 67
Figure 5.10: Distribution of non-cohesive soil Phi value within 1D overburden depth67
Figure 5.11: Distribution of non-cohesive soil Phi value within tunnel alignment
Figure 5.12: Distribution of cohesive soil Phi value within 2D overburden depth (Detail
distribution of phi values along chainage are graphically shown in the Figure 4.12 to 4.14). 69
Figure 5.13: Distribution of cohesive soil Phi value within 1D overburden depth (Detail
distribution of phi values along chainage are graphically shown in the Figure 4.12 to 4.14). 70

Consultant:	Geotechnical Investigation Report		Client :
5,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

1 Introduction:

1.1 Scope of the Geological Interpretative Report

This GIR presents the status of knowledge regarding the geological, structural and hydrogeological conditions along the alignment. In order to optimize the design, a geological assessment was done as part of the work. The assessment included field and laboratory work. This report summarizes subsurface and site conditions that are expected to be encountered during the tunnelling works. The subsurface and site conditions are derived from geotechnical information and data gathered from field.

1.2 Reference of Published Literature

- [1] Bieniawski, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. John Wiley & Sons.
- [2] Heron, A. M. (1953). The geology of central Rajputana. Mem. Geol. Soc. Ind., 79.
- [3] Karol, R. H. (1960). Soils and soil engineering.
- [4] Naha, K., Mukhopadhyay, D. K., Mohanty, R., Mitra, S. K., & Biswal, T. K. (1984). Significance of contrast in the early stages of the structural history of the Delhi and the pre-Delhi rock groups in the Proterozoic of Rajasthan, western India. Tectonophysics, 105(1-4), 193-206.
- [5] Naha, K., & Mohanty, S. (1988). Response of basement and cover rocks to multiple deformations: a study from the Precambrian of Rajasthan, western India. Precambrian research, 42(1-2), 77-96.
- [6] Roy, A. B., & Das, A. R. (1985). A study on the time relations between movements, metamorphism and Granite emplacement in the Middle Proterozoic Delhi Supergroup rocks of Rajasthan. Journal of Geological Society of India (Online archive from Vol 1 to Vol 78), 26(10), 726-733.
- [7] Wei, B. Z., Pezeshk, S., Chang, T. S., Hall, K. H., & Liu, H. P. (1996). An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone. Soil Dynamics and Earthquake Engineering, 15(6), 399-408.

Consultant:		Geotechnical Investigation Report		Client :
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

1.3 Indian Standard codes

- [1] IS 1893 (part-1): 2016, Criteria for earthquake resistance design of structure.
- [2] IS: 2720(part-1)-1983 (Reaffirmed 2015): Preparation of soil sample
- [3] IS: 2720(part-2)-1973 (Reaffirmed 2015): Moisture Content
- [4] IS: 2720(part-3) (sec-1)-1980 (Reaffirmed 2016): Specific Gravity
- [5] IS: 2720(part-4)-1985 (Reaffirmed 2015): Grain Size Analysis
- [6] IS: 2720(part-5)-1985 (Reaffirmed 2015): Atterberg's Limits
- [7] IS: 2720(part-11)-1993 (Reaffirmed 2016): Triaxial Shear Strength
- [8] IS: 2720(part-13)-1986 (Reaffirmed 2016): Direct Shear Strength
- [9] IS: 2720(part-15)-1986 (Reaffirmed 2016): Consolidation Test

Consultant:	Geotechnical Investigation Report		Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	_	Haryana Rail Infrastructure Development Corporation Ltd

2 Geological Overview:

2.1 Introduction:

The area in the report lies within the district of Gurgaon of Haryana. The concerned region is a part of the survey of India toposheet No. 53H/04 and spanned between longitude 77°58′36″& 77°06′00″and latitude 28°14′0″ & 28°10′30″ (Figure 2.1). The area is 20km away from Gurgaon. The important towns in the area are Sohna, Gurgaon, Palwal. These towns are connected with important cities of the state and Delhi by metaled roads.

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Figure 2.1: District Map of Haryana.

Delhi Bombay National Highway (NH-6) passes through Gurgaon State Highway No 43 passes through Sohna. Gurgaon is a railway station on the Delhi Rewari section of the meter gauge line of the Northern Railway whereas Faridabad and Palwal are on Delhi Bombay broad gauge line. Most of the villages in the area are connected by all-weather metaled roads. The area has a semi-arid type of climate. Summer is extremely hot with the temperature up to 47°C. The winters are quite cold. The minimum temperature recorded in Gurgaon during

Co	onsultant:	Geotechnical Investigation Report		Client :
	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

1968-70 was 2.0°C. The related humidity is maximum in August (above 80%) and minimum in June (above 35%). In the month of November, the wind velocity in the morning remains about2.5km/hr. whereas in June it is generally 8 km/hr. The general wind direction is westerly. The summer monsoon starts at the end of June or early July and lasts up to September. Rainfall is generally restricted to this monsoon, though winter months also get some scanty rains.

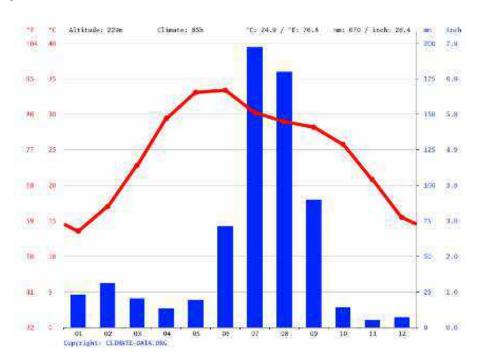


Figure 2.2: Graph showing month wise rainy days for Gurgaon district. (Climate-data.org).

The average annual rainfall is about 600 mm. The climatic condition of the area is much varied characterized by hot and moist sub-humid climate. It has mainly 4 seasons. The summer season is from March to Mid-June, the period from Mid-June to September is the Rainy season, October and November constitute the post-monsoon season, and winter is from December to February as shown in Figure 2.2. The best time to visit this district is during winter. Ministry of housing and urban affair, Government of India has done vulnerability mapping for Haryana state which includes multiple hazard zonation maps. The results are given below in Figure 2.3.

Consultant:		Geotechnical Investigation Report		Client :
S. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

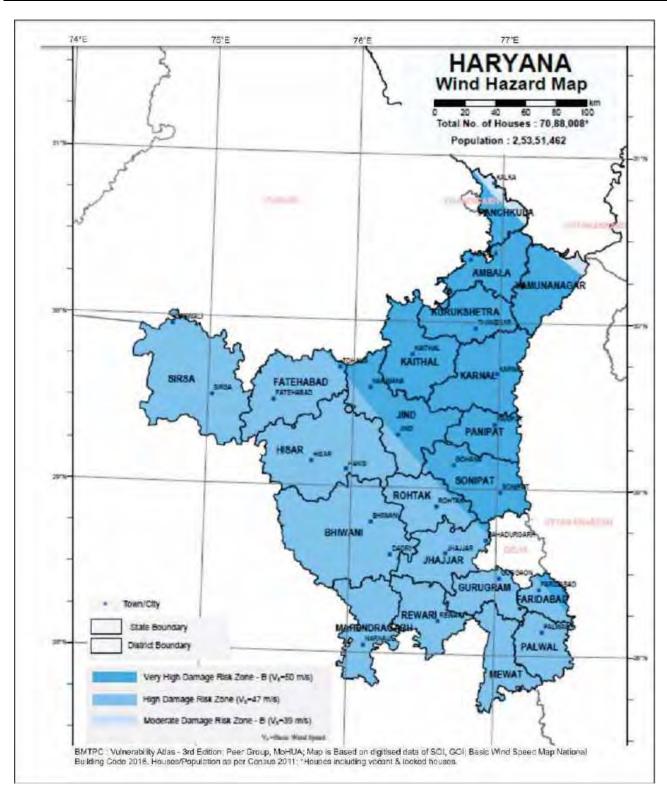


Figure 2.3: Wind Hazard map of Haryana (adopted from BMTPC.

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	•	Haryana Rail Infrastructure Development Corporation Ltd

2.2 Seismicity

According to National Center for Seismology the state of Haryana comprises three earthquake zone. The western part comes under zone II, the central part zone III and the eastern- south-eastern part in zone IV. The region around the site of construction comes under the zone IV of earthquake. Being within the earthquake zone IV the area of interest is at high risk with reference to the seismic activity. This region is liable to MSK VIII on Medvedev—Sponheuer—Karnik Scale, a macro seismic intensity scale or lower, and is classified as the High Damage Risk Zone. Map below shows the seismic zones of Haryana State (Figure 2.4).

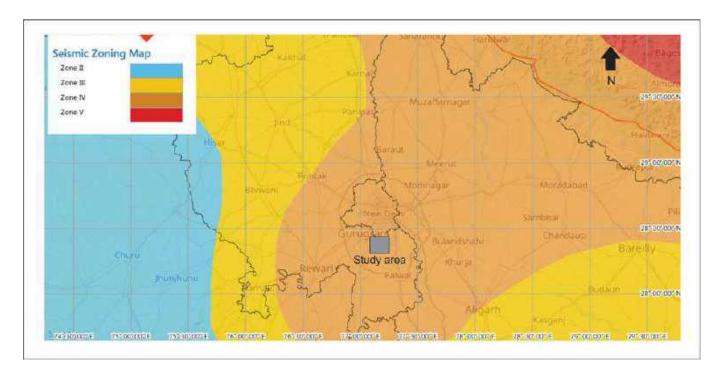


Figure 2.4: Seismic map of state Haryana (adopted from National Centre for seismology).

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	•	Haryana Rail Infrastructure Development Corporation Ltd

2.3 Regional Geology:

The rocks exposed in the area consist of Mesoproterozoic rocks of the North Delhi Fold belt which occur as long, linear, discontinuous chain of hills. The overall Delhi fold belt shows a NE-SW trend and extends from Gujrat (Deri- Ambaji) in the south to Delhi in the north. In the north and south the belt is overlain by Indo-Gangatic alluvium with sparse outcrop jutting out from the plain. Towards west it shows an unconformable contact with Marwar craton along a Phulad lineament and in the east the belt shows a faulted contact with Banded Gneissic Complex of pre-Delhi origin along Kaliguman lineament. The North Delhi Fold Belt has been divided into two groups by Heron (1935): the lower arenaceous Alwar Group and the upper argillaceous Use the "Insert Citation" button to add citations to this document.

Ajabgarh Group. The Alwar Group comprises arkosic schists, phyllites, quartzites and meta-conglomerates whereas, the Ajabgarh Group comprises calc-schists, biotite schists, calc-silicates and marbles.

The regional structure of Delhi fold belt is considered as a broad synclinorium having N to NNE trend (Heron 1953) with core occupied by Delhi group, within the broad synclinorium four generations of deformation (D1 – D4) (Figure 2.5) are seen in Delhi fold belt (Naha and Mohanty 1988). D1 and D2 are ubiquitous in all scales while D3 and D4 are seen only in some sectors. D1 folds are tight to isoclinal with a pervasive axial planar cleavage (S1). There are multiple occurrences of boudinage in D1 fold, which are parallel to axial planer cleavage (Naha et al.,1984). D2 folds ranges from open to isoclinal with vertical axial plane striking NNE -SSW to NE-SW. A crenulation cleavage (S2) is developed parallel to axial planes of the fold. D2 fold is coaxial with DF1 fold. Due to D2 various superposed folds have been developed in DFB, most common is Ramsay Type III fold (non-planar cylindrical) (Roy and Das 1985). DF3 folds are kink folds with sub horizontal axial planes. It has affected S1 and S2 cleavages and axial surfaces of DF1 and DF2 folds. At some places DF3 has conjugate axial plane striking NE-SW and SE-NW. It is formed by vertical compression (Naha and Mohanty 1988). Due to interference from D3 fold there is development of Ramsay Type II fold (non-planer non-cylindrical fold) in the DF1 and Ramsay Type-I fold (planer non-cylindrical fold) in DF2 (Roy and Das 1985).DF4 fold are

Consultant:	Geotechnical Investigation Report		Client :
5,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

upright chevron fold, having NW-SE striking axial plane. They are formed by horizontal compression in an NE-SW direction (Naha and Mohanty 1988).

The different phases of deformation have led to metamorphism ranging from greenschist to amphibolite facies.

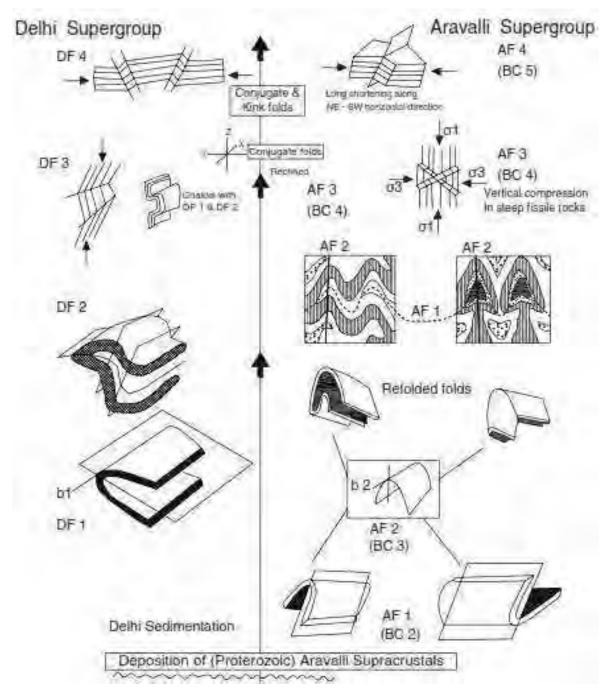


Figure 2.5: Regional structure of Delhi fold belt (Naha and Mohanty 1988).

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

3 PROJECT GEOLOGY

3.1 Local Site Geology:

The region around the site consists of metamorphosed arenaceous rocks of the Alwar group. The Lithology is dominated by Quartzites with some intercalations of phyllites near the southern portal.

The Quartzites are metasedimentary rocks that comprise greater than 80% quartz along with feldspar and mica minerals, the mineral grains show an equigranular interlocking texture.

The phyllites are low-grade metamorphic rocks, they have a marked fissility (a tendency to split into sheets or slabs) due to the parallel alignment of platy minerals; they have a sheen on their surfaces due to tiny plates of micas.

The quartzites near to surface showed high weathering and were highly friable and non-cohesive while as we move deeper (> 15 m) the quartzite becomes more resistive and less weathered. Quartz is a tectosilicate mineral that ranks 7 on the Mohr hardness scale, since it crystallizes later according to the Bowen reaction series it is also resistive to weathering. Feldspar on the other hand ranks 6 on the Mohr hardness scale and crystallizes earlier thus is prone to weathering.

In the southern part intercalation of phyllites/schist along with quartzite are observed.

3.2 Structural Study:

The compositional changes in quartzite beds defines the bedding in the area and the regional trend of bedding plane is NE-SW with a steep dip towards SE.

A superposed fold was observed at 28°12′33.57″, 77°02′57.08″. DF2 and DF3 deformation phases of Delhi group was observed in the area. DF1 is the prominent fold pattern which was super posed with DF2 folding phase. Signatures of later brittle shearing, possibly related to DF4 phase, was also observed near the proposed portal face. The fold showed Ramsay's Type III folding pattern i.e., nonplanar cylindrical (Figure 3.1). The fold

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

hinge showed a plunge of 20° towards 220. The Type III fold pattern in the rest of the Delhi system of rocks are result of superposition of DF2 over DF3 deformation. The portal face lies perpendicular to the axial plane of the fold. The earlier generation of fold is isoclinal in nature where both the limbs dip towards south.

Near the fold area some quartz tension gashes were observed. Gash veins open up when rock gets stretched due to shearing and the tension fractures forms oblique to the shear zone which is later filled with mineral precipitate. In the present area the gash veins indicate a dextral shearing.

Consultant:	Geotechnical Investigation Report		Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

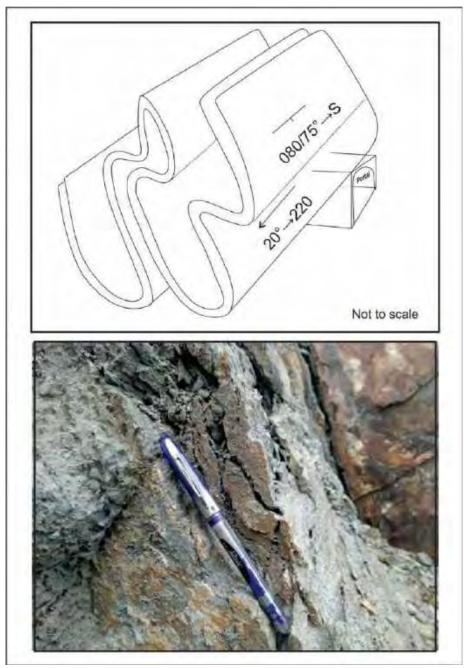


Figure 3.1: Superposed fold observed at 28 12' 33.57", 77 02'57.08"

At location 28° 12' 20.93", 77° 02' 40.50" another evidence of brittle-ductile shear zone was observed within the quartzite outcrop (Figure 3.2). Prominent en-echelon fractures were observed within the outcrop which were rotated to form a sigmoidal structure, the fractures were not filled with mineral precipitate. The shear plane was dipping towards NE with a normal slip where the eastern block was showing a downthrown movement and the

Consultant:	Geotechnical Investigation Report		Client :
S,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

western block an upthrown movement. The last phase, in the mode of brittle shearing, led to the DF4 deformation. The joints are also encountered persistently at places around the site (Figure 3.4, Figure 3.5).

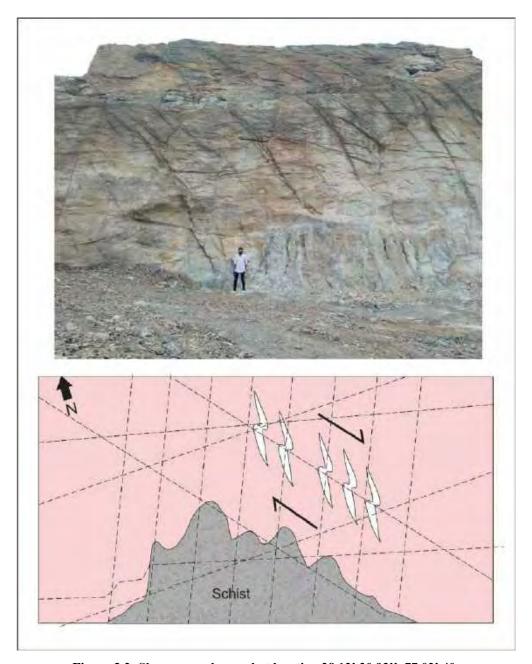


Figure 3.2: Shear zone observed at location 28 12' 20.93", 77 02' 40.

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

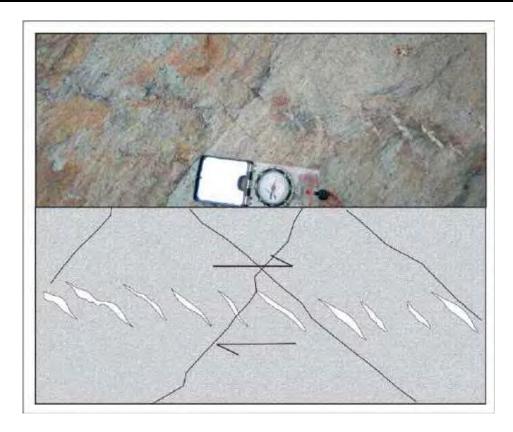


Figure 3.3: Gash veins showing a dextral slip.

Figure 3.4: Multiple joint sets observed throughout the area.

Consultant:	Geotechnical Investigation Report		Client :
5,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Figure 3.5: Multiple joint sets were observed throughout the area.

Orientation of the joints measured in field (Table 3.1) has been plotted on stereonet and contouring was done following Schimidt's 1% area rule (Figure 3.6). The diagram shows 6 distinct cluster of the poles to the joint planes, hence we designate the sets as J1, J2, J3, J4, J5, and J6 (Table 3.2).

Table 3.1: Orientation of the joints at places around the site.

S. NO	Strike	Dip	Dip Direction
1.	034	11	NW
2.	028	13	NW
3.	029	13	NW
4.	027	15	NW
5.	027	15	NW
6.	026	16	NW
7.	029	18	NW
8.	033	18	NW
9.	028	19	NW
10.	032	19	NW
11.	042	21	NW
12.	040	22	NW
13.	036	23	NW
14.	041	24	NW
15.	037	25	NW

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

S. NO	Strike	Dip	Dip Direction
16.	036	26	NW
17.	043	27	NW
18.	040	28	NW
19.	037	30	NW
20.	038	30	NW
21.	178	31	W
22.	172	32	W
23.	175	32	W
24.	170	34	W
25.	174	34	W
26.	172	36	W
27.	178	37	W
28.	172	38	W
29.	178	38	W
30.	178	39	W
31.	003	40	W
32.	006	40	W
33.	004	41	W
34.	005	43	W
35.	008	43	W
36.	119	45	NE
37.	008	46	W
38.	009	46	W
39.	119	46	NE
40.	008	47	W
41.	002	49	W
42.	116	49	NE
43.	007	50	W
44.	110	50	NE
45.	110	51	NE
46.	111	51	NE
47.	114	51	NE
48.	117	51	NE
49.	115	52	NE
50.	119	52	NE
51.	122	57	NE
52.	126	59	NE
53.	127	60	NE
54.	130	60	NE
55.	121	62	NE
56.	129	62	NE

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

S. NO	Strike	Dip	Dip Direction
57.	122	63	NE
58.	128	63	NE
59.	124	64	NE
60.	126	65	NE
61.	117	70	NE
62.	117	70	NE
63.	029	71	SE
64.	032	71	SE
65.	026	72	SE
66.	111	72	NE
67.	028	73	SE
68.	030	73	SE
69.	035	73	SE
70.	116	73	NE
71.	119	74	NE
72.	117	75	NE
73.	178	76	Е
74.	030	76	SE
75.	170	77	Е
76.	174	77	Е
77.	030	77	SE
78.	110	77	NE
79.	113	77	NE
80.	171	79	Е
81.	178	79	Е
82.	179	79	Е
83.	027	79	SE
84.	032	79	SE
85.	174	80	Е
86.	176	80	Е
87.	114	80	NE
88.	116	80	NE
89.	040	81	SE
90.	042	81	SE
91.	122	81	NE
92.	171	82	E
93.	175	82	Е
94.	045	82	SE
95.	126	82	NE
96.	039	83	SE
97.	122	83	NE

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

S. NO	Strike	Dip	Dip Direction
98.	125	83	NE
99.	125	83	NE
100.	005	84	Е
101.	038	84	SE
102.	001	85	Е
103.	008	85	Е
104.	129	85	NE
105.	124	86	NE
106.	127	86	NE
107.	002	87	Е
108.	006	87	Е
109.	037	87	SE
110.	042	87	SE
111.	127	87	NE
112.	009	88	Е
113.	002	89	Е
114.	043	89	SE
115.	130	89	NE
116.	001	90	Е
117.	036	90	SE
118.	040	90	SE
119.	006	91	Е
120.	007	93	Е
121.	045	82	SE
122.	126	82	NE
123.	039	83	SE
124.	122	83	NE
125.	130	89	NW

Consultant:	Geotechnical Investigation Report		Client :
5,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

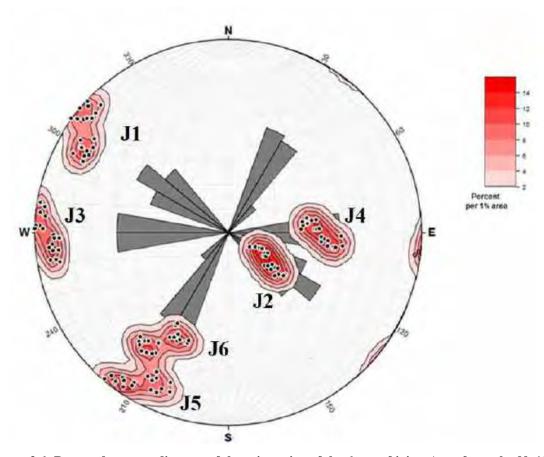


Figure 3.6: Rose and contour diagram of the orientation of the 6 sets of joints (no. of samples N=125)

Table 3.2: Details of joint sets.

Joint Set	Average Strike	Average True Dip amount	Average True Dip direction
J1	035	80	SE
J2	035	20	NW
J3	000	84	Е
J4	000	40	W
J5	300	55	NE
J6	300	80	NE

Consultant:	Geotechnical Investigation Report		Client :
5,M, CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

A detailed geological map in a scale 1:25000 (Figure 3.7) and in 1:2000 scale (Figure 3.8) showing all structural elements which includes faults, thrusts, shear zones, folds, joints, lithological boundaries along with finalized tunnel alignment, L-Section (Figure 3.9) along the hilly terrain (1:25000 H and 1:2500 V), Graphical representation of the distribution of RQD, Core Recovery, SPT N Values and Soil types along each boreholes intersecting the tunnel (Figure 3.10), magnified parts of the L section showing chainage wise variation in RMR and RQD values in rock portion and C and phi values in soil portion (Figure 3.11 to Figure 3.15) a detailed cross section of the portal face on the mountain front (Figure 3.16), cross-section of the exit end of the NATM structure in soil (Figure 3.17), and the cross section of the portal 2 in the cut and cover region (Figure 3.18) are given below;

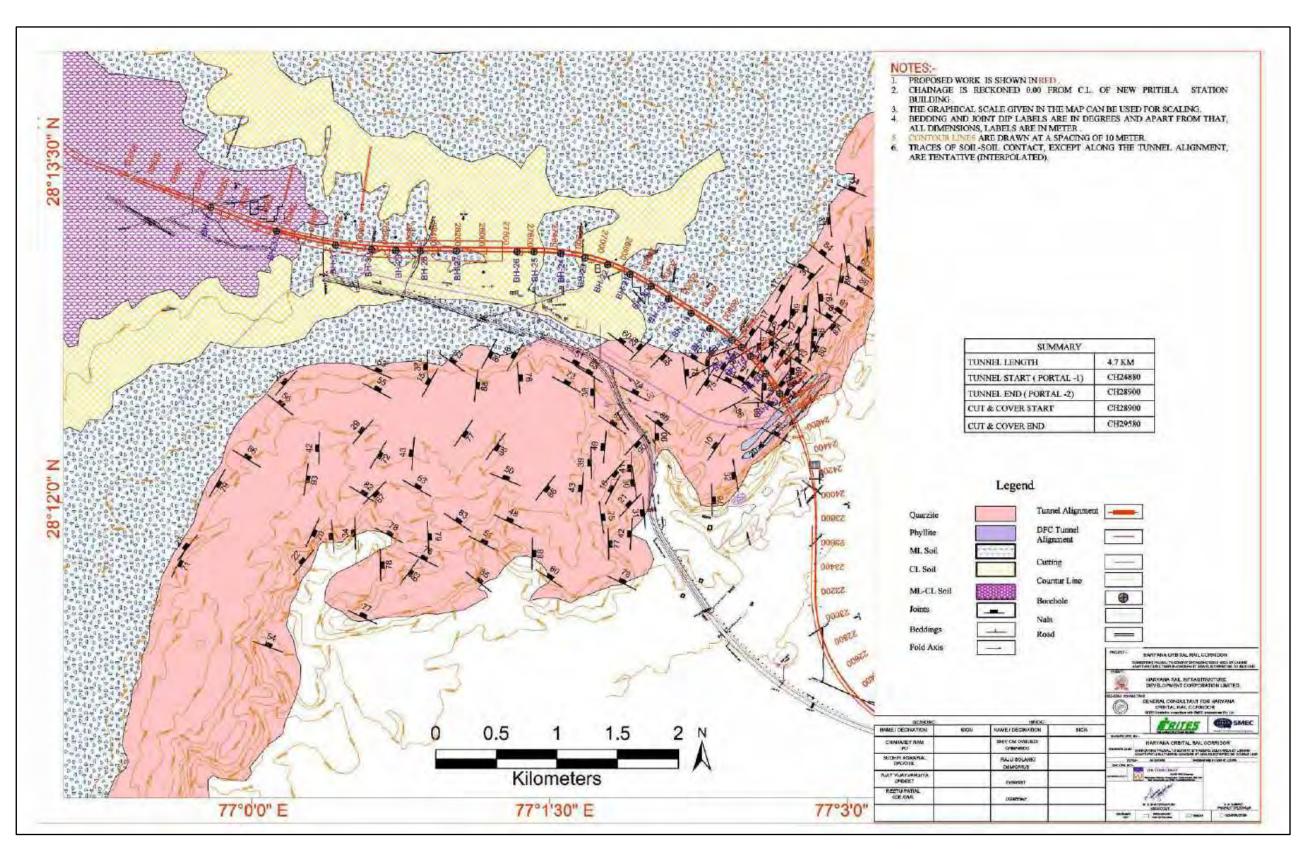


Figure 3.7: Geological map of the area at 1:25000 scale.

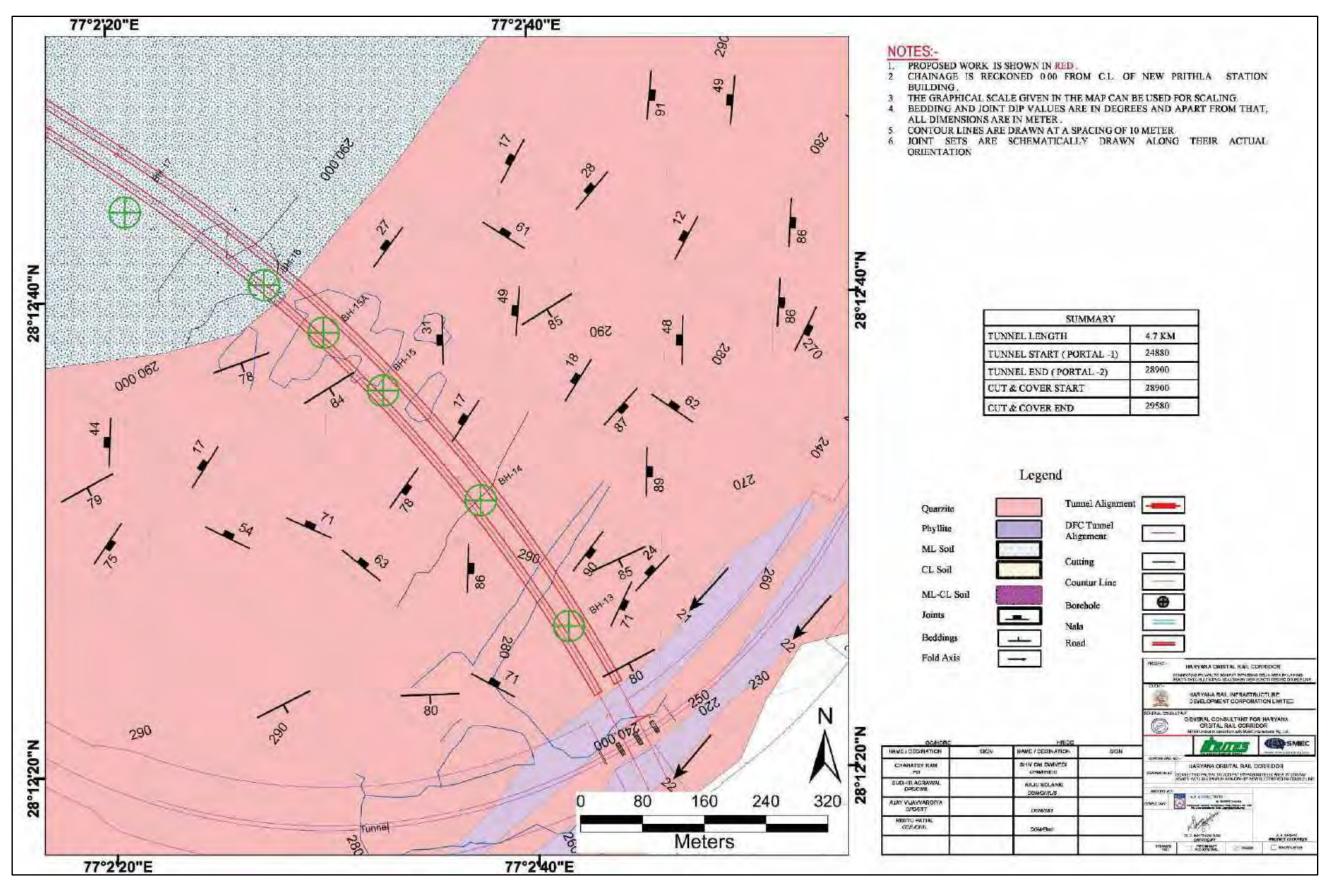


Figure 3.8: Detailed structural map of the major rocky area at 1:2000 scale. Joint sets are schematically drawn with their actual orientation. Average spacing between the joints are as follows J_1 : 300 cm, J_2 :252.78cm, J_3 :160cm, J_4 :80cm, J_5 :32cm, J_6 :100cm.

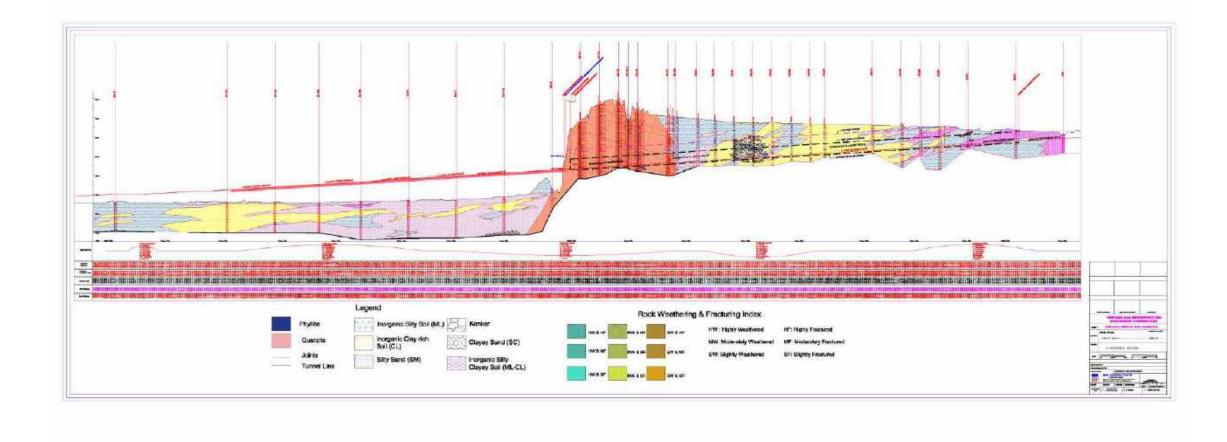


Figure 3.9: L-Section along the tunnel alignment (1:25000 H and 1:2500 V). Joint sets are schematically drawn with their actual orientation.

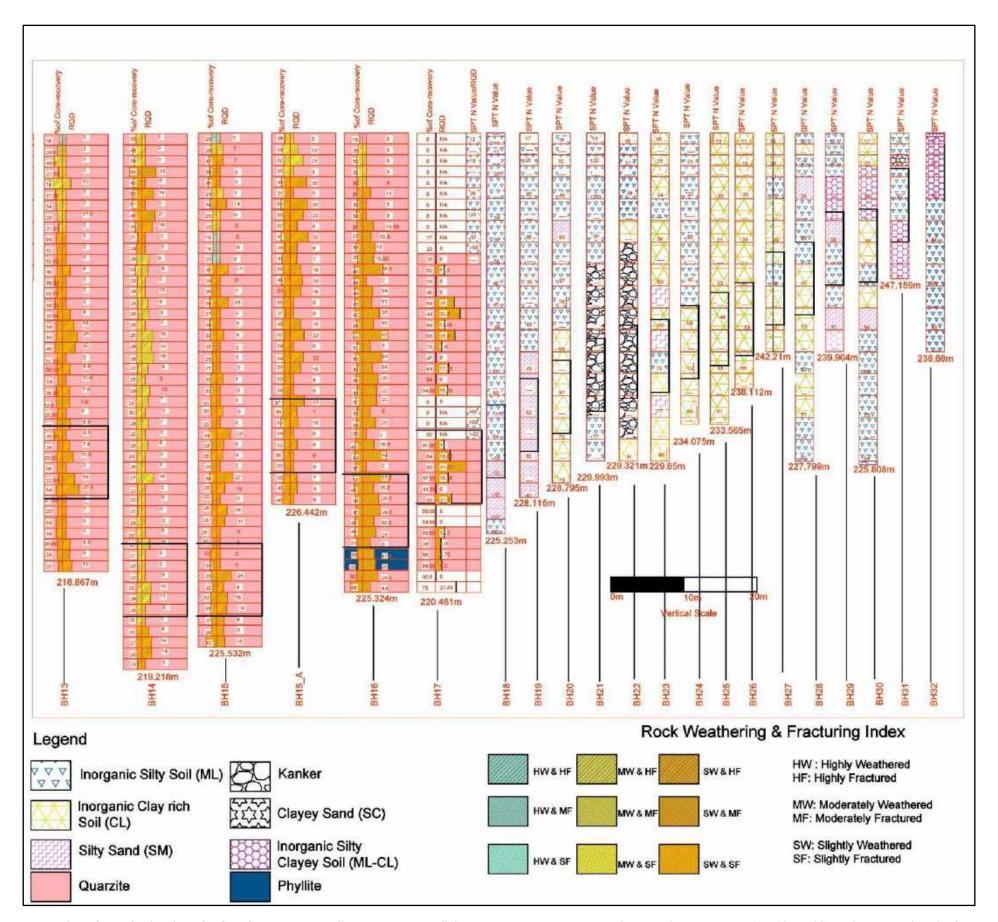


Figure 3.10: Graphical representation of the distribution of RQD, Core Recovery, SPTN Values and Soil types along each boreholes intersecting the tunnel (BH13-BH32). Thick black lines indicate the position of the tunnel.

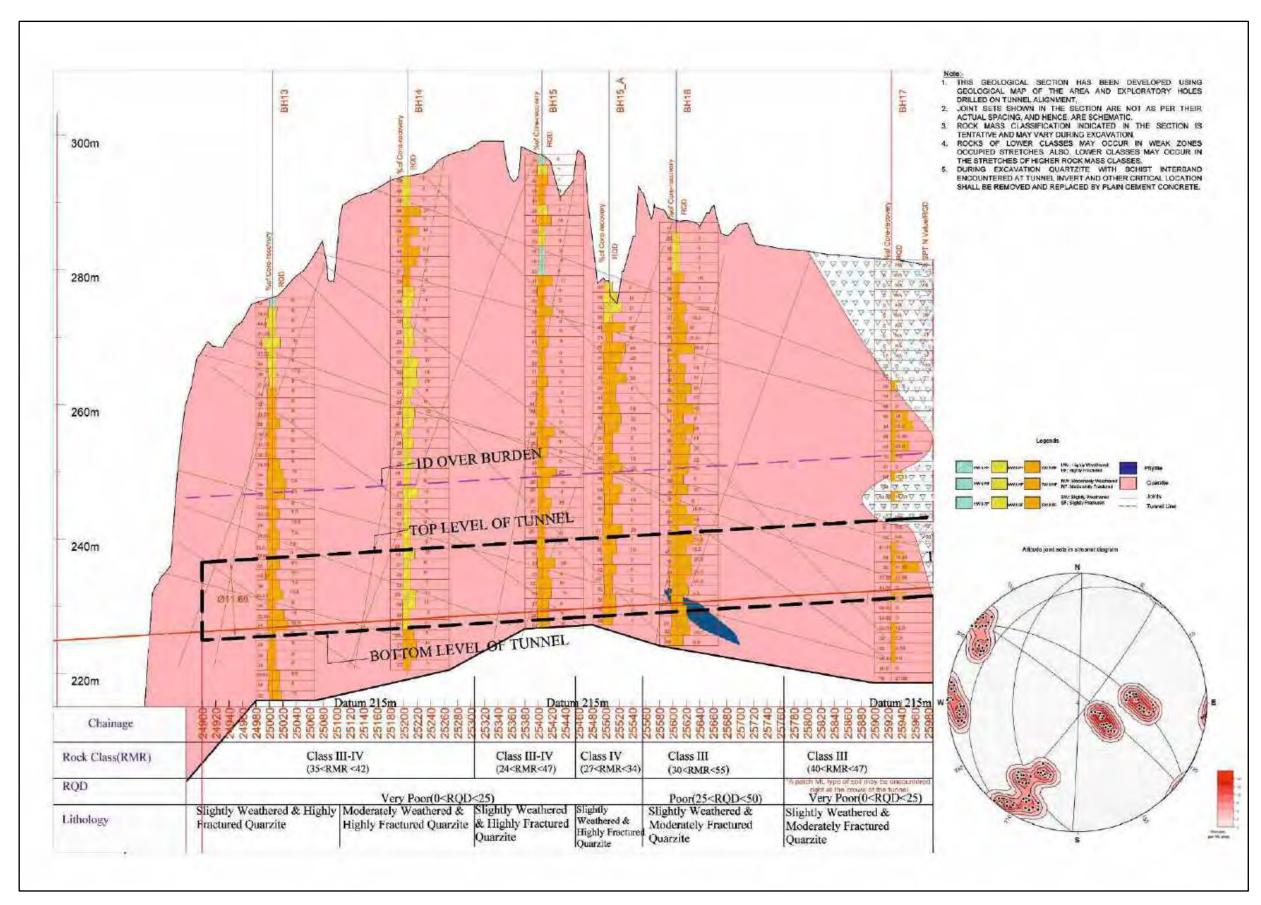


Figure 3.11: Chainage-wise variation in RQD and RMR (Samples from 2D depth considered only).

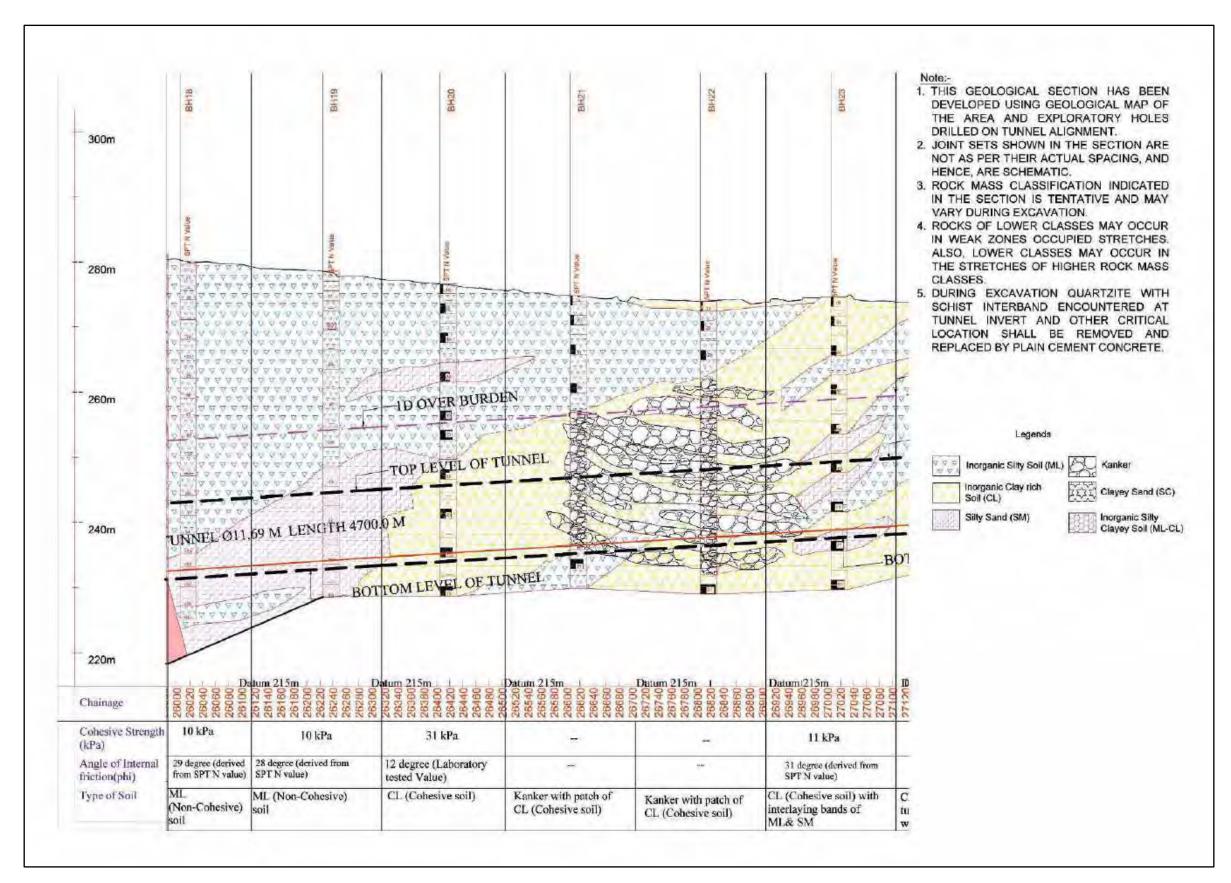


Figure 3.12: Chainage-wise variation in C and ϕ . (Samples from 2D depth considered only).

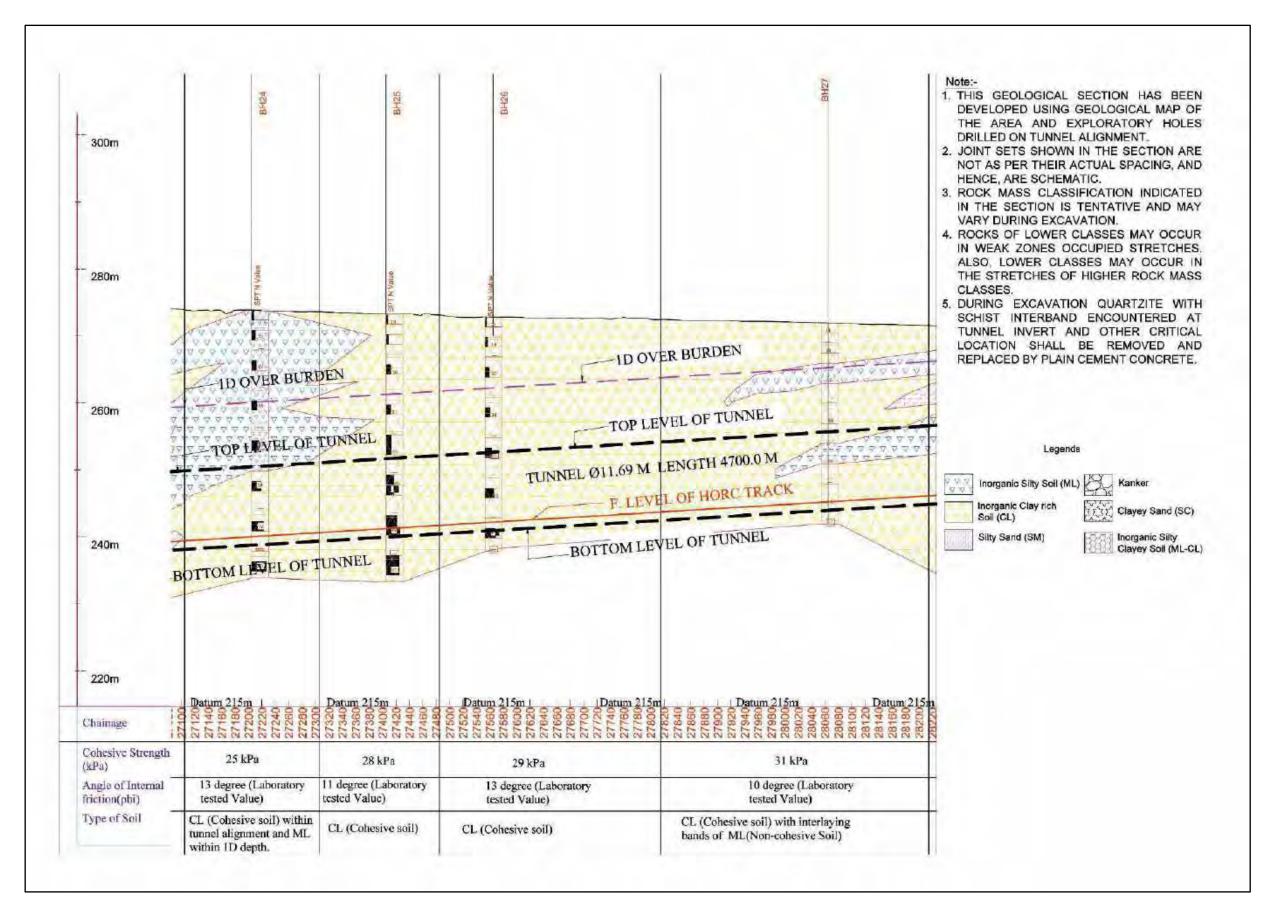


Figure 3.13: Chainage-wise variation in C and φ. (Samples from 2D depth considered only).

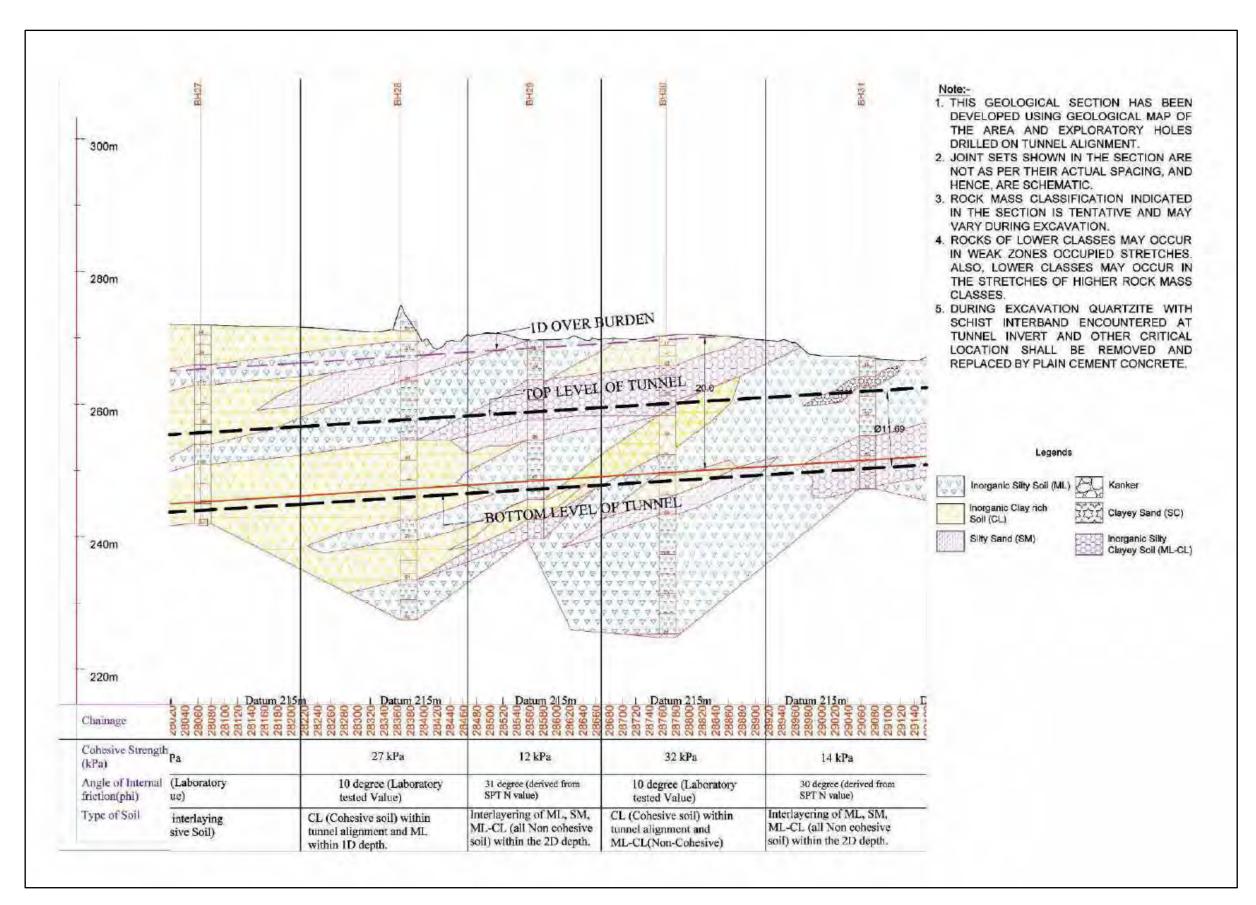


Figure 3.14: Chainage-wise variation in C and ϕ . (Samples from 2D depth considered only).

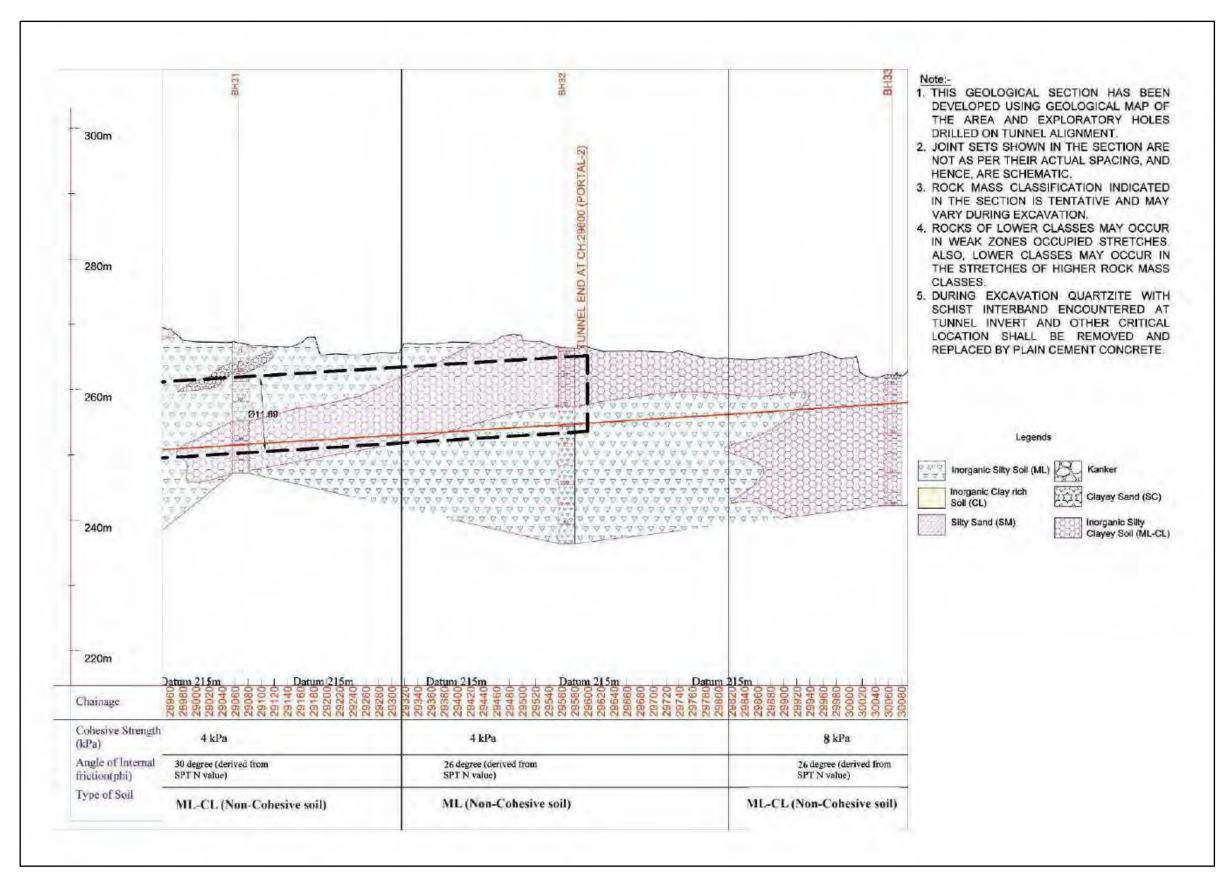


Figure 3.15: Chainage-wise variation in C and ϕ values, along the cut & cover region, for the strata below formation level.

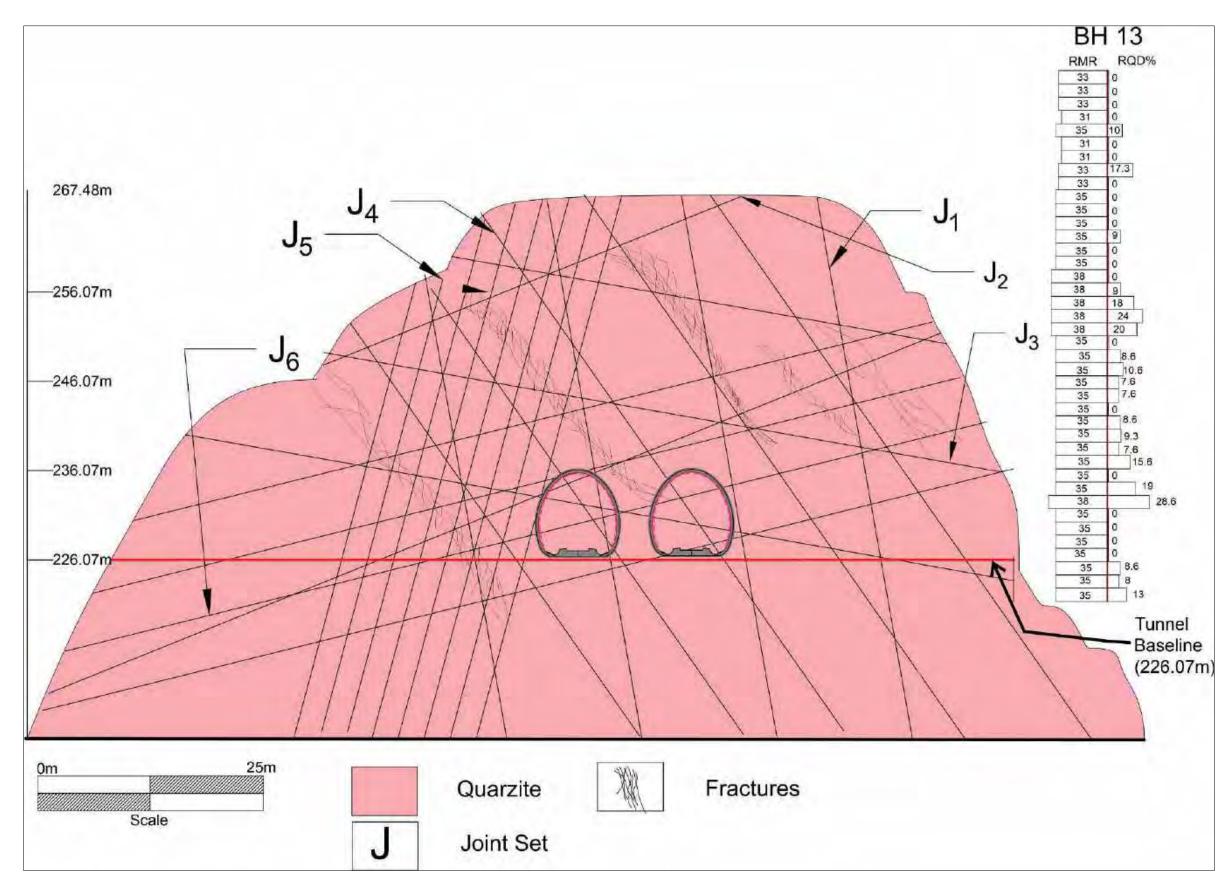


Figure 3.16: Detailed cross section of the Portal-I, on the mountain front. Joint sets are schematically drawn maintaining their actual orientation. Average spacing between the joints are as follows J_1 : 300 cm, J_2 :252.78cm, J_3 :160cm, J_4 :80cm, J_5 :32cm, J_6 :100cm.

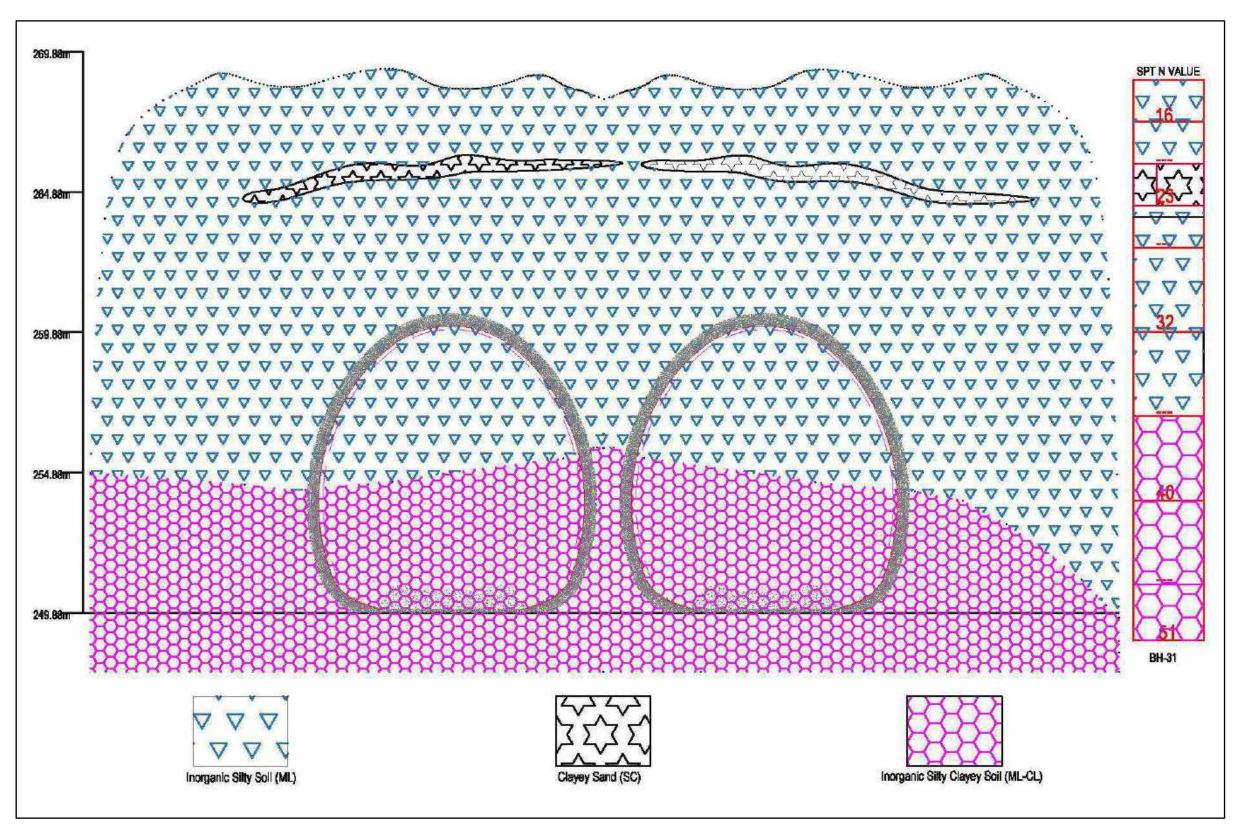


Figure 3.17: Detailed lithological cross section at the end of NATM Structure in soil (CH 28900).

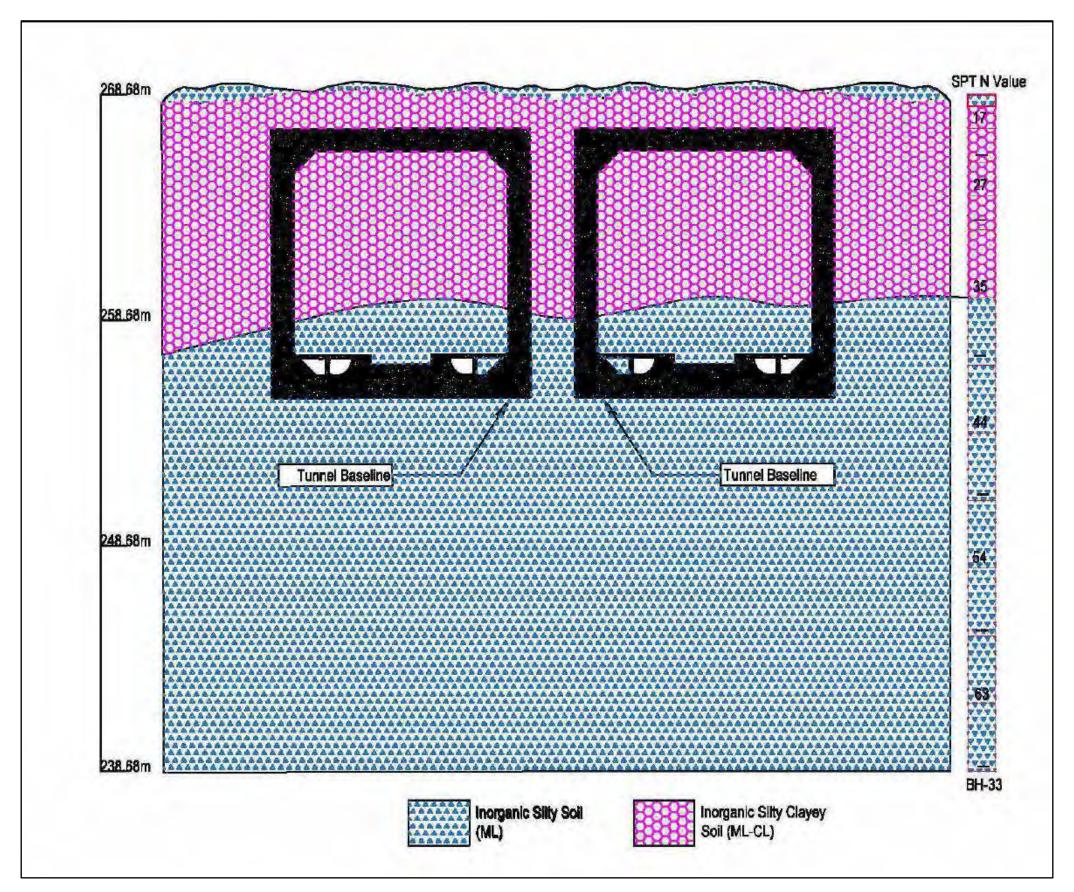


Figure 3.18: Cut and Cover structure at the end of tunnel – Portal II (CH29600).

Consultant:		Geotechnical In	vestigation Report	Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Table 3.3: Abstract of Safe Bearing Pressure for cut and cover portion (BH-32 & 33).

Location	Depth from N.G.L in m.	Type of Soil	Field SPT value	Group of sample	Cohesion (C) in KPa	Angle of internal friction (\$\phi\$))		Net Safe Bearing Capacity in T/m ²	Settlement in mm	Safe Bearing Pressure for 25 mm settlement in T/m ²	Recom mended SBC in T/m ²
BH-32	21.0	S.P.T	N>50	ML	4	26	31	1100	709	39.0	35
B11-32	24.0	S.P.T	N>50	IVIL	4	20	31	1101	793	35.0	35
BH-33	20.0	SPT	N>30	ML- CL	8	26	27.6	262	245	27	27

Consultant:		Geotechnical In	vestigation Report	Client :
	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4 GEOTECHNICAL INVESTIGATION OF ROCK MASS:

Consultant:	Geotechnical In	nvestigation Report	Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Based on the available information from Geotechnical Report, geotechnical investigations have been carried out at different locations along the tunnel alignment and at stations.

4.1 Summary of the Boreholes within ROCK MASS:

The boreholes relevant to this project are mentioned in table below (Table 4.1).

Table 4.1: Details of Boreholes drilled for the project along the tunnel line.

BH No.	Chainage No.	Ground Elevation, RL (m)	Formation Level as Per Alt.2A	Total depth (m)
BH-13	25000	276.867	226.801	60
BH-14	25195	294.218	228.013	75
BH-15	25380	295.532	229.225	70
BH-15A	25488	276.442	229.833	50
BH-16	25586	287.324	230.437	62
BH-17	25785	282.461	231.650	62

4.2 Field Tests for ROCK MASS:

Field tests are conducted in boreholes that are taken along the proposed tunnel alignment and the station locations. The following table shows the summary of field tests conducted in Rock mass

Table 4.2: Details of test conducted at site.

Field Tests	Type of Test
In Rock	Core recovery and RQD
	Permeability Test

4.3 Field Test Result for ROCK MASS:

For the rock masses, during the drilling activity the percentage of core recovery and RQD has been calculated. These on field results has been summarized in Table 4.3.

Consultant:		Geotechnical Investigation Report		Client :
8. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

Table 4.3: Result for the field tests.

BH No.	Chainage	Ground	Don'th (m)		For Ro	ock
BH NO.	No.	Elevation, RL (m)	Depth (m)	% of Core recovery	RQD %	Avg. RMR from 2D Depth (*refer to section 5.5.2)
BH-13	25000	276.867	0.5-60	30.96	6.5	38
BH-14	25195	294.218	0.5-75	28.94	5.9	37
BH-15	25380	295.532	0.5-70	28.91	5.91	34
BH-15A	25488	276.442	0.5-50	35.79	10.67	29
BH-16	25586	287.324	0.5-62	36.52	16.02	41
BH-17	25785	282.461	0.5-62	30.02	10.98	42

The packer test method was carried out as per IS 5529 (Part 2): 2006 to determine the permeability of the rock strata at site presented in Table 4.4.

Table 4.4: Result for permeability tests

BH No.	Packer test	t section 1	Lugeon	geon Packer test section 2		Lugeon
	Upper part (m)	Lower part (m)	Value	Upper part (m)	Lower part (m)	Value
BH-13	36	39	30.20	48	51	25.62
BH-14	54	57	24.46	63	66	21.88
BG-15	55	58	24.34	64	67	18.42
BH-16	44	47	27.38	56	59	21.14

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.4 <u>Laboratory Tests:</u>

Laboratory tests were also carried out on rock samples, the details of different laboratory tests conducted as part of the project are given in the table below (Table 4.5)

Table 4.5: The laboratory tests conducted for rock.

	1. Unconfined Compressive Strength,
	2. Point Load Index Test
	3. Tensile Strength
	4. Specific Gravity
Laboratory tasts conducted for roals	5. Modulus of elasticity
Laboratory tests conducted for rock	6. Water absorption
	7. Poisons' ratio
	8. Triaxial Test
	9. Hardness test
	10. Abrasive test

4.5 <u>Laboratory Test Result for Rock Mass:</u>

This section comprises depth wise results of the tests conducted in laboratory for rock masses in accordance with relevant standard codes of practices. Multiple tests in laboratory (Table 4.5) are adopted to ascertain the different essential characteristics of sub-surface using field samples obtained in during field investigations and borehole drilling. The tests as under have been conducted to ascertain the parameters indicated in the test. The findings of these test are required for use in relevant engineering designs and summarized in following tables (Table 6.1).

Representative core samples have been taken from the boreholes along the tunnel alignment. The samples were properly labelled and packed carefully and sent NABL accredited laboratory for determining the physico-mechanical engineering properties as per Indian standardized regulation. Summary of results from the laboratory testing has been graphically presented below.

Consulta	nt:	Geotechnical In	Client :	
	M. CONSULTANTS HUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.1 <u>Uniaxial Compressive Strength</u>

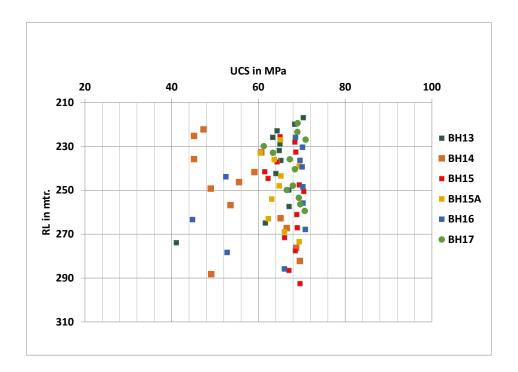


Figure 4.1: Unconfined Compressive Strength (UCS) of rock mass from entire borehole length vs RL (Refer to Annexure C in Geotechnical Report for detail).

To make recommendation related to the engineering property of the surrounding rock material, which is going to directly influence the tunnel built, samples from 2D has been considered. Pareto chart has been prepared to identify the most frequent and categorically influential data set out of the scattered values. It is based on 80/20 rule, i.e., "Vital few and trivial many" principle. The idea is that the few identified vital values will always statistically dominate over many.

Consultant:		Geotechnical In	vestigation Report	Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

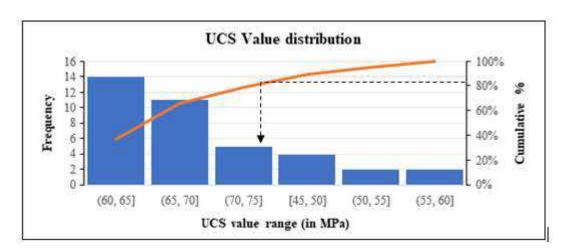


Figure 4.2: Pareto Chart showing recommended UCS value for the rock mass from 2D depth. As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the UCS value ranging 60-75 MPa. For safer construction the lower value of the range **60 MPa** is recommended as UCS value for the rock mass.

4.5.2 <u>Assessment of Rock Mass Rating (RMR):</u>

The outcrops encountered along the stretch of the alignment in this project is homogenously Quartzite. The classification of rock types with Rock Mass Rating (RMR) is done based on RQD%, Uniaxial compressive strength of rock material, spacing of discontinuities/joints, Smoothness, Infilling, Alteration/weathering along the discontinuity/joints and ground water condition and borehole wise average index values are tabulated below (For detailed result refer Annexure from Geotechnical Report on this project). Based on the results the rock mass has been broadly classified as **CLASS IV** (**Poor Rock Mass**). However, in some of the cases, the RMR value being close to 40, it may be considered as Class III.

Q tunnelling index was also evaluated and the rock mass were found to be in same "POOR ROCK MASS" category. However, accessing Q parameters from boreholes, instead of excavated wall, is considerably subjective and unprecise. Therefore, the Q parameters has not been used for recommending the tunnel support.

Consultant:		Geotechnical In	vestigation Report	Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

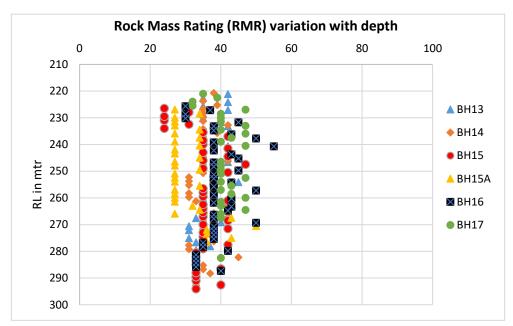


Figure 4.3: Graphical representation of RMR of rock mass from entire borehole length with depth. (Refer to Annexure A in Geotechnical Report for detail).

RMR value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

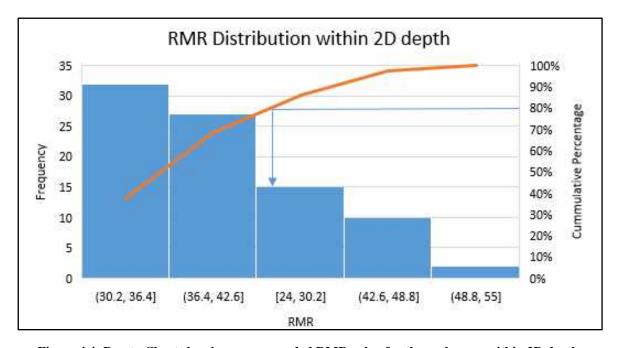


Figure 4.4: Pareto Chart showing recommended RMR value for the rock mass within 2D depth.

Consultant:		Geotechnical In	vestigation Report	Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the RMR value ranging 24-43, only 20% data has RMR value >40. Therefore, the entire rock mass up to 2D height from the formation level statistically belong to "CLASS IV". Hence, as per Bieniawski, 1989, systematic bolts 4-5m long, spaced 1-1.5 m in crown and walls with wire mesh, 100-150 mm shotcrete in crown and 100mm shotcrete in sides, light to medium steel ribs spaced 1.5 m is recommended as tunnel support. However, along some chainage interval the support system of Class III may be used by the discretion of the design engineer.

**For chainage wise variation in RMR value refer to Figure 3.11.

Consultant:	Geotechnical In	vestigation Report	Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.3 Point Load Index:

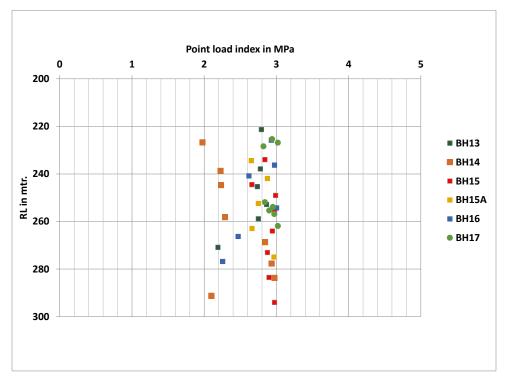


Figure 4.5:Point Load Index (PLI) of rock mass from entire borehole length vs RL. (Refer to Annexure E in Geotechnical Report for detail).

PLI value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

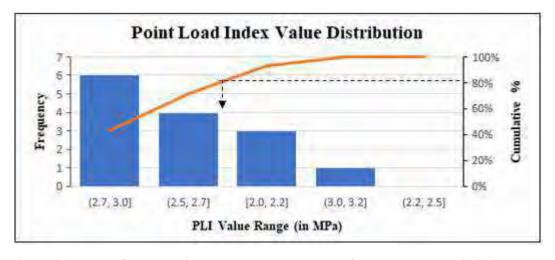


Figure 4.6: Pareto Chart showing recommended PLI value for the rock mass within 2D depth.

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the PLI values are ranging 2.5 to 3.0 MPa. For safer construction the lower value of the range **2.5 MPa** is recommended as PLI value for the rock mass.

Consultant:	Geotechnical In	vestigation Report	Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.4 Tensile Strength:

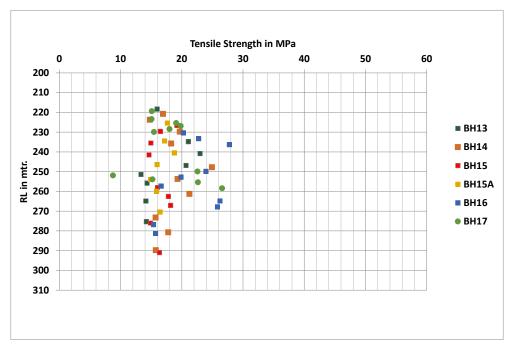


Figure 4.7:Tensile Strength of rock mass from entire borehole length vs RL. (Refer to Annexure B in Geotechnical Report for detail).

Tensile strength value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

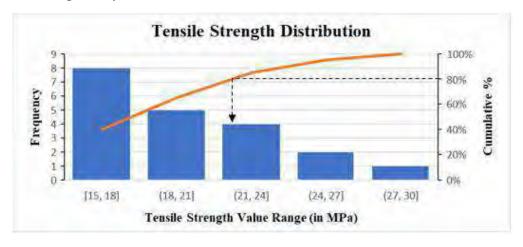


Figure 4.8: Pareto Chart showing recommended tensile strength value for the rock mass within 2D depth.

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the Tensile strength value ranging 15-21 MPa. For safer construction the lower value of the range **15 MPa** is recommended as Tensile Strength value for the rock mass.

Consultant:	Geotechnical In	vestigation Report	Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.5 Modulus of Elasticity:

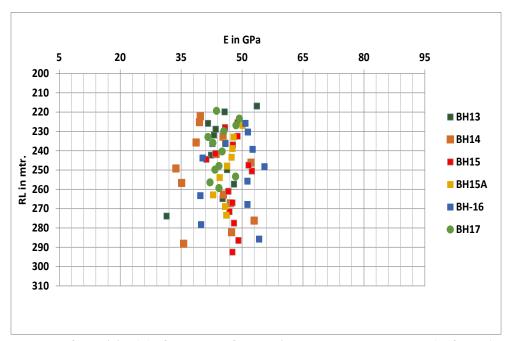


Figure 4.9: Modulus of Elasticity (E) of rock mass from entire borehole length vs RL. (Refer to Annexure F in Geotechnical Report for detail).

Modulus of Elasticity value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

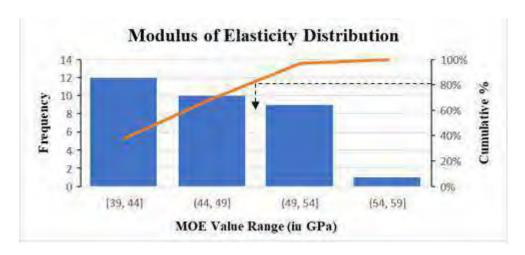


Figure 4.10: Pareto Chart showing recommended Modulus of Elasticity (E) value for the rock mass within 2D depth.

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the Modulus of Elasticity value ranging 39-49 GPa. For safer construction the lower value of the range **39 GPa** is recommended as Modulus of Elasticity value for the rock mass.

Consultant:		Geotechnical In	vestigation Report	Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

4.5.6 Poison's ratio:

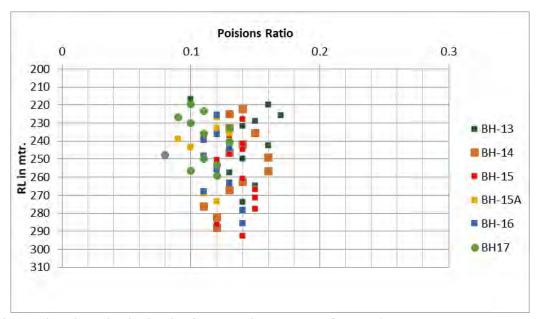


Figure 4.11: Poisson's Ratio distribution for the entire rock mass from entire borehole length vs RL. (Refer to Annexure F in Geotechnical Report for detail).

Poison's ratio value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

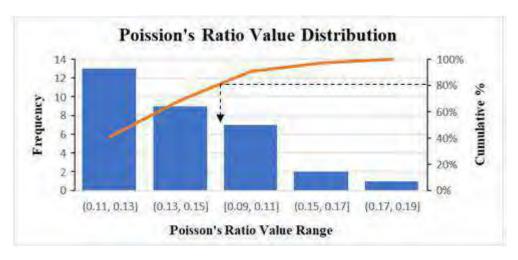


Figure 4.12: Pareto Chart showing recommended Poisson's Ratio value for the rock mass within 2D depth.

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the Tensile strength value ranging 0.11-0.15. For safer construction the higher value of the range **0.15** is recommended as Poisson's Ratio value for the rock mass.

Consultant:	Geotechnical In	vestigation Report	Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.7 Hardness:

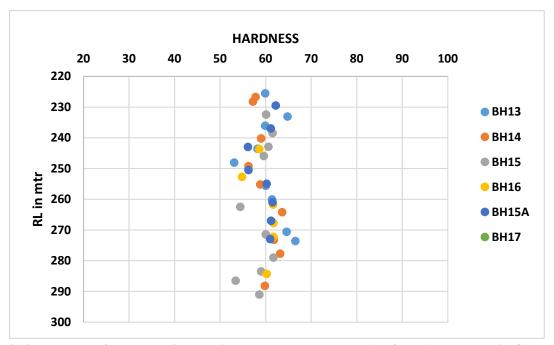


Figure 4.13: Hardness of rock mass from entire borehole length vs RL. (Refer to Annexure H in Geotechnical Report for detail).

Hardness value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

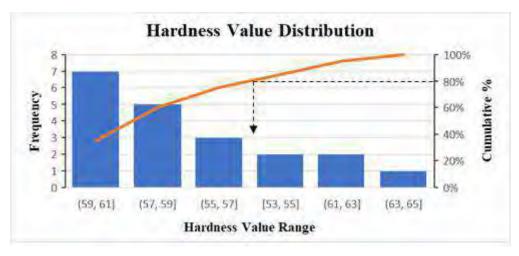


Figure 4.14: Pareto Chart showing recommended Hardness value for the rock mass within 2D depth.

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the Hardness value ranging 55-61. For safer construction the lower value of the range **55** is recommended as Hardness value for the rock mass.

Consultant:	Geotechnical In	vestigation Report	Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.8 Abrasive Index:

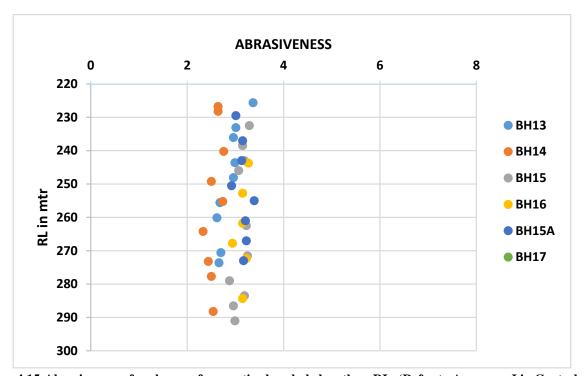


Figure 4.15: Abrasiveness of rock mass from entire borehole length vs RL. (Refer to Annexure I in Geotechnical Report for detail).

Abrasive Index value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

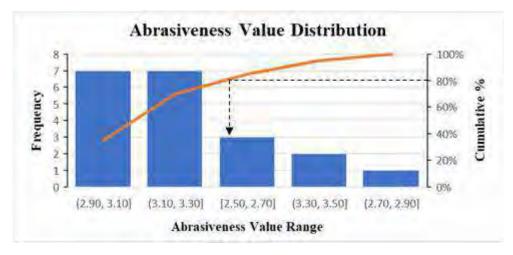


Figure 4.16: Pareto Chart showing recommended Abrasiveness index value for the rock mass within 2D depth.

As shown in the *Pareto Chart* above, 80% of the total collected samples from 2D depth has the Hardness value ranging 2.50-3.30. For safer construction the higher value of the range **3.30** is recommended as Abrasiveness index value for the rock mass.

Consultant:		Geotechnical In	vestigation Report	Client :
8. M. C.	S.M. CONSULTANTS BHUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

4.5.9 Angle of Internal Friction (ϕ):

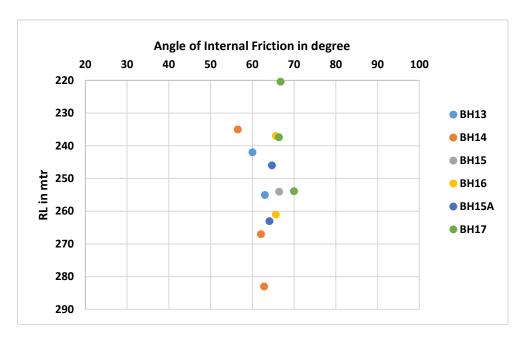


Figure 4.17: Angle of internal friction of rock mass from entire borehole length vs RL (Refer to Annexure G in Geotechnical Report for detail).

Angle of Internal Friction (ϕ) value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

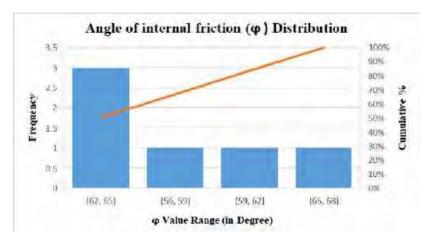


Figure 4.18: Pareto Chart showing recommended angle of internal friction value for the rock mass within 2D depth. (The straight cumulative frequency curve, in orange, indicates that all of the classes contribute significantly. Therefore, entire range of the population needs to be considered.)

Laboratory tested angle of internal friction value for the rock mass samples from 2D depth are quite scattered ranges between 55° - 65° . For safer construction the Lower value of the range 55° is recommended as angle of internal friction value for the rock mass.

Consultant:	Geotechnical In	vestigation Report	Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.10 Cohesion:

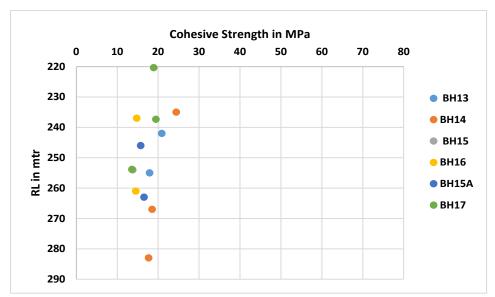


Figure 4.19: Cohesive strength of rock mass from entire borehole length vs RL (Refer to Annexure F in Geotechnical Report for detail).

Cohesion value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

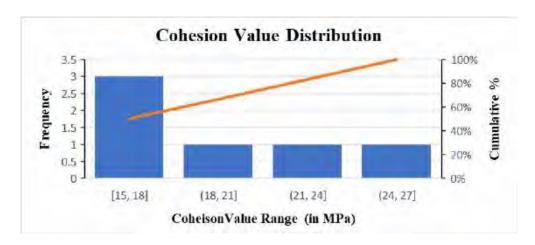


Figure 4.20: Pareto Chart showing recommended Cohesion value for the rock mass within 2D depth. (The straight cumulative frequency curve, in orange, indicates that all of the classes contribute significantly. Therefore, entire range of the population needs to be considered.)

Laboratory tested cohesion value for the rock mass sample from 2D depth are quite scattered ranges between 15-25 MPa. For safer construction the Lower value of the range **15 MPa** is recommended as Cohesion value for the rock mass.

Consultant:	Geotechnical In	vestigation Report	Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

4.5.11 Lugen Value:

Lugen value has been recommended using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.



Figure 4.21: Pareto Chart showing recommended Lugeon value for the rock mass within 2D depth

As shown in the *Pareto Chart* above, 80% of the total collected samples has the Packer test Lugeon value ranging 18.4-28.4. For safer construction the higher value of the range 28.4 is recommended as Lugeon value for the rock mass.

4.5.12 Wet Density:

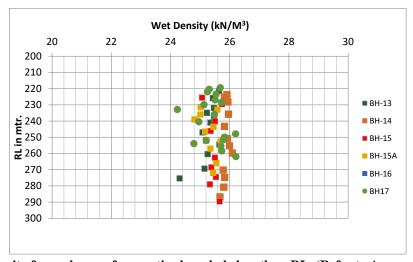


Figure 4.22: Wet Density for rock mass from entire bore hole length vs RL. (Refer to Annexure D in Geotechnical Report for detail).

Wet density value being clustered between a maximum of 26.52 kN/m^3 and minimum of 24.23 kN/m^3 , we can safely recommend the average value 25.55 kN/m^3 as the representative of the entire rock mass.

Consultant:	Geotechnical Ir	vestigation Report	Client :
S.M. CONSULTA		Report No.	Haryana Rail Infrastructure
BHUBANESWA		SMC/2050	Development Corporation Ltd

4.6 Petrographic Test:

Petrographic test performed to study the mineralogical, textural and micro-structural property of rock. The rock samples are cut up to 30-micron size and their optical properties are observed. In the present test Grain size analysis is done to study the textural property of rock and the relative abundance of minerals are calculated to study the chemical and mineralogical property of the rock.

Quartz is the most abundant mineral (mostly $94\% \pm 5\%$) found in most of the samples from the drillhole and Feldspar followed by Mica is present as accessory minerals. Borehole BH-16 shows an abrupt compositional change with depth. Abundance of mica raises steeply with depth, from the accessory mineral of 2% volume at 46.5m to second most abundant mineral (after Quartz with volume 55%) with 27% volume at 52m depth. Garnet with volume of 8% is also found at 52m depth of same borehole. Grain size analysis of the samples from all the boreholes exhibit a negatively skewed distribution of mineral grains in the sample mostly with a mean radius of 0.3 mm.

*** All the recommended values for different rock parameters are tabulated in Table 6.1, Chapter-6: Conclusion and Recommendations.

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

5 GEOTECHNICAL INVESTIGATION OF SOIL MASS:

Consulta	ınt:	Geotechnical Investigation Report		Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

Soil mass encountered along the tunnel alignment has been categorised in two group i.e., 1) Noncohesive Soil comprising Silty Sand (SM) and Inorganic Silt (ML) and 2) Cohesive Soil comprising Inorganic clay (CL). The values for the engineering property of soil have been interpretated categorically from the pareto chart presented below. Based on the available information from Geotechnical Report, geotechnical investigations have been carried out at different locations along the tunnel alignment and at stations.

5.1 Summary of the Boreholes within SOIL:

The boreholes relevant to this project are mentioned in table below Table 5.1.

Table 5.1: Details of Boreholes drilled for the project along the tunnel line within SOIL.

BH No.	Chainage No.	Ground Elevation, RL (m)	Formation Level as Per Alt.2A	Total depth (m)
BH-18	25990	280.253	232.939	55
BH-19	26210	278.116	234.379	50
BH-20	26387	276.795	235.522	48
BH-21	26587	274.993	236.734	45
BH-22	26787	274.321	237.946	45
BH-23	26980	274.85	239.158	45
BH-24	27187	274.075	240.370	40
BH-25	27410	273.565	241.582	40
BH-26	27550	273.112	242.588	35
BH-27	28050	272.210	245.878	30
BH-28	28350	272.799	247.851	45

Consultant:	Geotechnical Investigation Report		Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

BH No.	Chainage No.	nainage No. Ground Elevation, RL (m) Formation Level as Per Alt.2A		Total depth (m)
BH-29	28550	269.964	249.134	30
BH-30	28750	270.808	250.384	45
BH-31	29050	267.159	252.259	20
BH-32	29550	266.684	255.384	30
BH-33	30125	265.581	258.588	20

5.2 Field Tests for SOIL:

Field tests are conducted in boreholes that are taken along the proposed tunnel alignment and the station locations. The following table shows the summary of field tests conducted in Soil & Rock as part of the

Field Tests	Type of Test
In Soil	Standard Penetration Test

5.3 Laboratory Tests for SOIL:

Laboratory tests were also carried out on soil and rock samples, the details of different laboratory tests conducted as part of the project are given in the table below

Table 5.2: Details of laboratory test conducted for soil.

Sl. No.	Laboratory tests	IS Codes
1	Preparation of soil sample	IS: 2720(part-1)-1983 (Reaffirmed 2015)
2	Moisture Content	IS: 2720(part-2)-1973 (Reaffirmed 2015)
3	Specific Gravity	IS: 2720(part-3)(sec-1)-1980 (Reaffirmed 2016)
4	Grain Size Analysis	IS: 2720(part-4)-1985 (Reaffirmed 2015)
5	Atterberg's Limits	IS: 2720(part-5)-1985 (Reaffirmed 2015)
6	Bulk Density	
7	Triaxial Shear Strength	IS: 2720(part-11)-1993 (Reaffirmed 2016)
8	Direct Shear Strength	IS: 2720(part-13)-1986 (Reaffirmed 2016)
9	Consolidation Test	IS: 2720(part-15)-1986 (Reaffirmed 2016)

Con	sultant:	Geotechnical Investigation Report		Client :
	S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

5.4 Laboratory Test Result of SOIL:

This section comprises depth wise results of the tests conducted in laboratory for soil masses in accordance with relevant standard codes of practices. Multiple tests in laboratory (Table 5.2)are adopted to ascertain the different essential characteristics of sub-surface using field samples obtained in during field investigations and borehole drilling. The tests as under have been conducted to ascertain the parameters indicated in the test.

Representative core samples have been taken from the boreholes (BH18-BH33) along the tunnel alignment. The samples were properly labelled and packed carefully and sent NABL accredited laboratory for determining the physico-mechanical engineering properties as per Indian standardized regulation. Summary of results from the laboratory testing has been graphically presented below.

5.4.1 Cohesion:

Cohesion values from all the all kinds of soil are found to 2 group. As shown in Figure 5.1 CL type soil mass has higher cohesion value (clustered green dots in graph) ranging between 25-35 kPa and other 3 types of soil are comprised of another group with values ranging from 4-12 kPa.

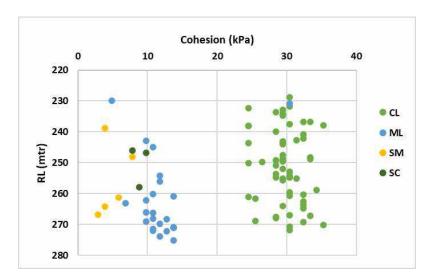


Figure 5.1 Graph showing laboratory tested cohesion for soil from entire borehole length vs RL. (Refer to Annexure J in Geotechnical Report for detail).

Consultant:	Geotechnical Investigation Report		Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

To make recommendation related to the engineering property of the surrounding soil, which is going to directly influence the tunnel built, samples from 2D has been considered. Pareto chart has been prepared to identify the most frequent and categorically influential data set out of the scattered values. It is based on 80/20 rule, i.e., "Vital few and trivial many" principle. The idea is that the few identified vital values will always statistically dominate over many.

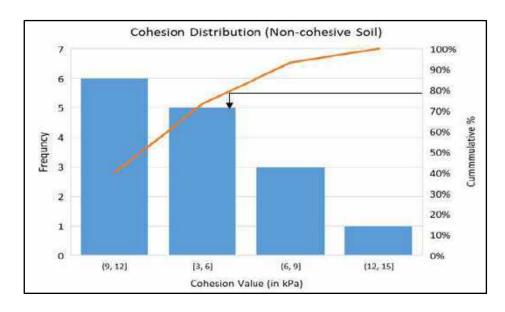


Figure 5.2: Pareto Chart showing recommended cohesion value for the non-cohesive soil within 2D depth.

80% of the laboratory tested cohesion value for SM and ML type of soil samples from 2D depth shows a scattered range of values ranging from 3-12 kPa. For safer construction the lower value of the range 3 kPa is recommended for cohesive strength of the noncohesive soil.



Figure 5.3: Pareto Chart showing recommended cohesion value for the cohesive soil within 2D depth.

Co	nsultant:	Geotechnical Investigation Report		Client :
6	S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

80% of the laboratory tested cohesion value for the CL type of soil sample from 2D depth ranges between 25-31 kPa. For safer construction the lower value of the range **25 kPa** is recommended for cohesive strength of the cohesive soil.

5.4.2 Natural Weight:

Density (Natural Weight) of all kind of soil found to be linearly increasing with depth. The trend of variation with depth is shown below in Figure 5.4.

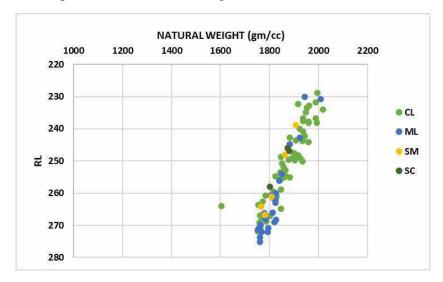


Figure 5.4: graph for Natural weight of soil from entire borehole length vs RL (Refer to Annexure J in Geotechnical Report for detail).

Natural weight value has been recommended (separately for both group of soil) using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

Consulta	ınt:	Geotechnical Investigation Report		Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

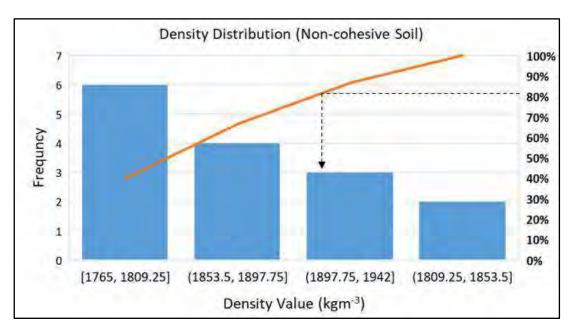


Figure 5.5: Pareto Chart showing recommended density value for the non-cohesive soil within 2D depth.

80% of the laboratory tested Density value for the SM and ML type of soil samples from 2D depth ranges between 1765 - 1942 kgm⁻³. For safer construction the lower value of the range **1765 kgm⁻³** is recommended for density of the noncohesive soil.

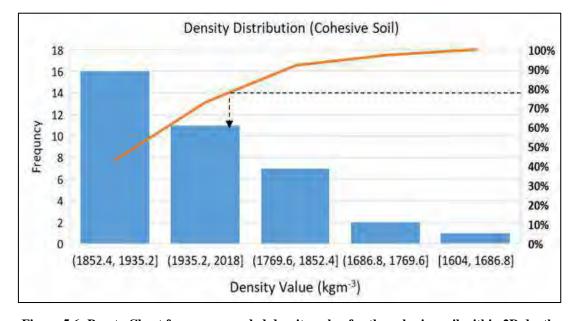


Figure 5.6: Pareto Chart for recommended density value for the cohesive soil within 2D depth.

80% of the laboratory tested density value for the CL type of soil samples from 2D depth ranges between 1852 -2018 kgm⁻³. For safer construction the lower value of the range **1852 kgm⁻³** is recommended for density of the cohesive soil.

Consultant:	Geotechnical Ir	vestigation Report	Client :
S.M. CONSULTA		Report No.	Haryana Rail Infrastructure
BHUBANESWA		SMC/2050	Development Corporation Ltd

5.4.3 Modulus of Elasticity (E):

The drained modulus (E') values are determined based on the corrected SPT N value $-N_{60}$ for granular as well as cohesive soils. For cohesive soil– $\mathbf{E'} = 1.2 \times N_{60}$ (MPa), and for cohesionless soil– $\mathbf{E'} = 1.0 \times N_{60}$ (MPa). Modulus of elasticity was found to be increasing from 10 MPa to 15 MPa with depth up-to first 15 meter from the surface (Figure 5.7), after which it falls within a constant range of value around 30 ± 1 MPa up-to the floor of the tunnel.

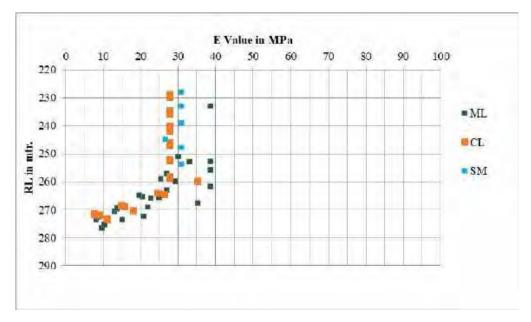


Figure 5.7: graph for Modulus of elasticity for soil from entire borehole length vs RL. (Refer to Annexure J in Geotechnical Report for detail).

Natural weight value has been recommended (separately for both group of soil) using the statistical tool namely Pareto chart, selecting samples from 2D depth only. The result is shown below.

Consultant:		Geotechnical Investigation Report		Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

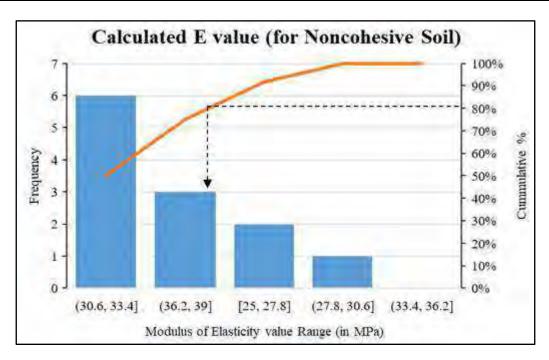


Figure 5.8: Pareto Chart for recommended E value for the non-cohesive soil within 2D depth.

As shown in the *Pareto Chart* above, 80% of the calculated Modulus of Elasticity (based on the equation $E=N_{60}$) for the noncohesive (SM & ML) soil sample from 2D depth ranges between 30.6-39 MPa. For safer construction, the lower value of the range **30 MPa** is recommended as the E value for the noncohesive soil. No pareto chart has been constructed for Cohesive Soil (CL), because they have consistent E value of 28 MPa for all the samples from 2D depth. Hence, **28 MPa** is the recommended Modulus of Elasticity for the cohesive soil.

5.4.4 Angle of internal friction (ϕ) for non-cohesive soil

Angle of internal friction (ϕ) for non-cohesive soil has been determined depth wise from the corrected field SPT N value as per IS2131. To make a recommendation for the phi value of non-cohesive soil samples (**from BH18-BH33**) were analyzed from 2D elevation from the tunnel formation level. As shown below in the Figure 5.9, 95% of the phi values (2 Sigma) in the 2D lies within a range of 31.53 ±2.72. The variation in phi values within the range being absolutely normally distributed, we can safely consider the mean value (rounded up) 32° as the recommended phi value for construction.

Consultant:		Geotechnical Investigation Report		Client :
	M. CONSULTANTS HUBANESWAR	Job No:830	-	Haryana Rail Infrastructure Development Corporation Ltd

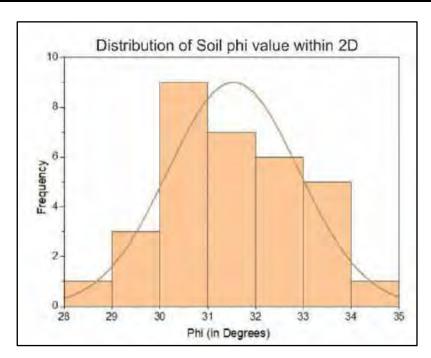


Figure 5.9: Distribution of non-cohesive soil Phi value within 2D overburden depth (Detail distribution of phi values along chainage are graphically shown in the Figure 4.12 to 4.14).

To be even more precise similar statistical analysis were carried out separately for the soil samples along the tunnel alignment and those are form 1D elevation from the crown. Results are graphically shown in the Figure 5.10 and Figure 5.11.

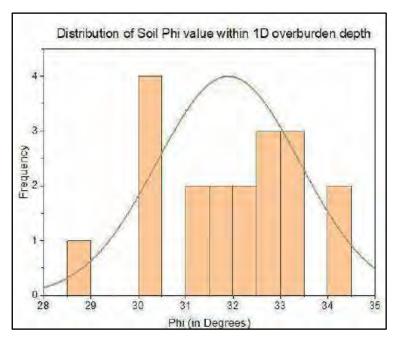


Figure 5.10: Distribution of non-cohesive soil Phi value within 1D overburden depth

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

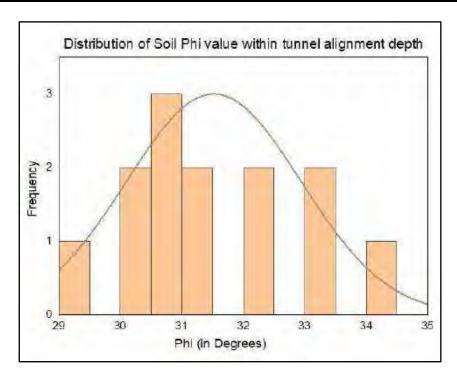


Figure 5.11: Distribution of non-cohesive soil Phi value within tunnel alignment.

It was found from above two graphs that, 95% of the samples have phi values in the range of 31.68 ± 2.8 for the 1D depth (Figure 5.10), while 31.32 ± 2.64 for the tunnel alignment (Figure 5.11). Therefore, **the recommended phi value of** 32° still remains valid even if tunnel alignment and 1D above it are considered separately.

5.4.5 Angle of internal friction (ϕ) for cohesive soil

Angle of internal friction (ϕ) for cohesive soil has been determined depth wise from laboratory test. To make a recommendation for the phi value of cohesive soil samples (from **BH18-BH33**) were analysed from 2D and 1D elevation from the tunnel formation level. As shown below in the Figure 5.12 & Figure 5.13, 95% of the phi values (2 Sigma) in the 2D and 1D lies within a range of 11.6 \pm 2.06 and having a modal value of 10. Therefore, as a representative value of phi for the cohesive soil is recommended to be 12.

Consultant:	Geotechnical Ir	vestigation Report	Client :
S.M. CONSULTA		Report No.	Haryana Rail Infrastructure
BHUBANESWA		SMC/2050	Development Corporation Ltd

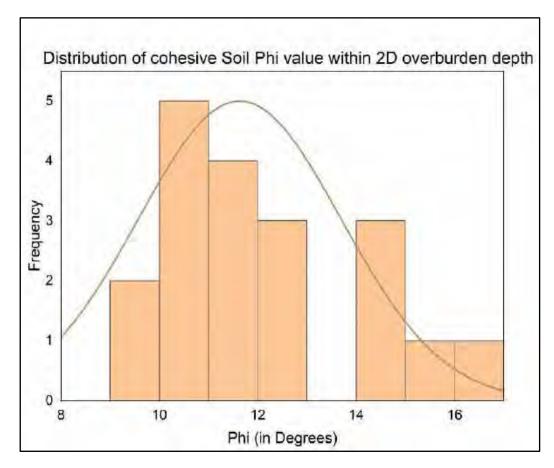


Figure 5.12: Distribution of cohesive soil Phi value within 2D overburden depth (Detail distribution of phi values along chainage are graphically shown in the Figure 4.12 to 4.14).

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

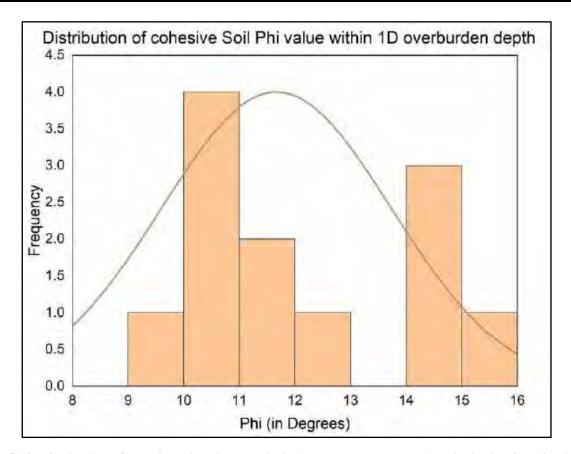


Figure 5.13: Distribution of cohesive soil Phi value within 1D overburden depth (Detail distribution of phi values along chainage are graphically shown in the Figure 4.12 to 4.14).

** for chainage wise variation in C and ϕ values refer Figure 3.12 to Figure 3.15

*** All the recommended values for different soil parameters are tabulated in Table 6.2, Chapter-6: Conclusion and Recommendations.

Consultant:	Geotechnical Investigation Report		Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

6 Conclusion and Recommendations:

The total tunnel length is 4.7 km (CH24900-CH29600), out of which 1.1 km (CH24900-CH25980) km of tunnel will be within the quartzite rock mass of Delhi Supergroup with Portal-I at CH24900. 2.9 km (CH25980-CH28900) km of the tunnel will be through soil and a NATM structure will be built at CH28900. 700m after this structure will be cut & cover in soil and the Portal-II will be built at CH29600.

Based on the available surface information from the geological field investigation and close observation of the drilled cores from the litho-logs, it has been observed that after crossing the soil the tunnel will enter into a folded rock mass where the axis of the tunnel will be perpendicular to the fold axis, thus favorably oriented with respect to the folded bedding planes. However, the folded rock layer has suffered extreme level of later brittle fracturing, which has been testified by the presence of 6 sets of joints of different orientation and a few late brittle discrete shear zones (which is certainly not active in nature). These joints and the fractures have significantly reduced the strength of the otherwise sufficiently cohesive metamorphic rock mass. Presence of the intersecting closely spaced joint sets make the tunnel part within the rock body highly susceptible to wedge failure.

From the results of different on-site and laboratory tests of the rock samples, the recommended values for the different parameters are tabulated below;

Table 6.1: Recommended values for engineering properties of rock

ROCK				
Properties	Values			
Lugeon Value	28.4			
UCS (MPa)	60 MPa			
RMR	20-40 (CLASS IV)			
Tensile Strength (MPa)	15 MPa			
Point Load Strength (MPa)	2.5 MPa			
Modulus of Elasticity (GPa)	39 GPa			
Poisson's Ratio	0.15			
Hardness	55			
Abrasion index	3.30			
Cohesion (MPa)	15 MPa			
Phi (degree)	55°			
Water absorption	0.54 %			

Consultant:	Geotechnical Investigation Report		Client :
S.M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

The rock mass as a whole statistically belong to Class-IV. Therefore, as per Bieniawski, 1989, systematic bolts 4-5m long, spaced 1-1.5 m in crown and walls with wire mesh, 100-150 mm shotcrete in crown and 100mm shotcrete in sides, light to medium steel ribs spaced 1.5 m is recommended as tunnel support. However, along some chainage interval the support system of Class III may be used by the discretion of the design engineer. For chainage wise variation in RMR value refer to Figure 3.11.

Almost 2.5 km of tunnel will be running through the soil, which constitutes 44% of Inorganic Clay rich Soil (CL), 33% of Inorganic Silty Soil (ML) and kanker and 23% is Silty Sand (SM). The recommended values for the different parameters for soil are tabulated below;

Table 6.2:Recommended values for engineering properties of soil.

	TYPE OF SOIL	MIN.	MAX.	Recommended Values
FIELD N VALUE		11	50	
CORRECTED N VALUE		5.75	29	
	CL	23.54 kPa	35.30 kPa	25 kPa
Cohesion (C)	ML	1.96 kPa	18.63 kPa	
(from Laboratory Test)	ML-CL	7.85 kPa	19.61 kPa	3 kPa
	SM	1.96 kPa	3.92 kPa	
Φ for cohesive soil (from Laboratory Test)	CL	9°	16°	12°
Φ for non-cohesive soil	ML	28°	36°	
(from corrected N Value)	ML-CL	29°	34°	32°
(ITOM corrected IV value)	SM	29°	32°	
	Cohesive (CL)	28 MPa	28 MPa	28 MPa
Modulus of Elasticity (E)	Non-Cohesive (ML, SM, ML-CL)	25 MPa	39 MPa	30 MPa
	Cohesive (CL)	1604 kg/m^3	2018 kg/m ³	1852 kg/m ³
Density	Non-Cohesive (ML, SM, ML-CL)	1752 kg/m ³	2009 kg/m ³	1765 kg/m ³

Consultant:	Geotechnical Investigation Report		Client :
S,M. CONSULTANTS BHUBANESWAR	Job No:830	Report No. SMC/2050	Haryana Rail Infrastructure Development Corporation Ltd

None of the boreholes reached the ground water table. Therefore, based on the preliminary survey, it can be predicted that the tunnel will not face any difficulty due to encounter of ground water table during the construction. However, the overlying rock strata having significant nos. of joint set is quite capable of percolating rain waters during the rainy seasons. There is also a ditch around CH 25500, which is situated almost 31.87m above the roof of the tunnel. This ditch may be connected to a perched water table with a limited water resource. The joint sets and the ditch may act as efficient path ways of rainwater recharge into the tunnel during the rainy season. Therefore, it may be recommended that suitable drainage system should be designed along with the tunnel to drain out that percolated water to avoid water logging during and after the construction of the tunnel. However, such kind of ingress of water is purely seasonal and temporary. Therefore, the water-proofing membrane may also be dispensed with.

Bid No.	HOR	C/HR	IDC/	$\Gamma P C$	01	/2023
DIU NO.	HUN		1100	1 F C-	VI.	ノムひとう

iii. Geotechnical Investigation Report SR NO.: 544_21-22 Old Ch. 27+620 to Old Ch.28+900 km

Geotechnical Investigation Report

Old Ch. 27+620 to Old Ch. 28+900 km (New CH: 28+287 to 29+567) km

SR NO.: 544_21-22

CONDUCTING GEOTECHNICAL INVESTIGATION,
PREPARATION OF GEOTECHNICAL REPORT FOR DESIGNING
OF BRIDGES AND FOR EMBANKMENT IN CONNECTION WITH
CONSTRUCTION OF HARYANA ORBITAL RAIL CORRIDOR
(HORC) PROJECT FROM PALWAL TO HARSANA KALAN
INCLUDING CONNECTIVITY TO EXISTING IR NETWORK IN
THE STATE OF HARYANA

CLIENT

M/S. HARYANA RAIL INFRASTRUCTURE DEVELOPMENT CORPORATION LTD. (HRIDCL)

PROGRAMME

JUNE - 2022

SR. No.	Report No.	Revision No.	Date
544_21-22	CEGTH/HRIDCL/SR-544/2022-23/938_(18 BHs)	00	03.10.2022

B-11(G), Malviya Industrial Area, Jaipur-302017

Tel.: 91-141-4046599, Fax: 91-141-2751806

E-mail: info@cegtesthouse.com., www.cegtesthouse.com

CEGTH/HRIDCL/SR-544/2022-23/938

Date:- 03.10.2022

To,

Haryana Rail Infrastructure Development Corporation Ltd. (HRIDCL)

SCO No.-17-19, 3rd & 4th Floor,

Sector - 17-A,

Chandigarh - 160017

Tele:- 0172-2715644

Email: hridc2017@gmail.com

Subject: Geotechnical investigation work for Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan in the state of Haryana.

Dear Sir,

We are pleased to submit this report of the subject work based on 18 borehole carried out at Old Ch. 27+620 to Old Ch. 28+900 (New CH: 28+287 to 29+567) for the proposed project site.

The accompanying report presents results of various field tests and laboratory tests conducted on selected soil samples and their interpretation.

Should there be any clarifications regarding the contents please contact us at your most convenient time.

We value the opportunity to participate in this project and look forward a pleasant association on future projects.

Very truly yours,

CEG Test House & Research Centre Pvt. Ltd.

Prepared By:-

Nehal Jain

Nyou

General Manager - Geotechnical

Authorized Signatory

Ankur Mudgal Sr. Manager

SR. No.	Report Ref. No.	Revision No.	Date
544_21-22	CEGTH/HRIDCL/SR-544/2022-23/938_(18 BHs)	00	03.10.2022

CONTENTS

S. NO.	ITEMS	PAGE NO.			
	CHAPTER 1 GENERAL				
1.0	INTRODUCTION	1			
2.0	SITE LOCATION & GENERAL GEOLOGICAL HISTORY	1-2			
3.0	SCOPE OF WORK	3-4			
4.0	FIELD INVESTIGATION IN SOIL STRATA	4-7			
5.0	LABORATORY TESTS ON SOIL SAMPLES	7-13			
	CHAPTER 2 ANALYSIS OF TEST RESULTS AND INTERPRETATION				
6.0	STRATIFICATION	14-15			
6.1	GROUND WATER TABLE DEPTH	15			
6.2	RESULTS OF CHEMICAL ANALYSIS	15			
6.3	INTERPRETATION OF LAB TEST RESULTS	15-16			
REFERENCES					
ABBREV	VIATIONS	18			

LIST OF FIGURES / TABLES

Appendix No.	ITEMS	PAGE NO.								
	APPENDIX – A (FIELD DATA RESULTS)									
A-1	LOCATION PLAN	20-21								
A-2	FIELD BORE HOLE LOGS	22-110								
A-3	SUB SOIL PROFILE DIAGRAM	111-112								
	APPENDIX – B (LAB TEST RESULTS)									
B-1	SOIL CHARACTERISTICS SHEETS	114-151								
B-2	RESULT OF CHEMICAL ANALYSIS OF SOIL SAMPLES	152								
B-3	RESULT OF CHEMICAL ANALYSIS OF WATER SAMPLES	153								
B-3	GSD CURVES	154-171								
B-4	SHEAR CURVE	172-207								
B-5	CONSOLIDATION CURVE	208-222								

CHAPTER 1 GENERAL

1.0 INTRODUCTION:

The work of conducting "Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana" was awarded to "CEG Test House & Research Centre Pvt. Ltd., Jaipur" by M/S. "Haryana Rail Infrastructure Development Corporation Ltd. (HRIDCL)" as per work order no. HRIDC/ HORC/ GT/ CEG/ 237/ 2021/ 577-M dated 29th July 2021.

Field work including drilling of boreholes, conducting field tests such as Electrical Resistivity Test, & Plate Load Test and sample collection was carried out in the presence of representative of Client. Laboratory tests were conducted on selected soil samples to determine the design parameters, confirming to relevant IS specifications and the guidelines received from time to time from representative of Client.

This report includes the details of Methodology of Investigation, collection of samples of soil, field test results, laboratory test results, analysis of results and recommendations for proposed structure carried out at Old Ch. 27+620 to Old Ch. 28+900 (New CH: 28+287 to 29+567). based on soil sample collected from the locations of 18 boreholes.

2.0 SITE LOCATION & GENERAL GEOLOGICAL HISTORY:

The details of the site & test locations for the proposed project are shown in location plan attached vide **Appendix A-1**. The site of proposed project is located from Palwal to Harsana Kalan (Sonipat) in the State of Haryana falls in seismic zone – IV (Zone factor=0.24) of India.

Soil of the Haryana Sub-Region have been classified and described under the following major soil types as shown below:-

• Typic Ustochrepts : Soil of old alluvial plains

• Typic Ustipsamments : Soil of Aravali plains

• Typic Ustifluvents : Soil of recent alluvial plains and flood plains

• Typic Torripsamments : Soil of Aeofluvial plains

• Rocky Outcrops : Aravali rocky hills

The district wise details of soil characteristics are described below:-

<u>Panipat:</u> The soils are well drained, Sandy loam to clay loam/silty clay loam in plains and loam to clay loam/ silty/ loose clay loam in relic channels/depressions/basins.

<u>Sonipat:</u> The district comprises of recent flood plains, young meander plains, old meander plains and old alluvial plains. Recent flood plains occur along the Yamuna River and clearly show fluvial features. The soils are loamy sand to sandy loam on the surface and sandy loam to clay loam in the sub surface.

Rohtak: The district mainly comprises of old alluvial plains. The soils are loamy sand to sandy loam on the surface and sandy loam to clay loam in the sub surface. Old meander plains are almost flat with loamy sand to silty clay loam soils. Oldest among all the land forms are old alluvial plains, which cover major areas in the district. These soils are sand to loamy sand/sandy loam (surface) to silt loam/silty clay loam (sub-surface).

<u>Jhajjar:</u> The district mainly comprises of old alluvial plains and some parts of the district also have soil belonging to Aravali plains.

Rewari: The soils of the district fall under Entisols and Inceptisols orders. The surface soil texture varies from sand to fine loamy sand.

Gurgaon: The district comprises of sand dunes, sandy plains, alluvial plains, salt affected areas,

low lands, lakes, hills and pediments. The soil varies from sand to loamy sand in sand dunes and sandy plain areas, sandy loam to clay loam / silty clay loam in alluvial plains, calcareous, loamy sand to loam in salt affected plains, silty loam to loam in low lands and calcareous, loamy sand to loam in hills.

<u>Mewat:</u> The soils of the area are generally sandy loam to loam. In parts of the low-lying areas, they are clayey and saline. The upper hills are mostly barren.

<u>Faridabad and Palwal:</u> The district comprises of recent Yamuna flood plains, low lying plains, depressions, sand dunes and hills. The texture of the soil is sand to loamy sand in recent Yamuna flood plains, sandy loam in plains, sandy loam to clay loam in alluvial plains, sandy loam to loam (surface), clay loam/silty clay (sub-surface) in low lying plains and depressions.

3.0 SCOPE OF WORK:

The stipulated scope of work involved carrying out the following operations:-

- a) Mobilisation of necessary plant equipment, men and materials for the complete Geotechnical investigation work as per specifications, drawings and instructions of the Engineer and to complete the same within the stipulated time schedule and demobilisation after completion of field work.
- b) Shifting of Equipments from one structure location to another including Ereaction, installation of rigs at site and dismantling of the same after completion of field work. Shifting of setup for each borehole location and associated preparation for borehole under water
- c) Making 150 mm nominal diameter boreholes at various locations in all types of soils except hard rock and large boulders using suitable approved method of boring including chiselling, cleaning, providing casing pipe as required; performing Standard Penetration Test at every 3.0m interval and at change of strata; collection of water samples and disturbed soil samples, observation such as ground water, etc., collection of undisturbed soil samples at every 3.0 m interval and at change of strata; transportation of all the collected samples to the laboratory and back filling of boreholes on completion of the same, complete as per specification and instructions of the Engineer, for depths below natural ground level.
- d) Conducting Electrical resistivity tests at various locations all complete as per specification and directions of the Engineer.
- e) Conducting plate load test at various locations, all complete as per specification and directions of the Engineer.
- f) Drilling of Nx size boreholes (75mm dia.) in all types of hard rock, collection of core samples, maintaining continuous record of core recovery/ RQD, keeping the cores in wooden core boxes, transporting to laboratory, backfilling on completion of the same, all complete as per specification and instructions of the EIC.
- g) Conducting various laboratory tests on soil samples at an approved laboratory including preparation of soil samples to determine the following properties of soil, all complete as per specification.

On soil Samples

- Dry density test
- o Bulk Density and Moisture Content.
- Sieve Analysis
- Hydrometer Analysis
- o Liquid Limit and Plastic Limit
- Specific gravity
- Shrinkage Limit

- o Free Swell Index
- Direct Shear Test
- o Triaxial Shear Test
- One Dimensional consolidation test
- o Chemical Analysis of soil samples (pH, chloride, Sulphate)
- h) Conducting laboratory tests on rock samples including preparation of the samples to determine the following properties, all complete as per specification

On Rock Samples

- o Moisture content, porosity & Density
- Specific gravity
- Hardness
- o Unconfined compression test
- Point load strength index
- Modulus of Elasticity and Poission's Ratio
- Abrasion Test
- i) Conducting chemical tests on water samples to determine the Sulphate, chloride and pH value all complete as per specification.
- j) Submitting draft report in soft copy including all field records and laboratory test results, graphs, etc., all complete as per specifications.
- k) Submitting final report in three hard copies in after the approval of the draft report including all field records and laboratory test results, graphs, etc., all complete as per specifications.

4. FIELD INVESTIGATION IN SOIL STRATA:

The investigation was planned to obtain the subsurface stratification in the proposed project site and collect soil / rock core samples for laboratory testing to determine the engineering properties such as shear strength, along with basic engineering classification of the subsurface stratum.

For geotechnical investigation work, required equipements along with rotary drilling rigs and manpower were mobilized at site to carry out various field activities as per the scope of work. These were shifted from one test location to another location during execution of field work and were demobilized on satisfactory completion of field work.

For conducting the field investigations the following practices were followed at site:

➤ The locations of 18 boreholes carried out at Old Ch. 27+620 to Old Ch. 28+900 (New CH: 28+287 to 29+567) were marked at site at specified locations. These locations are shown in **Appendix A-1** attached subsequently.

The details of various boreholes along with their coordinates are provided herein below:

Table 1.1: Details of Borehole Locations

S. No.	Chainage Old (km)	Chainage New (km)	Structure	BH.No.	Depth of Water Table below EGL (m)	Depth of Borehole below EGL (m)	Co-ordi	(+) R.L. (m)																																						
S	Chai	Chair (Str	B	Depth Tabl	De Boreh EG	E	N	(111)																																					
1.				BH-A1	33.10	40.00	697786.663	3123079.115	270.946																																					
2.				BH-P1	32.90	40.00	697786.520	3123062.116	271.001																																					
3.	27+620	28+287		BH-P2	33.00	60.00	697786.377	3123047.116	271.080																																					
4.	27-020	207207		BH-P3	33.13	60.00	697786.129	3123021.117	270.749																																					
5.				BH-P4	33.14	50.00	697785.986	3123006.118	271.774																																					
6.				BH-A2	33.12	40.00	697785.825	3122989.119	271.929																																					
7.				BH-A1	32.67	55.00	697330.702	3123086.726	269.806																																					
8.	28+075	28+743	Bridge	Major Bridge	BH-P1	32.68	55.00	697330.717	3123064.726	270.070																																				
9.	28+073	28±743			Bric	BH-P2	33.20	55.00	697330.724	3123026.726	270.499																																			
10.			jor	BH-A2	33.21	55.00	697330.724	3123004.726	270.616																																					
11.			Maj	Maj	Maj	Maj	Maj	Maj	Majo	Majo	Majo	Majo	Maj	Maj	Maj	Maj	Majo	Majo	Majo	Maj	Maj	Maj	Maj	Maj	Maj	Maj	Maj	Maj	Maj	Maj	Maj	Ma	Ma	Ma	Ma	Maj	Maj	Maj	Maj	Maj	BH-A1	34.78	40.00	697053.722	3123109.166	268.602
12.	28+360	29+028		BH-P1	34.10	50.00	697050.915	3123091.386	267.861																																					
13.	28±300	29±028		BH-P2	33.85	50.00	697046.700	3123064.680	267.285																																					
14.				BH-A2	34.20	40.00	697043.901	3123046.953	267.528																																					
15.				BH-A1	36.90	40.00	696531.197	3123223.834	262.678																																					
16.	20 000	201567		BH-P1	38.10	50.00	696528.146	3123214.311	263.022																																					
17.	28+900	29+567	0/	BH-P2	34.55	50.00	696520.214	3123189.550	263.955																																					
18.				BH-A2	34.50	40.00	696517.163	3123180.027	263.847																																					

^{*}Not Encountered:-NE

- In soil, boreholes of 150mm dia. were drilled as per the standard procedure laid in IS: 1892.
- ➤ Borehole was properly cleaned before taking any sample in soil.
- Casing was used as per the prevailing soil conditions, to stabilize the borehole.
- Standard Penetration Tests were conducted in bore holes at regular intervals or at every change of strata as per Technical specification.
- ➤ Undisturbed were collected wherevery feasible as per the requirements and at specified depths. The same has been discussed in detail in soil characteristics sheets attached with the report.
- ➤ The Ground Water Table was met at depths of from 32.67m to 38.10 m below EGL. The detailed procedure adopted for conducting various field tests is given here in below:

(i) Standard Penetration Test:

The Standard Penetration Test was conducted in boreholes as per IS 2131. The test was carried out using the standard split spoon sampler to measure the number of blows 'N'.

Standard split spoon sampler was attached to an 'A' rod. It was driven from borehole bottom to a distance of 45 cm using a standard hammer of 63.5 kg falling freely from a height of 75 cm to the required depth. While driving, the number of blows required to penetrate every 15 cm are recorded. The total number of blows required for the last 30 cm is taken as 'N' value at that particular depth of the borehole. Wherever the total penetration was less than 45cm, the no. of blows & the depth penetrated is recorded in the respective borelog.

SPT 'N' values were correlated with relative density of non-cohesive stratum and with consistency of cohesive stratum as given below:-

Table 1.2: Soil compactness as per SPT N values (cl. 9.7, table 9.3 & 9.4, page 330_text book of V.N.S. Murthy)

Correlation for C	Clay / Plastic silt	Correlation for Sand / Non-Plastic silt			
Consistency	SPT "N" Value	Compactness	SPT "N" Value		
Very Soft	0 - 2	Very Loose	0 - 4		
Soft	2 - 4	Loose	4 - 10		
Medium	4 - 8	Medium	10 - 30		
Stiff	8 - 15	Dense	30 - 50		
Very Stiff	15 - 30	Very Dense	> 50		
Hard	> 30				

The field SPT N values obtained were further corrected as per the guidelines given in IS: 2131 as follows:

- (a) For overburden: The N value for cohesionless soil is corrected with the help of fig. 1 given in IS-2131.
- **(b) Due to dilatancy**: Wherever N values observed below water table in fine sand, silty sand or silt was greater than 15, then corrected N values were corrected as under:

$$N' = 15 + \frac{1}{2} (N-15)$$

(ii) Undisturbed Sampling (Soil) in boreholes:

Undisturbed samples were collected using MS tubes of suitable diameter and length with Area ratio as per clause 4.1.1 (c) of IS: 1892 (latest) fitted to an adopter with ball and socket arrangement. Before taking any sample, sampling tube was properly greased. Immediately after taking on undisturbed sample in a tube, the adopter head was removed along with the disturbed material. The visible ends of the sample were trimmed off any wet disturbed soil. The ends were coated alternately with four layers of just molten wax. More molten wax was added to give a total thickness of min. 25

mm. The samples were carefully labeled and transported to the laboratory for testing. Undisturbed samples wherever slipped during lifting were duly marked in the field logs as well as in the soil profile.

5.0 LABORATORY TESTS ON SOIL SAMPLES:

The following laboratory tests were conducted on selected soil samples:

Table 1.3: Description of Tests

Description of Test	Reference	Undisturbed (UDS) Soil Samples	Disturbed (DS/SPT) Soil Samples
Grain Size Analysis / Hydrometer	IS: 2720 (Part - 4)	$\sqrt{}$	V
Natural Moisture Content / Bulk / Dry density	IS: 2720 (Part – 2)	V	-
Atterberg Limits			
Liquid Limit	IS: 2720 (Part - 5)	$\sqrt{}$	$\sqrt{}$
Plastic Limit	IS: 2720 (Part - 5)	$\sqrt{}$	$\sqrt{}$
Specific Gravity	IS: 2720 (Part – 3)	V	V
Direct Shear Test	IS: 2720 (Part – 13)	$\sqrt{}$	$\sqrt{}$
Triaxial compressive shear test	IS: 2720 (Part – 11 & 12)	√	V
Chemical Analysis of Soil Samples	IS: 2720 (Part – 26, 27)		-

Note:- The detailed procedure adopted for conducting various laboratory tests is described in the following paragraphs:

5.1.1 Dry density and Bulk density

For determination of bulk density and dry density, a sample of known volume 'V' was extracted from the undisturbed sampling tube and it's bulk weight 'W' was noted down. Moisture content 'Wn' was determined by oven drying method.

The bulk density and dry density were determined by following equation-

Bulk density $(\gamma_b) = W/V$

Dry density $(\gamma_d) = \gamma_b / (1 + Wn)$

5.1.2 Natural water content

For this test, the soil sample of known quantity (Wm) was taken in a container. The container with soil sample was placed into an oven for drying at 105-110°c temperature for 16-24 hours. After drying, the dry sample was again weighted to determine the dry weight of sample (Wd).

The natural water content was computed by the following equation-

Wn = (Wm-Wd)*100/Wd

5.1.3 Grain Size Analysis (IS: 2720- Part-4)

Wet sieve analysis:

For determination of particle sizes finer than 75 micron, wet sieve analysis test was conducted. For this test, oven dried sample of known quantity was taken in a container and soaked with dispersing agent. The soaked soil sample was washed thoroughly over 75 micron IS sieve until the water passing sieve was substantially clean.

Fraction retained on 75 micron IS sieve was carefully collected in a container without any loss in material and placed into oven for drying.

Dry sieve analysis:

For this test, the oven dried soil sample after wet sieving was sieved through the set of IS sieves 20 mm, 10 mm, 4.75 mm, 2.0 mm, 1.0 m , 425 micron , 300 micron, 150 micron and 75micron. The amounts of soil retained on each sieve were noted down. The % retained, cumulative % retained and % passing were computed accordingly. Wherever the soil sample % passing 75 micron sieve was significant, Hydrometer method was used to find the percentage of silt and clay fraction.

Grain size analysis for the fraction passing 75 micron IS Sieve (Hydrometer method)

Calibration of Hydrometer

Hydrometer was calibrated to determine a relationship (an equation) between the effective depth H_R and corresponding hydrometer reading R_h (obtained during test).

50 to 100 gm of soil sample passing through 75 micron IS Sieve was taken. It was mixed with 100 ml of sodium hexametaphesphate solution and the mixture was warmed for about 10 minutes. It was then transferred to the cup of the mechanical mixer and the soil suspension was stirred for 15 minutes. The soil suspension was transferred into 1000 ml measuring cylinder and distilled water was added to make 1000ml solution. This solution was mixed vigorously. The measuring cylinder was then allowed to stand and the stopwatch was started. Hydrometer was immersed in the solution and reading were taken after half, one, two and four minutes. The hydrometer was then removed slowly and kept in distilled water at the same temperature as the soil suspension. Readings were taken after the periods of 8, 15 and 30 minutes, and one, two and four hours. Hydrometer was removed, rinsed and placed in the distilled water after each reading. After 4 hours reading was taken once or twice within 24 hours. Finally a reading was taken at the end of 24 hours. The temperature of the suspension was observed and recorded.

Calculations

Diameter of the particles (D):

$$D = \sqrt{\frac{30\mu}{980(G-1)}} \times \sqrt{\frac{H_R}{t}} = \sqrt[M]{\frac{H_R}{t}}$$

Where,

D = diameter of particle in suspension, in mm;

 μ = co-efficient of viscosity of water at the temperature of the suspension at the time of taking the hydrometer reading, in poise;

G = specific gravity of the soil fraction used in the sedimentations analysis;

 H_R = effective depth corresponding to R_n , in cm.

t = time elapsed between the beginning of sedimentation and taking of hydrometer reading in minutes

$$M = \sqrt{\frac{30\mu}{980(G-1)}}$$
 = a constant factor for given values of μ and G at the temperature of the

suspension.

Percentage finer than diameter D:

The percentage by mass (w) of particles smaller than corresponding equivalent particle diameters (D) was calculated from the formula:

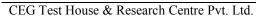
$$w = \frac{100G_s}{W_h(G_s - 1)} \times R_h$$

Where

w = percentage finer

 G_s = specific gravity of soil particle

 W_b = weight of soil


 R_h = Hydrometer reading

5.1.4 Specific Gravity (IS: 2720-Part-3 Sec-1)

The specific gravity of soil sample was determined by density bottle method. For this test 5-10g oven dried and cooled soil sample was taken in 50ml capacity density bottle and its weight was noted down as W_2 . The soil was covered with distilled water and left for sufficient period for suitable soaking. The entrapped air was removed by vacuum. The bottle with soil was filled fully with water and its weight was noted down (W_3) . The mass of empty bottle and bottle filled with distilled water were noted down as W_1 and W_4 respectively.

The Specific Gravity was determined by using following equation:

 $G=W_2-W_1/[(W_2-W_1)-(W_3-W_4)]$

5.1.5 Liquid Limit (IS: 2720- Part-5)

By Cone Penetrometer Method

The 'Cone Penetrometer Apparatus' is a variant of the fall-cone and consists of a cone with a smooth polished surface and angle of $30^{\circ} \pm 1/2^{\circ}$. The weight of the cone, together with its associated shaft is $80g \pm 0.5g$. A support assembly with an automatic cone release mechanism and cone height adjustment mechanism used to hold the cone vertically. The angle and weight of the cone were calibrated at regular intervals, and the sharpness of the cone tip was checked daily.

Distilled water was added and thoroughly mixed with the soil sample to produce a homogeneous paste. The paste was then placed in a cup with a diameter of at least 55mm and a depth of at least 40mm. The surface of the soil was smoothed off level and parallel to the base. The support assembly was used to position the tip of the cone so that it was just touching the top surface of the soil, and the automatic tripping mechanism was released. The cone was allowed to penetrate into the soil for a period of $5 (\pm 1)$ s, then the cone was locked off to stop further movement and the penetration was recorded. The cup was refilled and the test was repeated. The two recorded penetrations need to be within 0.5mm of each other, otherwise a third test is performed, when the three test vary by more than 1mm the test was repeated.

Further tests were conducted, at varying water contents, in order to produce a series of cone penetrations (usually 4) in the range 15mm to 25mm. The resulting cone penetrations were plotted verses the water content of the test specimens. The Liquid Limit (W_L) was read off the graph, being the water content at which the line of best fit through the test points crosses 20mm penetration.

5.1.6 Plastic Limit (IS: 2720-Part-5)

For this test, soil sample was prepared in the same way as for liquid limit test. A ball of soil sample weighed about 5 gm was formed. The ball was rolled between the fingers of one hand and the glass plate with pressure sufficient to reduce the mass into a thread of about 3 mm in 5 to 10 complete forward and back movements. When a diameter of 3 mm was reached, soil was again remolded into a ball. The process of rolling and remolding was repeated until the thread started just crumbing at a diameter of 3 mm. The crumbled thread was immediately transferred to an airtight container for determination of its moisture content by oven drying method.

This water content has been termed as plastic limit. (W_P)

5.1.7 Plasticity Index (IS: 2720-Part-5)

The plasticity index Ip was given by $I_p=W_L-W_P$ (in percent)

5.1.8 Direct Shear Test (IS:2720-Part-13):

For this test shear box test apparatus was used. The prepared specimen from remolded/undisturbed sample was placed carefully in the box. The plain grid was kept on top of the specimen with its directions at right angles to the direction of shear. The upper porous stone was placed on the grid and loading pad on the stone. The box with specimen was gently placed in the container (water jacket). The specimen was submerged with water. The container was mounted with the shear box and the specimen inside, on the shearing machine. The upper part of the box was so adjusted that it touched the proving ring. The jack was brought forward to bear up against the box container. The proving ring dial gauge was set to read zero.

The steel ball was placed in the recess of the loading pad. The loading yoke was set in contact with the steel ball on the loading pad. Vertical displacement dial gauge to read zero in contact with the top of the yoke. The normal load was applied and any change in thickness of specimen was recorded. Shear displacement dial gauge was also set to read zero. The locking screw was now removed and two parts of the shear box were separated by advancing the spacing screws.

The specimen was sheared at constant rate of strain. The readings of the proving ring dial gauge were noted down every 15 seconds for the first one-minute and then every 30 seconds thereafter. The reading of change in the thickness dial gauge and shear displacement dial gauge were also recorded at the same time interval. The test was continued until the specimen fails. The specimen was assumed to fail when the proving ring dial gauge started receding or at shear displacement of approximately 15% of the length took place.

The soil was removed from the box and test was repeated on the identical specimen under increased normal load.

The rate of strain for conducting Direct Shear Test is kept as 0.25 mm/min as per codal/literature provision based on strata.

5.1.9 Triaxial Shear Test UUT (IS: 2720-Part-11)

For this test, Triaxial Shear Test apparatus was used. The plain disc was placed on the pedestal of the triaxial cell. The specimen was placed centrally on the disc. A correct size rubber membrane was fitted inside the stretcher with ends of membrane folded over those of the stretcher. Vacuum was applied to stretch the membrane to the inside surface of the stretcher which was carefully slipped around the specimen kept on the pedestal. The vacuum on the membrane was released. Its bottom part was rolled down into the pedestal, plain disc was placed on the top of the specimen and then loading pad was placed. The top part of membrane was rolled on to the loading pad. Then the stretcher was removed and ends were sealed with 'O' rings. With the properly sealed specimen placed centrally on the pedestal, the cell was assembled, keeping the loading piston initially clear of the loading pad of the specimen, the assembly was placed in the loading frame.

For unconsolidated undrained test, the bottom drainage value (BDV) and top drainage value (TDV) of cell, was closed and air release valve (ARV) was opened. The cell was filled with water through the cell water value CWV. ARV was closed when water begins to escape through it. The cell pressure was raised to the desired value and kept constant till the end of the test.

When the cell pressure was applied, the load piston rises upward, the loading machine was operated at the anticipated rate to bring the load piston slightly above the loading pad of the specimen and the load measuring dial gauge on proving ring was set to zero.

The piston was brought just in contact with loading pad by hand operation of the machine. The axial compression dial gauge was mounted and set to read zero.

The axial loading was started at 1.25 mm/min rate of strain. Simultaneous readings on the load and compression dial gauges were noted down. The test was continued until a recession of the axial load is observed or 20% of strain.

After failure, the specimen was unloaded by reversing the loading machine, cell pressure was reduced and cell water was drained out through BRV. The cell was dismantled and the specimen was taken out, rubber membrane was removed and weight of the failed sample and its water content was determined. The test was repeated on two more identical specimens with increasing cell pressure.

The rate of strain for conducting UUT is kept as 1.25 mm/min as per codal/literature provision based on strata.

5.1.10 Chemical Testing

Chemical Testing was generally performed in accordance with IS: 2720, but the different parts of method as described below:

a) Total Sulphate Content Of Soil

Samples were tested according to IS 2720 (Part 27). The dried soil was extracted with a 10% solution of hydrochloric acid. The extract was adjusted to slightly alkaline pH with ammonia, and then barium chloride solution was added to precipitate the sulphate. The barium sulphate precipitate was collected by filtration, and it was washed, dried and weighed. The mass of barium sulphate recovered was used to calculate the sulphate content of the original soil.

b) pH Value

Samples were tested according to IS: 2720 (Part 26). The soil sample ($30 \pm 0.1g$) was extracted with 75 ml of distilled water and the pH of the resulting suspension was measured with a calibrated (by means of Standard buffer solution) pH meter.

c) Chloride Content

For the water soluble content, soil samples were extracted with a volume of water equal to twice the mass of the soil. The extract was filtered and acidified with a small amount of nitric acid.

Standardized silver nitrate solution was then added to precipitate the chloride as its silver salt. The amount of precipitated silver remaining in solution was then determined by titration.

An acid-soluble version of the test was also available, with the initial extraction being with nitric acid instead of water.

CHAPTER 2 ANALYSIS OF TEST RESULTS AND INTERPRETATION

6.0 STRATIFICATION

From the study of the borehole carried out at Old Ch. 27+620 to Old Ch. 28+900 (New CH: 28+287 to 29+567).

At location of O.C. 27+620 (N.C. 28+287) :-

The sub strata of BH-A1 mainly consist of Silty Clay of low plasticity (CL) and sandy silt of low plasticity (ML-CL).

The sub strata of BH-A2 mainly consist of sandy silt of low plasticity (ML-CL) followed by Silty Clay of low plasticity (CL).

The sub strata of BH-P1 mainly consist of Silty Clay of low plasticity (CL).

The sub strata of BH-P2 mainly consist of sandy silt of low plasticity (ML-CL) followed by Silty Clay of low plasticity (CL).

The sub strata of BH-P3 mainly consist of Silty Clay of low plasticity (CL).

The sub strata of BH-P4 mainly consist of sandy silt of low plasticity (ML-CL) followed by Silty Clay of low plasticity (CL).

At location of O.C. 28+075 (N.C. 28+743):-

The sub strata of BH-A1 mainly consist of Sandy silt of low plasticity (ML-CL) and Silty Clay of low plasticity (CL).

The sub strata of BH-A2 mainly consist of Sandy silt of low plasticity (ML-CL) and Silty Clay of low plasticity (CL).

The sub strata of BH- P1 mainly consist of Silty Clay of low plasticity (CL), Sandy silt of low plasticity (ML-CL) and Silty sand (SM).

The sub strata of BH-P2 mainly consist of sandy silt of low plasticity (ML-CL) and Silty sand with clay (SM-SC).

At location of O.C. 28+360 (N.C. 29+028):-

The sub strata of BH-A1 mainly consist of Sandy silt of low plasticity (ML-CL) Silty sand with clay (SM-SC) and Silty sand (SM).

The sub strata of BH-A2 mainly consist of Silty sand (SM) and Sandy silt of low plasticity (ML-CL).

The sub strata of BH-P1 mainly consist of Silty sand (SM) and Sandy silt of low plasticity (ML-CL) Silty sand with clay (SM-SC).

The sub strata of BH-P2 mainly consist of Sandy silt of low plasticity (ML-CL) Silty sand with clay (SM-SC).

At location of O.C. 28+900 (N.C. 29+567):-

From the study of the borehole logs of 04 BHs, it is revealed that the sub strata from EGL to 40.0-50.0m depth mostly consist of fine grained soil i.e. silty clay of low plasticity (CL) with some layers of coarse grained soil i.e. sandy silt of low plasticity (ML-CL) embedded in between.

6.1 GROUND WATER TABLE DEPTH

The Ground Water Table was met at depths of from 32.67m to 38.10 m below EGL as given in Table 2.1, it may rise up during heavy rains / rainy season. Therefore, for the analysis of various foundations, the water table has been considered to rise by about 2 to 3.0m at the locations of boreholes.

6.2 RESULTS OF CHEMICAL ANALYSIS

Results of chemical analysis of soil samples (as per **Appendix – B2**) indicates that the soil sample falls under Class I for sulphates and chlorides concentration (As per IS 456-2000 and CIRIA Sp. Publication No. 31). The results are summarized here in below:-

Summary of chemical analysis of soil samples

Chemical Property	Findings (Min. to Max.)	Remarks (Required limits as per IS 456-2000)			
рН	6.85 to 8.61	> 6.0			
Sulphite as SO ₃ ²⁻ (%)	0.0022 (%) to 0.0035 (%)	< 0.2% (Class I)			
Chlorides as Cl ⁻ (%)	0.047 (%) to 0.078 (%)	No limit specified in IS 456. However, a limit of 0.10% specified for class I in CIRIA Sp. Publication No. 31)			

Note :- All the chemical contents are within permissible limit hence no special precautions are required.

6.3 INTERPRETATION OF LAB TEST RESULTS

Grain Size Analysis

- Clay content: It generally varies from 4 to 14%.
- **Silt content:** It generally varies from 22 to 68%.
- Sand content: It generally varies from 23 to 86%.
- **Gravel content:** It generally varies from 2 to 10%.

Atterberg's Limit

• **Liquid limit:** The test results of liquid limit of the soil samples reveal that it generally varies from 27 to 29% in ML-CL type of soil, 30 to 35% in CL type of soil.

- Plastic Limit: The plastic limit of the soil sample varies from 20 to 21% in ML-CL type of soil, 20 to 23% in CL type of soil. However ML-CL type of soil is considered as non-plastic.
- **Plasticity index:** The plasticity index of the soil samples generally varies from 6 to 7% in ML-CL type of soil, 10 to 12% in CL type of soil whereas ML-CL and SM/ SM-SC/ SC type of soil are non-plastic.

Natural moisture content & Bulk density

The bulk density of soil samples generally varies from 1.64gm/cc to 1.98gm/cc whereas natural moisture content varies from 9.22% to 18.26%.

Direct shear tests:

Direct shear test under drained condition have been conducted in sandy silty (ML-CL) / sandy stratum (SM/ SM-SC/ SC) type of soil.

For Sandy strata (SM/ SM-SC/ SC), the value of angle of internal friction varies from 25° to 32°, whereas cohesion varies from 0.00 kg/cm² to 0.11 kg/cm².

For Silty strata (ML-CL), the value of angle of internal friction varies from 22° to 27°, whereas cohesion varies from 0.19 kg/cm² to 0.22 kg/cm².

Triaxial shear tests:

Triaxial shear test under undrained condition have been conducted in silty clay (CL) type of soil.

For silty clay (CL) strata, the value of angle of internal friction varies from 4° to 5°, whereas cohesion varies from 1.42kg/cm² to 2.24kg/cm².

REFERENCES

- 1. IS 2911: Part 1 : Sec 2 : 2010 (Reaffirmed Year : 2020) Design And construction Of pile foundations Code Of Practice Part 1 Concrete Piles Section 2 Bored Cast In-situ Concrete Piles.
- 2. IS 2911 : Part 4 : 2013 (Reaffirmed Year : 2018) Design and construction of pile foundations Code of practice : Part 4 Load test on piles .
- **3.** IS 6403 : 1981 (Reaffirmed Year : 2016), Amd. 2 : 2018 Code of practice for determination of bearing capacity of shallow foundations.
- **4.** IS 8009 : Part 1 : 1976 (Reaffirmed Year : 2018) Code of practice for calculation of settlements of foundations: Part 1 Shallow foundations subjected to symmetrical static vertical loads.
- **5.** IS 8009 : Part 2 : 1980 (Reaffirmed Year : 2020) Code of practice for calculation of settlement of foundations: Part 2 Deep foundations subjected to symmetrical static vertical loading.
- **6.** IS 1893 : Part 1 : 2016 (Reaffirmed Year : 2021) Criteria for Earthquake Resistant Design of Structures Part 1 : General Provisions and Buildings.
- 7. IS 1904: 2021 Draft Indian Standard for General requirements for design and construction of foundations in soils Code of practice third revision of IS 1904.
- **8.** IS 456 : 2000 (Reaffirmed Year : 2021) Plain and Reinforced Concrete Code of Practice (Including Amendment 1, 2, 3,& 4).
- 9. BS 118 : 2015 Final Seismic Design of Bridges.
- **10.** IS 2131: 1981 (Reaffirmed Year: 2016) Method for standard penetration test for soils.
- 11. IS 2132: 1986 (Reaffirmed Year: 2016) Code of practice for thin-walled tube sampling of soils.
- **12.** IS 1892: 1979 (Reaffirmed Year: 2016) Code of practice for subsurface investigation for foundations.
- 13. Bowles, J.E., 1982. Foundation design and analysis.
- 14. IS. 2720 (Part 3)-1980. Determination of Specific Gravity of Soil.
- 15. IS. 2720 (Part 4). 1985. Methods of Test for Soils: Grain Size Analysis.
- **16.** IS. IS 2131, 1981. Method for standard penetration test for soils.
- 17. IS: 2720 (Part 11)–(1993). Determination of the shear strength parameters of a specimen tested in unconsolidated undrained triaxial compression without the measurement of pore water pressure.
- **18.** IS: 2720 (Part 13) 1986 Method of test for soils, direct shear test. New Delhi, India.
- **19.** IS: 2720 (Part 3/See 1)–(1980) Methods of test for soils, determination of specific gravity of soil. New Delhi, India.
- **20.** IS: 2720 (Part 5) 1985 Methods of test for soils, determination of liquid and plastic limit of soils. New Delhi, India.

Abbreviations

BH Borehole

ERT Electrical Resistivity Test

EGL Existing Ground Level

GWT Ground Water Table

IS Indian Standards

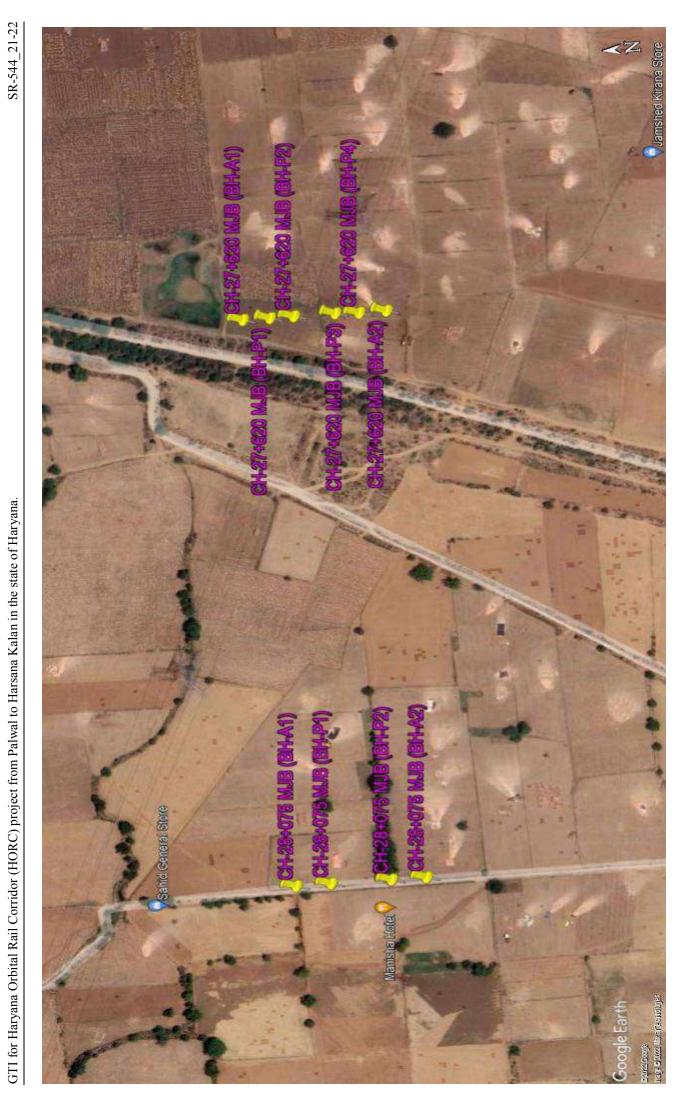
SPT Standard Penetration Test

DS Disturbed Soil

R.L. Reduced Level

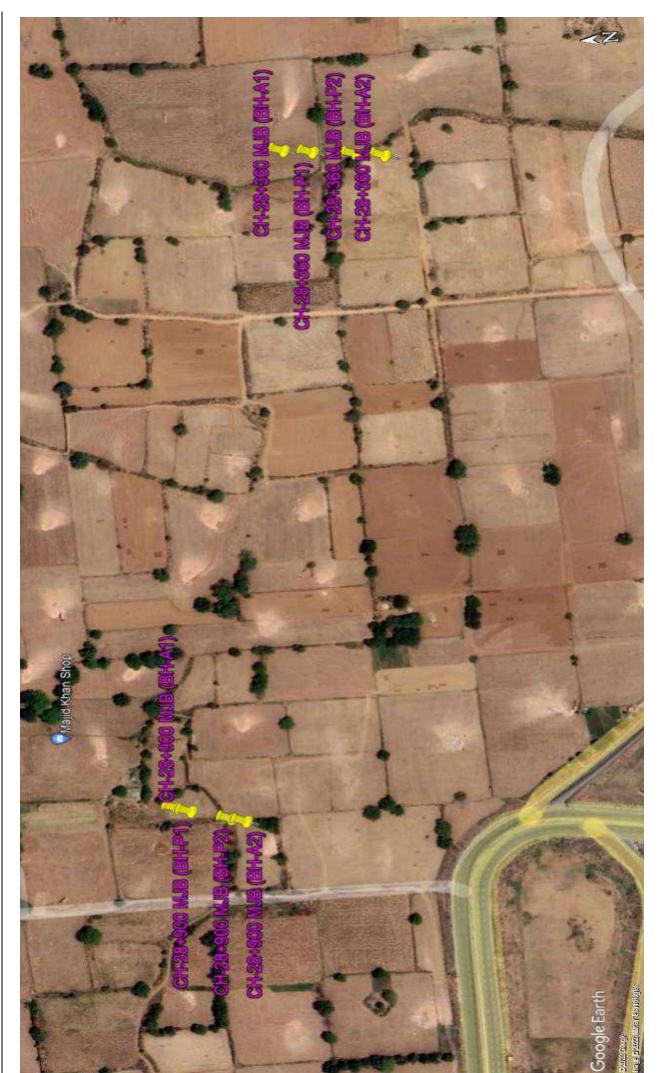
m Metre

sp. gr. Specific Gravity


% Percentage

mg /l Milligram per litre

mg /kg Milligram per kilogram


APPENDIX – A (FIELD DATA RESULTS)

Appendix No.	ITEMS
A-1	LOCATION PLAN
A-2	FIELD BORE HOLE LOGS
A-3	SUB SOIL PROFILE DIAGRAM

CEG Test House & Research Centre Pvt. Ltd.

FIELD BOREHOLE LOG								
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL								
BH Location/Chainage :27+620 km	Northing :3123079.115 m	Easting :697786.663 m						
Reduced Level (m):(+)270.946	BH. No. :BH-A1	BH Termination Depth (m):40						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.10	Inclination : Vertical						
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
Date of Start :11-10-2021	Date of Completion :12-10-2021							

Boring type :Rotary							Dia. of Boring :150 mm Depth of Casing (m) :Not Used																		
Date of	Start :11	-10-2021					Date of Completion :12-10-2021																		
	, <u>∈</u>		В	low coun per 15cm	its 1			tion		_															
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	Strata Supercription Supercription		(Depth v/s SPT N Value)	Special Observations														
0.0		DS						3		10 20 30 40 50 60 70 80 90 100	-														
0.5	-																								
1.0	1	UDS-1																							
1.5	-																								
2.5	2.5	SPT-1	2	7	8	15				+															
3.0																									
3.5 4.0	4	UDS-2			Brown, Very stiff, Silty clay of low plasticity	CL																			
4.5	-																								
5.0	_			007.5					16	16	16														
5.5	5.5	SPT-2	7	7	9	9	9	16				16	16	9 16	16	16	16	16	16	16	16	16			
6.5																									
7.0	. 7	UDS-3																							
7.5	-																								
8.0	8.5	SPT-3	12	17	24	41	Brown, Dense, Sandy silt of low	ML-CL																	
9.0	-						plasticity with gravel																		
9.5	-																								
10.0		UDS-4																							

FIELD BOREHOLE LOG								
Project Name :GTI for (HORC) project from Palwal to Ha	Client :HRIDCL							
BH Location/Chainage :27+620 km	Northing :3123079.115 m	Easting :697786.663 m						
Reduced Level (m):(+)270.946	<i>BH. No.</i> :BH-A1	BH Termination Depth (m):40						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.10	Inclination : Vertical						
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
D (CG) (11 10 2021	D	·						

Boring type :Rotary							Dia. of Boring :150 mm Depth of Casing (m) :Not Used					
Date of	Start :11	-10-2021					Date of Completion :12-10-2021					
	(L		В	low coun per 15cm	counts 15cm			tion		Suo		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	Special Specia		
10.0								ວັ		0 10 20 30 40 50 60 70 80 90 100		
10.5												
11.5	11.5	SPT-4	9	14	16	30						
12.5												
13.0	13	UDS-5					plasticity with graver	Brown, Dense, Sandy silt of low plasticity with gravel	ML-CL			
14.0	14.5	SPT-5	14	21	25	46						
15.0		5, , ,										
15.5	16	16 UDS-6										
16.5 17.0												
17.5	17.5	SPT-6	22	40	43	83						
18.0							Brown, Hard, Silty clay of low plasticity with gravel	CL				
19.0	19	UDS-7										
19.5	DO: 1	recovered	1									

FIELD BOREHOLE LOG								
Project Name :GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL						
BH Location/Chainage :27+620 km	Northing :3123079.115 m	Easting :697786.663 m						
Reduced Level (m):(+)270.946	BH. No. :BH-A1	BH Termination Depth (m):40						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.10	Inclination : Vertical						
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						

Boring type : Rotary							Dia. of Boring: 150 mm Depth of Casing (m): Not Used					
Date of	Start :11	-10-2021					Date of Completion :12-10-2021					
Depth	itu iple (m)	Sample	В	low cour per 15cn	nts n	SPT	Strata	IS Classification	Graphic	Copy th (Depth v/s SPT N Value) Special Observations		
(m)	In-Situ Sample Depth (m)	Туре	N1	N2	N3	N Value	Description	IS Iassifii	Log	v/s SPT N Value)		
20.0								<u> </u>		0 10 20 30 40 50 60 70 80 90100		
20.5	20.5	SPT-7	14	19	22	41						
21.0												
21.5												
22.0	22	UDS-8										
22.5												
23.0												
23.5	23.5	SPT-8	32	69	31 (3cm)	>100						
24.0												
24.5												
25.0	25	UDS*					Brown, Hard, Silty clay of low plasticity with gravel	CL				
25.5												
26.0												
26.5	26.5	SPT-9	27	40	60 (12cm)	>100						
27.0												
27.5					00							
28.0	28	SPT-10	36	74	26 (5cm)	>100						
28.5												
29.0					32							
29.5	29.5	SPT-11	38	68	(9cm)	>100						
30.0		racevered										

FIELD BOREHOLE LOG							
Project Name :GTI for (HORC) project from Palwal to Harsar	Client :HRIDCL						
BH Location/Chainage :27+620 km	Northing :3123079.115 m	Easting :697786.663 m					
Reduced Level (m):(+)270.946	BH. No. :BH-A1	BH Termination Depth (m):40					
Proposed / Existing Structure : Major Bridge	Water Table (m):33.10	Inclination : Vertical					
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used					
Date of Start :11-10-2021	Date of Completion :12-10-2021						

Boring type: Rotary							Dia. of Boring: 150 mm Depth of Casing (m): Not Used					
Date of	Start :11	-10-2021					Date of Completion :12-10-2021					
	_ @ €		Blow	Blow coun per 15cm	its I		-	tion			e) 20 Cocial Special S	
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description Stration		Graphic Log	(Depth v/s SPT N Value)		
30.0								Ö	0	10 20 30 40 50 60	70 80 90 100 C	
30.5				100								
31.0	31	SPT-12	40	100 (15cm)	-	>100					1	
32.0									_			
32.5	32.5	UDS*										
33.0								-	33.10m			
34.0	. 34	SPT-13	32	36	48	84					+	
34.5							Brown, Hard, Silty clay of low					
35.5	35.5	SPT-14	30	39	52	91	plasticity with gravel	CL				
36.0												
37.0	. 37	SPT-15	46	100 (13cm)	-	>100						
37.5												
38.5	38.5	SPT-16	30	82	18 (3cm)	>100						
39.0												
40.0		SPT-17	25	40	48	_88						

FIELD BOREHOLE LOG							
Project Name :GTI for (HORC) project from Palwal to Harsan	Client :HRIDCL						
BH Location/Chainage :27+620 km	Northing :3123062.116 m	Easting :697786.52 m					
Reduced Level (m):(+)271.001	<i>BH. No.</i> :BH-P1	BH Termination Depth (m):40					
Proposed / Existing Structure : Major Bridge	Water Table (m):32.90	Inclination : Vertical					
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used					
D 00 11 10 2001	D . CG I .: 10.10.2021						

Boring type: Rotary							Dia. of Boring :150 mm Depth of Casing (m) :Not Used							
Date of	Start :11	-10-2021					Date of Completion :12-10-2021							
	Sample Depth (m) Sample Type		Blow	low coun per 15cm	ow counts per 15cm			ion						
Depth (m)		Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)				
0.0								Ö		0 10 20 30 40 50 60 70 80 90 100 C				
0.5		DS				6	6	6						
1.0	1	SPT-1	2	3	3							•		
1.5											Brown, Medium stiff, Silty clay of			
2.0	2.5	UDS-1								low plasticity	CL			
3.0														
3.5	-					34 _								
4.0	4	SPT-2	9	16	18		34							
5.0									Brown, Dense, Silty sand	SM				
5.5	5.5	UDS-2												
6.5								26	4 26					
7.0	. 7	SPT-3	7	12	14		26			26	26	26		
7.5							Brown, Very stiff to hard, Silty clay of low plasticity with gravel	CL						
8.0	8.5	UDS-3												
9.0	-													
9.5	-													
10.0		SPT-4_	9	11	15	26								

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123062.116 m	Easting :697786.52 m							
Reduced Level (m):(+)271.001	BH. No. :BH-P1	BH Termination Depth (m):40							
Proposed / Existing Structure : Major Bridge	Water Table (m):32.90	Inclination : Vertical							
Boring type: Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :11 10 2021	Data of Completion :12-10-2021	·							

Boring t	type :Rot	ary					Dia. of Boring :150 mm	Dep	pth of Casin	ng (m):Not Used								
Date of	Start :11	-10-2021					Date of Completion :12-10-2021	'										
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	low coun per 15cm N2	ts N3	SPT N Value	Strata Description	IS Classification	Graphic Log	Special Specia								
10.0	۵" ۵							Cla		0 10 20 30 40 50 60 70 80 90100 O								
10.5 11.0 11.5	. 11.5	UDS-4																
12.0 12.5 13.0	13	SPT-5	18	24	26	50												
13.5																		
14.5	14.5	UDS-5					Brown, Very stiff to hard, Silty clay of low plasticity with gravel	CL										
15.5 16.0 16.5	. 16	SPT-6	10	14	20	34												
17.0 _17.5_ _18.0_	17.5	UDS-6																
18.5 19.0 19.5 20.0	. 19	SPT-7	18	21	32	53												

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123062.116 m	Easting :697786.52 m							
Reduced Level (m):(+)271.001	BH. No. :BH-P1	BH Termination Depth (m):40							
Proposed / Existing Structure : Major Bridge	Water Table (m):32.90	Inclination : Vertical							
Boring type: Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :11 10 2021	Data of Completion :12-10-2021	·							

Boring i	ype :Rot	ary					Dia. of Boring :150 mm	Depi	oth of Casing (m):Not Used
Date of	Start :11	-10-2021					Date of Completion :12-10-2021	·	
	, e		В	low cour per 15cm	nts 1			tion	
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic (Depth V/s SPT N Value)
20.0 _20.5_ _21.0_ _21.5_ _22.0_ _22.5_ _23.0_ _23.5_	20.5	UDS-7 SPT-8	24	38	43	81		0	
24.0 _24.5_ _25.0_ _25.5_ _26.0_	25	SPT-9	13	20	24	44	Brown, Very stiff to hard, Silty clay of low plasticity with gravel	CL	
26.5_ 27.0_ 27.5_	26.5	UDS-9			48				
28.0 _28.5_ _29.0_ _29.5_	28	SPT-10	32	52 65	(10cm) 35 (8cm)	>100	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL	
30.0		racevarad							

FIEL	LD BOREHOLE I	LOG
Project Name :GTI for (HORC) project from Palwal to H	arsana Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :27+620 km	Northing :3123062.116 m	Easting :697786.52 m
Reduced Level (m):(+)271.001	<i>BH. No.</i> :BH-P1	BH Termination Depth (m):40
Proposed / Existing Structure : Major Bridge	Water Table (m):32.90	Inclination: Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used

	type :Ro						Dia. of Boring :150 mm	Дері	th of Casir	g (m): Not Used	
Date of	Start :11	1-10-2021	В	low cour	nte.		Date of Completion :12-10-2021				
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	per 15cn N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations
30.0 _30.5_ _31.0_ _31.5_	. 31	SPT-12	53	75	25 (2cm)	>100	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL		0 10 20 30 40 50 60 75	9 80 90100
32.0 _32.5_ _33.0_	32.5	SPT-13	21	34	46	80		<u>.</u>	¥ 32.90m		
33.5 _34.0_ _34.5_	. 34	SPT-14	26	38	52	90			32.90m		
35.0 _35.5_ _36.0_	35.5	SPT-15	30	42	56	98	Brown, Hard, Silty clay of low	CL			
36.5 _37.0_ _37.5_	37	SPT-16	25	46	54 (10cm)	>100	plasticitý with gravel	V-			
38.0 _38.5_ _39.0_	38.5	SPT-17	30	52	48 (8cm)	>100					
39.5 _40.0_	40	SPT-18	24	42	49	91					

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123047.116 m	Easting :697786.377 m							
Reduced Level (m):(+)271.080	BH. No. :BH-P2	BH Termination Depth (m):60							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.00	Inclination: Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :18-11-2021	Date of Completion :21-11-2021								

Boring	<i>type :</i> Rot	ary					Dia. of Boring :150 mm	Depi	h of Casing (m) :Not U	Jsed														
Date of	Start :18	-11-2021					Date of Completion :21-11-2021																	
	. ?		В	low coun per 15cm	its 1			ion			suc													
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	SP SP	(Depth v/s T N Value)	Special Observations													
0.0		DS																						
0.5	1	UDS-1																						
1.5	· '	000-1																						
2.0	2.5	SPT-1	3	5	6	11	Brown, Medium dense, Sandy silt of low plasticity	ML-CL																
3.0	2.0	0. 1 1	J		· ·																			
3.5	4	UDS-2																						
4.5																								
5.0 5.5	5.5	SPT-2	10	15	18	33																		
6.0							3P1-2	SPT-2	SPT-2	3F1-2	SP1-2	SPT-2	SPT-2	SPT-2	SPT-2	SPT-2	.0			33				
6.5 7.0	7	UDS-3														Brown, Hard, Silty clay of low								
7.5	, 	000 0					plasticity with gravel	CL																
8.0	0.5	CDT 2	10	42	40	24																		
8.5	8.5	SPT-3	12	13	18	31																		
9.5																								
	10 IDS not r	LUDS-4_ recovered	<u> </u>																					

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123047.116 m	Easting :697786.377 m							
Reduced Level (m):(+)271.080	BH. No. :BH-P2	BH Termination Depth (m):60							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.00	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :18-11-2021	Date of Completion :21-11-2021								

Boring type :Rotary					Dia. of Boring :150 mm	Dep	oth of Casing	(m):Not Used	
Date of Start :18-11-					Date of Completion :21-11-2021				
, E	E	Blow coun per 15cm	its 1			IS Classification			Special Observations
Debth (m) Sample Depth (m) Sample Depth (m)	mple	İ		SPT N	Strata	S ficat	Graphic	(Depth v/s	ecial
Sar (m)	ype N1	N2	N3	Value	Description	l assi	Log	SPT N Value)	Spe
10.0						ธิ	0	10 20 30 40 50 60 70 80 90 1	o ŏ
_10.5									
11.0									
11.5 11.5 SF	PT-4 12	15	20	35					
11.5_ 11.5 3F	1-4 12	13	20	33				1 1 1	
12.0									
_12.5									
13.0 13 UE	DS-5								
_13.5									
_14.0									_
_14.5 14.5 SF	PT-5 15	19	22	41				 	_
_15.0					Brown, Hard, Silty clay of low plasticity with gravel	CL			
					plasticity with graver				
_15.5									
_16.0 16 UE	OS-6								
_16.5									
_17.0									
17.5 17.5 SF	PT-6 16	19	28	47					
18.0									
_18.5									
19.0 19 UE	DS-7								
	33-1								
19.5									
19.5									
20.0									
LIDS*-UDS not reco	d	1							

FIELD BOREHOLE LOG									
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123047.116 m	Easting :697786.377 m							
Reduced Level (m):(+)271.080	BH. No. :BH-P2	BH Termination Depth (m):60							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.00	Inclination : Vertical							
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
D 00 1011 0001	D : CC 1 :: 01 11 0001	•							

Boring	type :Rot	tary					Dia. of Boring :150 mm	Dep	oth of Casing	g (m):Not Used
Date of	Start :18	3-11-2021					Date of Completion :21-11-2021			
	<u> </u>		В	low coun per 15cm	its 1			tion		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value) 10 22 33 40 50 60 77 80 80100
20.0								ਹ	0	10 20 30 40 50 60 70 80 90 100 🖸
20.5	20.5	SPT-7	18	21	30	51				•
21.0										
21.5										
22.0	22	UDS-8								
22.5										
23.0	23.5	SPT-8	22	26	30	56				
24.0	20.0	0110	22	20	00	00				
24.5										
25.0	25	UDS-9					Brown, Hard, Silty clay of low plasticity with gravel	CL		
25.5										
26.0										
26.5	26.5	SPT-9	25	28	34	62				
27.0										
27.5	28	UDS-10								
28.0	20	000-10								
29.0										
29.5	29.5	SPT-10	25	29	35	64				
30.0										

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL										
BH Location/Chainage :27+620 km	Northing :3123047.116 m	Easting :697786.377 m								
Reduced Level (m):(+)271.080	<i>BH. No.</i> :BH-P2	BH Termination Depth (m):60								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.00	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18-11-2021	Date of Completion :21-11-2021									

Boring	type :Rot		ure .iviaj				Dia. of Boring :150 mm		enth of Casi	ng (m) :Not Used	
		3-11-2021					Date of Completion :21-11-2021	-	epin of cust.	18 (11) 11 101 0300	
			В	low cour	nts			L C			S
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Val	Special Observation
Depth (m)30.030.531.031.532.032.533.033.534.034.535.036.537.037.538.038.539.039.5_	niis-ul 31 32.5 34.5 34.5 38.5	Sample Type UDS-11 UDS-11 SPT-13 SPT-14 SPT-15		per 15cn	n	N	Strata Description Brown, Hard, Silty clay of low plasticity with gravel	IS IS	Graphic Log	v/s SPT N Val	ne) Spec
40.0		SPT-16_		45	54	99					

FIELD BOREHOLE LOG												
Project Name :GTI for (HORC) project from Palwal to Harsana I	Kalan in the state of Haryana.	Client :HRIDCL										
BH Location/Chainage :27+620 km	Northing :3123047.116 m	Easting :697786.377 m										
Reduced Level (m):(+)271.080	BH. No. :BH-P2	BH Termination Depth (m):60										
Proposed / Existing Structure : Major Bridge	Water Table (m):33.00	Inclination: Vertical										
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used										
Date of Start :18-11-2021	Date of Completion :21-11-2021											
Depth (m) Sample Sample Type N4 N2 N3 N3 N3 N3 N3 N3 N3 N3 N3 N3 N3 N3 N3	Strata Description	no light with the control of the con										

Boring i							Dia. of Boring: 150 mm Depth of Casing (m): Not Used							
Date of	Start :18	-11-2021					Date of Completion :21-11-2021							
Denth	itu ple (m)	Sample	В	low coun per 15cm	its	SPT	Strata	IS Classification	Graphic	(Depth v/s	Special Observations			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	N Value	Description Description	IS Iassifi	Graphic Log	v/s SPT N Value)	Spec			
40.0								ပ	0 10 2	20 30 40 50 60 70 80 90 100	10 0			
40.5														
41.0											-			
41.5	41.5	SPT-17	44	61	39 (8cm)	>100								
42.0														
42.5					31									
43.0	43	SPT-18	40	69	(8cm)	>100					•			
43.5														
44.5	44.5	SPT-19	48	75	25 (5cm)	>100					•			
45.0							Brown, Hard, Silty clay of low plasticity with gravel	CL						
45.5				100										
46.0	46	SPT-20	60	(6cm)	-	>100					•			
46.5 _47.0_														
47.5	47.5	SPT-21	41	41 57 (9cm) >100										
48.0														
48.5														
49.0	49	SPT-22	51	100 (7cm)	-	>100					•			
49.5														
50.0			<u> </u>											

FIELD	BOREHOLE LO	G
Project Name :GTI for (HORC) project from Palwal to Harsan	a Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :27+620 km	Northing :3123047.116 m	Easting :697786.377 m
Reduced Level (m):(+)271.080	BH. No. :BH-P2	BH Termination Depth (m):60
Proposed / Existing Structure : Major Bridge	Water Table (m):33.00	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
	D . CG I .: 01 11 2001	

Boring i	ype :Rot	ary					Dia. of Boring :150 mm	Dep	th of Casing	(m):Not Used																				
Date of	Start :18	-11-2021					Date of Completion :21-11-2021																							
	n (ш)		В	low coun per 15cm	its า	SPT		IS Classification		(Depth	Observations																			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	N Value	Strata Description	IS Sific	Graphic Log	v/s SPT N Value)	erval																			
50.0	- 8 8			'\-	110	Value		Clas	0	1p 2p 3p 4p 5p 6p 7p 8p 9p 100	ops																			
50.5	50.5	SPT-23	43	55	45 (7cm)	>100																								
51.0																														
51.5					39																									
52.0 52.5	52	SPT-24	40	61	(6cm)	>100				<u> </u>																				
53.0																														
53.5	53.5	SPT-25	47	100 (11cm)	-	>100																								
54.0																														
54.5																														
55.0	55	SPT-26	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	100 (7cm)	-	>100	Brown, Hard, Silty clay of low plasticity with gravel	CL			
55.5																														
56.0 56.5	56 5	SPT-27	32	37	48	85																								
57.0	30.3	OI 1-27	32	31	40	00																								
57.5																														
58.0	58	SPT-28	27	33	47	80																								
58.5																														
59.0																														
59.5		SPT-29	39	45	50	95																								
60.0_	60			<u> </u>	<u> </u>	I			 																					

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsan	Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123021.117 m	Easting :697786.129 m								
Reduced Level (m):(+)270.749	<i>BH. No.</i> :BH-P3	BH Termination Depth (m):60								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.13	Inclination: Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18 11 2021	Date of Completion :20-11-2021	•								

Boring	type :Rot	tary					Dia. of Boring :150 mm	Dep	th of Casir	ıg (m) :N	Not U	sed				
Date of	Start :18	8-11-2021					Date of Completion :20-11-2021									
	_ ″ _		В	low cour per 15cm	nts n			IS Classification							T.	Special Observations
Depth (m)	In-Situ Sample Depth (m)	Sample				SPT N	Strata	IS ifical	Graphic		(Dept v/s	h		-	ecial
(m)	- Sal Dep	Туре	N1	N2	N3	Value	Description	assi	Log	SPT N Value)				Sp		
0.0								บ		0 10 20	30 40	50	60 70	80 9	0 100	<u>ō</u>
		DS-1														
0.5	-															
1.0	1	SPT-1	1	2	2	4				•						
1.5																
2.0																
2.5	2.5	UDS-1														
							Brown, Medium stiff to very stiff,	CL								
3.0							Silty clay of low plasticity	CL								
3.5																
4.0	4	SPT-2	5	7	9	16										
4.0	-	01 1-2	3	'		10				1						
4.5																
4.5_	-															
5.0																
5.0_	-															
		LIDC 0														
5.5	5.5	UDS-2														
6.0											\parallel					
											$\ \ $					
6.5	_															
	_										$ \cdot $					
7.0	7	SPT-3	10	13	18	31					\dagger					
7.5																
							Brown, Hard, Silty clay of low plasticity with gravel	CL								
8.0																
8.5	8.5	UDS-3													\vdash	
9.0												+			\vdash	
9.5										+	$\parallel \parallel$	+	+		\vdash	
10.0	10	SPT-4_	9	12	15	_27					Ш					
IIDC* I	DC not	recovered														

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL										
BH Location/Chainage :27+620 km	Northing :3123021.117 m	Easting :697786.129 m								
Reduced Level (m):(+)270.749	BH. No. :BH-P3	BH Termination Depth (m):60								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.13	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18-11-2021	Date of Completion :20-11-2021									

Boring i	<i>type :</i> Rot	ary					Dia. of Boring :150 mm	Dept	th of Casing	g (m):Not Used
Date of	Start :18	-11-2021					Date of Completion :20-11-2021			
Donath	tu Sle (m)	Commis	В	low coun per 15cm	its 1	SPT	Ohnsto	IS Classification	Cuambia	Copy the Copy of t
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	N Value	Strata Description	IS assific	Graphic Log	v/s SPT N Value)
10.0	_							ีวี	0	10 20 30 40 50 60 70 80 90 100
10.5										
11.0										
11.5	11.5	UDS-4							_	
12.0										
12.5										
13.0	13	SPT-5	10	15	18	33				+
13.5									_	
14.0									_	
14.5	14.5	UDS-5								
15.0							Brown, Hard, Silty clay of low plasticity with gravel	CL		
15.5										
16.0	16	SPT-6	14	18	35	53				<u> </u>
16.5										
17.0										
17.5	17.5	UDS-6								
18.0										
18.5										
19.0	19	SPT-7	18	19	24	43				
19.5										
20.0										

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Hars	sana Kalan in the state of Haryana.	Client :HRIDCL							
BH Location/Chainage :27+620 km	Northing :3123021.117 m	Easting :697786.129 m							
Reduced Level (m):(+)270.749	<i>BH. No.</i> :BH-P3	BH Termination Depth (m):60							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.13	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :18 11 2021	Date of Completion :20-11-2021								

Boring type :Rotary							Dia. of Boring: 150 mm Depth of Casing (m): Not Used					
Date of	Start :18	-11-2021					Date of Completion :20-11-2021					
	. 6		В	low coun per 15cm	its 1			ion		suc		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	SPT N Value)		
20.020.521.021.522.022.523.023.5	20.5	UDS-7 SPT-8	16	22	26	48		Ü		0 10 20 30 40 50 60 70 80 90 100 Ö		
24.0 _24.5_ _25.0_ _25.5_	25	SPT-9	18	25	28	53	Brown, Hard, Silty clay of low plasticity with gravel	CL				
26.0 26.5 27.0 27.5	26.5	UDS-9										
28.0 _28.5_ _29.0_	28	SPT-10	21	29	33	62						
29.5 30.0	29.5	UDS-10										

FIELD BOREHOLE LOG									
Project Name :GTI for (HORC) project from Palwal to Harsar	Client :HRIDCL								
BH Location/Chainage :27+620 km	Northing :3123021.117 m	Easting :697786.129 m							
Reduced Level (m):(+)270.749	<i>BH. No.</i> :BH-P3	BH Termination Depth (m):60							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.13	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
D 00 10 11 0001	D . CG 1 .: 00 11 0001								

Boring t	oring type :Rotary						Dia. of Boring: 150 mm Depth of Casing (m): Not Used						
Date of	Start :18	-11-2021					Date of Completion :20-11-2021	'					
	. ĉ		В	low cour per 15cm	its 1			ion		Suc			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth Value) SPT N Value) Opsecial 1 10 20 30 40 80 80 70 80 80 100			
30.0										10 20 30 40 50 60 70 80 90 100			
30.5													
31.0	31	SPT-11	27	38	42	80							
31.5													
32.0													
32.5	32.5	UDS*			42								
33.0	33	SPT-12	35	58	(5cm)	>100		-	▼ 33.13m				
33.5					31								
34.0	34	SPT-13	48	69	(5cm)	>100				 			
34.5													
35.0							Brown, Hard, Silty clay of low plasticity with gravel	CL					
35.5	35.5	SPT-14	44	75	25 (11cm)	>100							
36.0													
36.5													
37.0	37	SPT-15	22	28	34	62							
37.5													
38.5	38.5	UDS-11											
39.0													
39.5													
40.0	40	SPT-16	29	32	37	69							

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Hars:	nna Kalan in the state of Haryana.	in the state of Haryana. Client :HRIDCL								
BH Location/Chainage :27+620 km	Northing :3123021.117 m	Eastin	Easting :697786.129 m							
Reduced Level (m):(+)270.749	BH. No. :BH-P3	ВН Те	BH Termination Depth (m):60							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.13	Inclin	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth	Depth of Casing (m): Not Used							
Date of Start :18-11-2021	Date of Completion :20-11-2021	Date of Completion :20-11-2021								
Blow counts		_								

Boring 1	type :Rot	tary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used																
Date of	Start :18	3-11-2021					Date of Completion :20-11-2021	•															
Depth	In-Situ Sample Depth (m)	Sample	В	low cour per 15cm	nts n	SPT	Strata	IS Classification	Graphic (Depth size of SPT N Value)														
Depth (m) _40.0_	San San Depti	Type	N1	N2	N3	N Value	Description	I! Classif	SPT N Value)														
40.5																							
41.0																							
41.5	41.5	UDS-12																					
42.0																							
42.5 _43.0_	43	SPT-17	46	73	27 (12cm)	>100																	
43.5			40	70	(12011)	7 100																	
44.0																							
44.5	44.5	SPT-18	40	68	32 (8cm)	>100																	
45.0 _45.5_							Brown, Hard, Silty clay of low plasticity with gravel	CL															
46.0	46	SPT-19	58	100 (5cm)	-	>100																	
46.5																							
47.0					37																		
47.5 _48.0_	47.5	SPT-20	43	63	(5cm)	>100																	
48.5																							
49.0	. 49	SPT-21	55	100 (7cm)	-	>100																	
49.5																							
50.0																							

FIELD BOREHOLE LOG								
Project Name :GTI for (HORC) project from Palwal to Harsan	Client :HRIDCL							
BH Location/Chainage :27+620 km	Northing :3123021.117 m	Easting :697786.129 m						
Reduced Level (m):(+)270.749	BH. No. :BH-P3	BH Termination Depth (m):60						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.13	Inclination : Vertical						
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
D 00 10 11 0001	D . CG I .: 20 11 2021							

Boring t	type :Rot	ary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :18	-11-2021					Date of Completion :20-11-2021						
	, (c		В	low coun per 15cm	ts 1			tion		l ons			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic (Depth v/s SPT N Value)	Special Observations			
50.0								<u></u>	0 10 20 30 40 50 60 70 80 9	o 100 O			
50.5	50.5	SPT-22	43	60	40 (6cm)	>100				•			
51.0													
51.5													
52.0	52	SPT-23	35	66	34 (5cm)	>100				•			
52.5													
53.0													
53.5	53.5	SPT-24	47	100 (10cm)	-	>100				-			
54.0													
54.5													
55.0	55	SPT-25	55	100 (8cm)	-	>100	Brown, Hard, Silty clay of low plasticity with gravel	CL					
55.5							p, g			A			
56.0													
56.5	56.5	SPT-26	34	39	45	84			<u> </u>				
57.0													
57.5													
58.0	58	SPT-27	28	35	43	78							
58.5													
59.0													
59.5	59.5	SPT-28	36	45	52	97							
60.0		_DS-2_											

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123006.118 m	Easting :697785.986 m							
Reduced Level (m):(+)271.774	BH. No. :BH-P4	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.14	Inclination : Vertical							
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
D	Data of Completion 20 11 2021								

Boring	<i>type :</i> Rot	ary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used												
Date of	Start :18	-11-2021					Date of Completion :20-11-2021	·											
	. 6		В	Blow counts per 15cm				ion		Suc									
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	SPT N Value)									
0.0		DS																	
0.5	1	UDS-1																	
1.5	, I	0Д3-1																	
2.0							Brown, Stiff, Silty clay of low plasticity	CL											
2.5	2.5	SPT-1	3	4	6	10													
3.5																			
4.0 4.5	4	UDS-2																	
5.0	5.5	SPT-2	10	14	17	31													
6.5	7	UDS-3	3 Brow Sar													Brown, Medium dense to dense, Sandy silt of low plasticity with gravel	ML-CL		
7.5 8.0		UDS-3																	
8.5	8.5	SPT-3	11	19	24	43													
9.5																			
10.0	10	UDS-4																	

FIELD BOREHOLE LOG									
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123006.118 m	Easting :697785.986 m							
Reduced Level (m):(+)271.774	BH. No. :BH-P4	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.14	Inclination : Vertical							
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :18-11-2021	Date of Completion :20-11-2021								

Boring	type :Rot	tary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :18	3-11-2021					Date of Completion :20-11-2021						
	. 6		В	low coun per 15cm	its 1			ion		Suc			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value) Special Option of 12 22 32 44 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 100 Option of 12 22 33 40 50 60 77 80 80 80 100 Option of 12 22 33 40 50 60 77 80 80 80 100 Option of 12 22 33 40 50 60 77 80 80 80 80 90 Option of 12 22 33 40 50 60 77 80 80 80 80 90 80 90 80 80 80 90 80 80 80 80 80 80 80 80 80 80 80 80 80			
10.0	۵" ا							Cla	c	0 10 20 30 40 50 60 70 80 90 100 O			
10.5													
11.5	. 11.5	SPT-4	8	14	19	33							
12.5													
13.0	13	UDS-5				Brown, Medium dense to dense, Sandy silt of low plasticity with gravel		ML-CL					
14.0	. 14.5	SPT-5	7	11	14	25							
15.0													
16.0	. 16	UDS-6											
16.5													
17.5 _18.0_	. 17.5	SPT-6	23	39	51	90	Brown, Hard, Silty clay of low	CL					
18.5							plasticity with gravel	<u> </u>					
19.0_	. 19	UDS-7											
20.0	D0	recovered	1										

FIELD BOREHOLE LOG								
Project Name :GTI for (HORC) project from Palwal to Harsan	Client :HRIDCL							
BH Location/Chainage :27+620 km	Northing :3123006.118 m	Easting :697785.986 m						
Reduced Level (m):(+)271.774	BH. No. :BH-P4	BH Termination Depth (m):50						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.14	Inclination : Vertical						
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
7.00	E 66 1 . 20 11 2021							

Boring t	ype :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used						
Date of	Start :18	-11-2021					Date of Completion :20-11-2021	·					
	(1		В	low cour per 15cn	nts n			ion		suc			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth (Depth V/s Special Opecial Opec			
20.0	1							ວັ		O 10 20 30 40 50 60 70 80 90 100 O			
20.5	20.5	SPT-7	24	32	34	66				—			
21.0													
21.5													
22.0	22	UDS-8							-				
22.5													
23.0	23.5	SPT-8	16	21	27	48							
24.0	23.3	3F 1-0	10	21	21	40							
24.5													
25.0	25	UDS*					Brown, Hard, Silty clay of low plasticity with gravel	CL					
25.5	25.5	SPT-9	17	50	50 (10cm)	>100	,						
26.0													
26.5	26.5	SPT-10	22	57	43 (8cm)	>100							
27.0													
27.5	00	1100.0											
28.0	28	UDS-9											
29.0													
29.5	29.5	SPT-11	15	24	37	61							
30.0	DC :: -t	ecovered	1										

FIELI	D BOREHOLE I	LOG							
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :27+620 km	Northing :3123006.118 m	Easting :697785.986 m							
Reduced Level (m):(+)271.774	BH. No. :BH-P4	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.14	Inclination: Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :18-11-2021	Date of Completion :20-11-2021								
Blow counts									

Boring t	ype :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used							
Date of	Start :18	-11-2021					Date of Completion :20-11-2021	•						
	<u> </u>		В	low cour per 15cm	its 1			ion		Suc				
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic (Dep	/alue)				
30.0									0 10 20 30 40 50	60 70 80 90 100				
30.5														
31.0	31	UDS-10												
31.5														
32.0					57									
32.5	32.5	SPT-12	27	43	(13cm)	>100								
33.0									▼ 33.14m					
33.5														
34.0	34	SPT-13	30	47	53 (11cm)	>100								
34.5														
35.0					46		Brown, Hard, Silty clay of low plasticity with gravel	CL						
35.5	35.5	SPT-14	37	54	(9cm)	>100								
36.0														
36.5 _37.0_	37	SPT-15	22	45	55 (15cm)	>100								
37.5	01	01 1 10	22	40	(TOOIII)	7 100								
38.0														
38.5	38.5	SPT-16	25	43	55	98								
39.0														
39.5														
40.0	40	SPT-17	_22	37	45	82								

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL										
BH Location/Chainage :27+620 km	Northing :3123006.118 m	Easting :697785.986 m								
Reduced Level (m):(+)271.774	BH. No. :BH-P4	BH Termination Depth (m):50								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.14	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18-11-2021	Date of Completion :20-11-2021									

Boring t	ype :Rot	tary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used							
Date of	Start :18	3-11-2021					Date of Completion :20-11-2021							
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	low cour per 15cn N2	nts n N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations			
	41.5 43 44.5 49	SPT-18 UDS-11 SPT-20 SPT-21	N1 21 22 22 31	N2 35 43 47	57 (11cm) 53 (8cm) 46 (7cm)	78 >100 >100 >100	Brown, Hard, Silty clay of low plasticity with gravel	Class		SPT N Value) 9 10 20 30 40 50 60 70 80 80 9100 9 10 20 30 40 50 60 70 80 80 80100	Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp Sp S			
49.5 _50.0_	50	SPT-23	25	65	35 (6cm)	_>100								

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL										
BH Location/Chainage :27+620 km	Northing :3122989.119 m	Easting :697785.825 m								
Reduced Level (m):(+)271.929	<i>BH. No.</i> :BH-A2	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.12	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18-11-2021	Date of Completion :19-11-2021									

Boring	type :Rot	ary					Dia. of Boring :150 mm	De	pth of	Casin	ıg (n	n) :N	Not	Use	d								
Date of	Start :18	-11-2021					Date of Completion :19-11-2021																
	, e		В	low coun per 15cm	its า			IS Classification											Special Observations				
Depth (m)	Situ nple th (n	Sample	ilible		SPT N	Strata Suji	Gra	aphic	ic (Depth v/s					ecial									
(m)	Depth (m) Sample Sample Type	Type	N1	N2	N3	Value	Description	l assi		.og	5			PT N	Va	lue)			Spe				
0.0	_							ธั			0 10	20	30	40	50	60 70	80	90 100	ŏ				
		DS																					
0.5																							
1.0	1	SPT-1	4	5	7	12																	
1.5																							
2.0																							
2.5	2.5	UDS-1																					
	2.5	000-1					Brown, Medium dense, Sandy silt of																
3.0							low plasticity	ML-CL															
3.0																							
2.5																							
3.5																							
4.0		0.D.T. 0	•	_	40	4-																	
4.0	4	SPT-2 6	7	10	17						1	†			H								
4.5										-						Н		+					
												\setminus											
5.0												\dashv				Н		+					
													\setminus										
5.5	5.5	UDS-2											\parallel					+					
													\										
6.0											+		+			Н		+					
													\										
6.5													\dashv			Н		+					
													'	\setminus									
7.0	7	SPT-3	10	16	22	38								-		Н		+					
7.5													+					+					
							Brown, Hard, Silty clay of low plasticity with gravel	CL															
8.0							p, g						+	+		Н		+					
									Ħ														
8.5	8.5	UDS-3							Ħ		+	+	+	\perp	-	\Box		+					
9.0										4	+	+	\bot				\perp						
9.5											_	_	+	\parallel				\perp					
									Ħ														
10.0	10	SPT-4	12	18	25	43																	
IIDe* II	DC not	ecovered																					

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsan	a Kalan in the state of Haryana.	Client :HRIDCL								
BH Location/Chainage :27+620 km	Northing :3122989.119 m	Easting :697785.825 m								
Reduced Level (m):(+)271.929	BH. No. :BH-A2	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.12	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
D 00 10 11 0001	D . CG 1 .: 10.11.0001									

Boring	type :Rot	tary					Dia. of Boring :150 mm	Dep	oth of Casin	ng (m):Not Used
Date of	Start :18	3-11-2021					Date of Completion :19-11-2021			
	. 6		В	low coun per 15cm	its 1			ion		Suc
Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	C Special Spec	
10.0								ਹ		0 10 20 30 40 50 60 70 80 90 100 🗖
10.5										
11.0										
11.5	11.5	UDS-4								
12.5_										
13.0	. 13	SPT-5	11	14	26	40				
13.5										
14.0	44.5	1100 5								
14.5 _15.0_	14.5	UDS-5					Brown, Hard, Silty clay of low	CL		
15.5							plasticity with gravel			
16.0	. 16	SPT-6	13	20	28	48				
16.5										
17.0_ 17.5_	17.5	UDS-6								
18.0										
18.5										
19.0	19	SPT-7	24	35	47	82				
19.5										
20.0_	IDC := =4 :	recovered	1			I I				

FIELD BOREHOLE LOG											
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL											
BH Location/Chainage :27+620 km	Northing :3122989.119 m	Easting :697785.825 m									
Reduced Level (m):(+)271.929	BH. No. :BH-A2	BH Termination Depth (m):40									
Proposed / Existing Structure : Major Bridge	Water Table (m):33.12	Inclination : Vertical									
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used									
Data of Start :19 11 2021	Date of Completion :10-11-2021	· · · · · · · · · · · · · · · · · · ·									

Boring i	ype :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used							
Date of	Start :18	-11-2021					Date of Completion :19-11-2021	·						
	_ a Ê		В	low coun per 15cm	ts I			tion		suo l				
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	SPT N Value)				
20.0 20.5 21.0 21.5 22.0 22.5 23.0	20.5	UDS-7	22	28	35	63		5		0 10 20 30 40 50 60 70 80 90 100 Ö				
23.5 _24.0_ _24.5_ _25.0_ _25.5_	23.5	UDS-8	19	24	32	56	Brown, Hard, Silty clay of low plasticity with gravel	CL						
26.0 _26.5_ _27.0_ _27.5_	26.5	UDS-9												
28.0 _28.5_ _29.0_	28	SPT-10	25	38	48	86								
29.5 30.0	29.5	UDS-10												

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL								
BH Location/Chainage :27+620 km	Northing :3122989.119 m	Easting :697785.825 m								
Reduced Level (m):(+)271.929	BH. No. :BH-A2	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.12	Inclination : Vertical								
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
7.00	B 66 1 1 10 11 2001									

Boring i	type :Rot	ary					Dia. of Boring :150 mm	Dep	th of Casing	g (m) :Not Use	ed						
Date of	Start :18	3-11-2021					Date of Completion :19-11-2021										
	2		В	low cour per 15cn	nts n			ion					Suc				
Depth (m)	In-Situ Sample Depth (m)	Sample				SPT N	Strata	IS Classification	Graphic	(D	epth v/s		Special Observations				
(m)	San Type	N1	N2	N3	Value	Description	– assi	Log	SPT N	Value)		Spe					
30.0	_							ฮื	0	10 20 30 40	50 60 70	80 90 100	ŏ				
30.5																	
					48												
31.0	31	SPT-11	33	52	(10cm)	>100											
31.5																	
32.0																	
32.5	32.5	SPT-12	32	59	41 (7cm)	>100											
33.0																	
33.0								-	33.12m								
33.5																	
34.0	34	SPT-13	36	62	38 (5cm)	>100											
24.5		34 3F I-13															
34.5							Brown, Hard, Silty clay of low	CL									
25.0						>100											
35.0							plasticity with gravel						1				
05.5	05.5	ODT 44	5 4	50	44												
35.5	35.5	SPT-14	54	56	(7cm)	>100							†				
00.0																	
36.0													1				
00.5																	
36.5																	
												/					
37.0	37	SPT-15	20	34	45	79						+	1				
37.5																	
38.0																	
38.5	38.5	SPT-16	22	38	50	88											
39.0																	
39.5																	
40.0		SPT-17	29	38	48	86											

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123086.726 m	Easting :697330.702 m							
Reduced Level (m):(+)269.806	BH. No. :BH-A1	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):32.67	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :16-10-2021	Date of Completion :18-10-2021								

Boring i	ype :She	ll & Auge	er				Dia. of Boring :150 mm	Dep	oth of Casing (m): Not Used								
Date of	Start :16	-10-2021					Date of Completion :18-10-2021	•									
Depth (m)	In-Situ Sample Depth (m)	Sample	В	low coun per 15cm	its 1	SPT N	Strata	IS Classification	Graphic (Depth size of SPT N Value)								
(m) 0.0	In- Sar Dept	Type	N1	N2	N3	Value	Description	l Classiř	SPT N Value)								
0.5		DS															
1.0	1	SPT-1	7	9	10	19											
1.5																	
2.0	2.5	LIDC 4															
2.5	2.5	UDS-1															
3.5																	
4.0	4	SPT-2	7	12	14	26											
4.5 5.0							Brown, Medium dense to dense, Sandy silt of low plasticity with gravel	ML-CL									
5.5	5.5	UDS-2															
6.5																	
7.0 7.5	7	SPT-3	10	14	15	29											
8.0																	
8.5	8.5	UDS-3															
9.0 9.5																	
10.0	10	_SPT-4_	8	12	17	29											

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123086.726 m	Easting :697330.702 m							
Reduced Level (m):(+)269.806	BH. No. :BH-A1	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):32.67	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :16 10 2021	Date of Completion :18-10-2021	•							

	Boring type :Shell & Auger						Dia. of Boring: 150 mm Depth of Casing (m): Not Used						
Date of	Start :16	5-10-2021					Date of Completion :18-10-2021						
Depth	situ nple n (m)	Sample	В	low cour per 15cm	nts 1	SPT	Strata	IS Classification	Graphic	(Depth	Special Observations		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	N Value	Description	ls Slassif	Graphic Log	v/s SPT N Value)	Spe Observ		
10.0									0 10	20 30 40 50 60 70 80 90 100			
10.5													
11.0													
11.5	11.5	UDS-4											
12.0							Brown, Medium dense to dense,						
12.5							Sandy silt of low plasticity with gravel	ML-CL					
13.0	13	SPT-5	10	13	18	31							
10.0	10	01 1-5	10		10								
13.5													
14.0													
14.5	14.5	UDS-5											
15.0													
15.5													
16.0	16	SPT-6	13	18	24	42							
16.5													
_ 10.0_													
17.0							Brown, Hard, Silty clay of low	CL					
17.5	17.5	UDS-6					plasticity with gravel	OL.					
18.0													
40.5													
18.5													
19.0	19	SPT-7	15	20	28	48							
19.5													
20.0													
		racevaras				•							

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123086.726 m	Easting :697330.702 m							
Reduced Level (m):(+)269.806	BH. No. :BH-A1	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):32.67	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							

	Boring type : Shell & Auger						Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :16	5-10-2021			4-		Date of Completion :18-10-2021						
Denth	itu ple (m)	Sample	В	low coun per 15cm	its 1	SPT	Strata	IS Classification	Graphic	(Depth v/s SPT N Value) 10 20 30 40 50 60 70 80 30100			
Depth (m)	In-Situ Sample Depth (m)	Type	N1	N2	N3	N Value	Description	IS assifi	Log	v/s SPT N Value)			
20.0								ਹ	0	10 20 30 40 50 60 70 80 90 100 0			
20.5	20.5	UDS-7					Brown, Hard, Silty clay of low plasticity with gravel	CL					
21.0													
21.5													
22.0	22	SPT-8	14	31	37	68							
22.5													
23.5	23.5	UDS-8											
24.0													
24.5													
25.0	25	SPT-9	18	30	45	75	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL					
25.5							ion places, mar graver						
26.0 _26.5_	26.5	UDS-9											
27.0													
27.5													
28.0	28	SPT-10	37	62	38 (5cm)	>100							
28.5													
29.0	29.5	SPT-11	19	34	46	80							
30.0		racevaras											

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL										
BH Location/Chainage :28+075 km	Northing :3123086.726 m	Easting :697330.702 m								
Reduced Level (m):(+)269.806	BH. No. :BH-A1	BH Termination Depth (m):55								
Proposed / Existing Structure : Major Bridge	Water Table (m):32.67	Inclination : Vertical								
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
D + CC+ + 1C 10 2021	Date of Community in a 10, 10, 2021	<u> </u>								

Boring i	type :She	ll & Auge	er				Dia. of Boring :150 mm	a. of Boring :150 mm Depth of Casing (m) :Not Used					
Date of	Start :16	-10-2021					Date of Completion :18-10-2021						
	∞ €		В	low cour per 15cm	its า			tion		- I			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	Copyth Co			
30.531.031.532.032.533.033.5	31 32.5	SPT-12	31	50 35	50 (10cm)	>100			32.67m				
34.0	34	SPT-14	20	41	48	89							
35.0 _35.5_ _36.0_	35.5	SPT-15	19	38	40	78	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL					
36.5 _37.0_ _37.5_	37	SPT-16	19	35	50	85							
38.0 _38.5_ _39.0_	38.5	SPT-17	21	37	48	85							
39.5 _40.0_	40	_SPT-18_	18	48	52 _(14cm)_	_>100							

FIELD BOREHOLE LOG										
Project Name : GTI for (HORC) project from Palwal to Harsana	Client :HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123086.726 m	Easting :697330.702 m								
Reduced Level (m):(+)269.806	BH. No. :BH-A1	BH Termination Depth (m):55								
Proposed / Existing Structure : Major Bridge	Water Table (m):32.67	Inclination: Vertical								
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :16-10-2021	Date of Completion :18-10-2021	Date of Completion :18-10-2021								
Depth (m) Depth	Strata Description	Secial Cations Secial Cations Secial Cations Secial Cations Secial Cations Secual y Security Sec								

Date of		-10-2021					Date of Completion :18-10-2021			, ()	\neg
Depth (m)	In-Situ Sample Depth (m)	Sample Type		per 15cm	1	SPT N	Strata Description	IS Classification	Graphic Log	(Depth	Special Observations
40.0_	- S De	<i>3</i> 1	N1	N2	N3	Value	·	Class	0	SPT N Value) 1p 2p 3p 4p 5p 6p 7p 8p 9p100	Sq0
40.5											
41.0											
41.5	41.5	SPT-19	17	40	48	88					
42.0											
42.5	40	CDT 00	20	40	57	. 100					
43.0	43	SPT-20	22	43	(12cm)	>100				•	
44.0											
44.5	44.5	SPT-21	25	59	38 (10cm)	>100					
45.0							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			
45.5					49						
46.0 _46.5_	46	SPT-22	27	51	(13cm)	>100					
47.0											
47.5	47.5	SPT-23	37	53	47 (8cm)	>100					
48.0											
48.5											
49.0	49	SPT-24	36	100 (14cm)	-	>100					
49.5											
50.0											

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123086.726 m	Easting :697330.702 m							
Reduced Level (m):(+)269.806	BH. No. :BH-A1	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):32.67	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							

Boring t	ype:She	ll & Auge	er				Dia. of Boring :150 mm Depth of Casing (m) :Not Used				
Date of	Start :16	-10-2021					Date of Completion :18-10-2021				
	, n)		В	low coun per 15cm	nts 1			tion		 	
Depth (m)50.0	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification		SPT N Value) SC 58 CO	
50.5	50.5	SPT-25	30	80	20 (13cm)	>100					
51.0 _51.5_											
52.0	52	SPT-26	39	75	25 (7cm)	>100					
52.5 _53.0_							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			
53.5	53.5	SPT-27	38	73	27 (8cm)	>100					
54.0 _54.5_											
55.0	55	_SPT-28_	40	70	30 (7cm)	_>100_					

FIELD	BOREHOLE LO	G
Project Name: GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+075 km	Northing :3123064.726 m	Easting :697330.717 m
Reduced Level (m):(+)270.070	BH. No. :BH-P1	BH Termination Depth (m):55
Proposed / Existing Structure : Major Bridge	Water Table (m):32.68	Inclination : Vertical
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
		' I

	a ê		В	low coun per 15cm	nts n	CDT.		ıtion		/P4		_				
epth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Valu	e) 70 80 90 10	Special				
0.0		DS								10 20 30 40 30 00	70 80 90 10					
0.5									_			-				
1.0	1	UDS-1														
1.5									_							
2.0							Brown, Medium dense, Silty sand	SM								
.2.5	2.5	SPT-1	8	11	13	24						-				
3.0																
3.5																
4.0	4	UDS-2														
4.5																
5.0		CDT 0	SPT-2	SPT-2	SPT-2	SPT-2	4.4				Brown, Dense, Sandy silt of low					
5.5 <u> </u>	5.5	3P1-2	14	14	14	14	14	20	24	44	plasticity with gravel	ML-CL				
6.5_																
7.0	7	UDS-3														
7.5																
.8.0																
8.5	8.5	SPT-3	8	10	14	24	Brown, Very stiff to hard, Silty clay of low plasticity	CL								
9.0	_ 0.0 01 1-0 0					or low plasticity										
9.5																
	10	_UDS-4_														

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL										
BH Location/Chainage :28+075 km	Northing :3123064.726 m	Easting :697330.717 m								
Reduced Level (m):(+)270.070	BH. No. :BH-P1	BH Termination Depth (m):55								
Proposed / Existing Structure : Major Bridge	Water Table (m):32.68	Inclination: Vertical								
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
D	Date - CC 1-4:15 10 2021	<u> </u>								

Description 1-10-2021 Description Per 15-00-2021 Description	Boring i	ype :She	ell & Auge	er				Dia. of Boring :150 mm	Dep	oth of Casii	ng (m) :1	Not U	sed									
11.5. 11.5 SPT-4 7 10 11 21 12.5. 13.0 13 UDS-5 13.0 13 UDS-5 14.0 14.5 SPT-5 5 9 10 19 Brown, Very stiff to hard, Silty clay of low plasticity of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense,	Date of	Start :11	-10-2021					Date of Completion :15-10-2021														
11.5. 11.5 SPT-4 7 10 11 21 12.5. 13.0 13 UDS-5 13.0 13 UDS-5 14.0 14.5 SPT-5 5 9 10 19 Brown, Very stiff to hard, Silty clay of low plasticity of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense,		e (u		В	low coun per 15cm	its 1			tion								ons					
11.5. 11.5 SPT-4 7 10 11 21 12.5. 13.0 13 UDS-5 13.0 13 UDS-5 14.0 14.5 SPT-5 5 9 10 19 Brown, Very stiff to hard, Silty clay of low plasticity of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense,	Depth	Situ mple th (n	Sample				SPT N	Strata	IS ficat	Graphic			(Dept v/s	th		- [-	ecial					
11.5. 11.5 SPT-4 7 10 11 21 12.5. 13.0 13 UDS-5 13.0 13 UDS-5 14.0 14.5 SPT-5 5 9 10 19 Brown, Very stiff to hard, Silty clay of low plasticity of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense,	(m)	Sar Dept	Туре	N1	N2	N3	Value	Description	l assi	Log		SP	ΓNV	alue)		-	Spe					
11.0	_10.0_								ีว		0 10 20	30 4	0 50	60 70	80	90 100	ō					
11.0																						
11.0	_10.5_																					
11.5 11.5 SPT-4 7 10 11 21																						
11.5 SPT-4 7 10 11 21 12.0	_11.0_																					
12.5																						
12.5	_11.5_	11.5	SPT-4	7	10	11	21															
12.5																						
12.5	_12.0_																					
13.0_ 13 UDS-6 13.5_																						
13.0 13 UDS-5 14.0 14.0 14.5 SPT-5 5 9 10 19 Brown, Very stiff to hard, Silty clay of low plasticity CL 15.0 15.6 16.5 17.0 17.5 SPT-6 10 15 22 37 18.6 19.0 19 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 10 UDS-7 19.5 SPT-6 UDS-7	_12.5_																					
13.5																						
13.5	13.0	13	UDS-5																			
	13.5																					
	_ 10.0_																					
	14.0																					
	_ 14.0_					9 10	10 19	Brown, Very stiff to hard, Silty clay														
	115	14.5	SDT 5	5	0																	
	_ 14.5_	14.5	35 1-3	3	9	10	19	of low plasticity	CL		1											
	15.0																					
	13.0															1						
	15.5										\											
17.0	_ 13.3_																					
17.0	40.0	40	LIDG C																			
17.017.5 17.5 SPT-6 10 15 22 37 _18.018.519.0_ 19 UDS-7 _19.5_ Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL	_16.0_	16	UDS-6																			
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	40.5																					
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	_10.5_																					
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	47.0																					
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	_17.0_											+										
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	47.5	47.5	ODT 0	40	45	00	0.7															
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	_17.5_	17.5	521-6	10	15	22	37					1										
18.519.0 19 UDS-7 _19.520.0 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL																						
19.0 19 UDS-7 _19.5_ Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	18.0											+ '				Н						
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL																						
19.5	18.5										+			H								
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL												$ \setminus $										
20.0	_19.0_	19	UDS-7						+	+	+	+	H									
20.0																						
20.0	19.5							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			+	\vdash	+	+	H						
														\perp		Ш						

FIELD	BOREHOLE LO	G
Project Name: GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+075 km	Northing :3123064.726 m	Easting :697330.717 m
Reduced Level (m):(+)270.070	BH. No. :BH-P1	BH Termination Depth (m):55
Proposed / Existing Structure : Major Bridge	Water Table (m):32.68	Inclination : Vertical
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used

		ll & Auge					Dia. of Boring :150 mm	Dep	th of Casing	g (m):Not Used
Date of	Start :11	-10-2021					Date of Completion :15-10-2021			
	″ €		В	low cour per 15cm	its			tion		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth SPT N Value)
20.0								Ö		10 20 30 40 50 60 70 80 90 100
20.5	20.5	SPT-7	15	22	33	55				
21.0										
21.5										
22.0	22	UDS-8								
22.5										
23.0										
23.5	23.5	SPT-8	21	30	36	66				
24.0										
24.5										
25.0	25	UDS-9					Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL		
25.5										
26.0										
26.5	26.5	SPT-9	17	28	38	66				
27.0										
27.5	00	CDT 40	40	20	44	7.				
28.0	28	SPT-10	18	30	41	71				
28.5										
29.5	29.5	SPT-11	20	35	45	80				
30.0	20.0	51 1 11		00	- -0					
LIDE* I										

FIELD	BOREHOLE LO	G
Project Name: GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+075 km	Northing :3123064.726 m	Easting :697330.717 m
Reduced Level (m):(+)270.070	BH. No. :BH-P1	BH Termination Depth (m):55
Proposed / Existing Structure : Major Bridge	Water Table (m):32.68	Inclination : Vertical
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used

Boring i	ype :She	ell & Auge	r				Dia. of Boring :150 mm	De	pth of Casir	g (m):Not Used	
Date of	Start :11	-10-2021					Date of Completion :15-10-2021				
	, (c		В	low coun per 15cm	its า			tion			Ons
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations
30.0								๋		0 10 20 30 40 50 60 70	80 90 100 Ö
30.5 _31.0_ _31.5_	31	SPT-12	27	42	50	92					
32.0	32.5	SPT-13	29	45	52	97					
33.0									₹32.68m		
34.0	34	SPT-14	18	40	50	90					
35.0 _35.5_ _36.0_	35.5	SPT-15	14	33	44	77	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			•
36.5 _37.0_ _37.5_	37	SPT-16	18	35	48	83					•
38.0 _38.5_ _39.0_	38.5	SPT-17	20	36	47	83					
39.5		SPT-18	22	40	52	92					

FIELD BOREHOLE LOG											
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL											
BH Location/Chainage :28+075 km	Northing :3123064.726 m	Easting :697330.717 m									
Reduced Level (m):(+)270.070	BH. No. :BH-P1	BH Termination Depth (m):55									
Proposed / Existing Structure : Major Bridge	Water Table (m):32.68	Inclination : Vertical									
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used									
Date of Start :11-10-2021	Date of Completion :15-10-2021										

Boring	type :She	ll & Auge	er				Dia. of Boring :150 mm	Dep	oth of Casing (m):Not Used
Date of	Start :11	-10-2021					Date of Completion :15-10-2021			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	low cour per 15cn N2	nts n N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)
40.040.541.041.542.042.543.043.544.044.545.046.547.0	41.5	SPT-20 SPT-21	17	42 40 31	48 42 39 45	90 82 70	Brown, Very dense, Sandy silt of low plasticity with gravel	Clas		20 30 40 50 60 70 80 90 100
47.5 _48.0_ _48.5_ _49.0_	47.5	SPT-23 SPT-24	18	36 54	46 (10cm)	>100				
49.5 _50.0_										

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL										
Northing :3123064.726 m	Easting :697330.717 m									
BH. No. :BH-P1	BH Termination Depth (m):55									
Water Table (m):32.68	Inclination : Vertical									
Dia. of Boring :150 mm	Depth of Casing (m): Not Used									
	Kalan in the state of Haryana. Northing:3123064.726 m BH. No.:BH-P1 Water Table (m):32.68									

Boring	type :She	ell & Auge	er				Dia. of Boring :150 mm	Dep	th of Casing	g (m):Not Used	
Date of	Start :11	-10-2021					Date of Completion :15-10-2021				
	=		В	low cour per 15cn	nts 1			ion			Suc
Depth (m)50.0	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value) 10 20 30 40 50 60 70 80	Special Observations
50.5	50.5	SPT-25	36	61	39 (7cm)	>100					+
51.0_ 51.5_											
52.0 _52.5_	. 52	SPT-26	38	68	32 (5cm)	>100	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			
53.0 _53.5_	53.5	SPT-27	33	61	39 (8cm)	>100					
54.0		S <u>-</u> .			(66)						
54.5_ 55.0_	55	_SPT-28_	41	78	22 (3cm)_	>100					

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123026.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.499	BH. No. :BH-P2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.20	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Data of Start 11 10 2021	Date of Completion :14-10-2021								

Boring i	type :She	ll & Auge	er				Dia. of Boring :150 mm Depth of Casing (m) :Not Used							
Date of	Start :11	-10-2021					Date of Completion :14-10-2021							
	_ <u>_</u>		В	low coun per 15cm	ts 1			ion		Suc				
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	Special Specia				
0.0		DS							ШЩ					
0.5 1.0 1.5	. 1	SPT-1	3	4	5	9								
2.0	2.5	UDS-1					Brown, Loose, Sandy silt of low plasticity	ML-CL						
3.0	4	SPT-2	9	10	12	22								
4.5 5.0														
5.5	5.5	UDS-2												
6.5 7.0 7.5	7	SPT-3	12	17	21	38	Brown, Medium dense to dense, Silty sand with clay & gravel	SM-SC						
8.0 8.5 9.0	8.5	UDS-3												
9.5	10	_SPT-4_	10	16	25	41								

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123026.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.499	BH. No. :BH-P2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.20	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :11-10-2021	Date of Completion :14-10-2021								

Boring i	type :She	ll & Auge	er				Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :11	-10-2021					Date of Completion :14-10-2021						
	ء ج		В	low coun per 15cm	its 1			iion			Suc		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations		
10.0									0 10 20	30 40 50 60 70 80 90 100			
10.5											-		
11.5	11.5	UDS-4									-		
12.0											-		
12.5							Brown, Medium dense to dense, Silty sand with clay & gravel	SM-SC			_		
13.0	13	SPT-5	10	20	22	42				 	-		
13.5											_		
14.0													
14.5	14.5	UDS-5									-		
15.0													
15.5													
16.0	. 16	SPT-6	14	21	30	51				<u> </u>	-		
16.5													
17.0							Brown, Hard, Silty clay of low	CL					
17.5	17.5	UDS-6					plasticity with gravel	OL.					
18.0													
18.5													
19.0	19	SPT-7	16	24	35	59					-		
19.5											-		
20.0													

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL							
BH Location/Chainage :28+075 km	Northing :3123026.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.499	<i>BH. No.</i> :BH-P2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.20	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							

		ell & Auge					Dia. of Boring: 150 mm Depth of Casing (m): Not Used															
Date of	Start :11	-10-2021			4-		Date of Completion :14-10-2021		•													
	_ a Ê		В	low cour per 15cm	its 1			tion		(Depth v/s SPT N Value)												
Depth (m)	Depth (m) Sample Depth (m) Sample Sample Depth (m) Sample	Sample Type	N1	N2	N3	SPT N Value	Description = :=		Graphic Log	Graphic (Depth v/s Log SPT N Value)												
20.0	_							່ວິ		0 10 20 30 40	50 60 70 8	0 90 100										
20.5	20.5	UDS-7																				
21.0																						
22.0	22	SPT-8	18	27	36	63	63	63	63	63	63	Brown, Hard, Silty clay of low plasticity with gravel	CL			•						
22.5																						
23.0																						
23.5	23.5	UDS-8																				
24.0																						
24.5																						
25.0	25	SPT-9	31	52	48 (9cm)	>100																
25.5																						
26.0																						
26.5	26.5	SPT-10	29	50	50 (9cm)	>100	Brown, Very dense, Sandy silt of	ML-CL				-										
27.0							low plasticity with gravel	2 02														
27.5																						
28.0	28	SPT-11	22	31	46	77					+											
28.5																						
29.0																						
29.5	29.5	SPT-12	24	34	50	84																
30.0_	<u> </u>	roonvoroo		<u> </u>	<u> </u>	<u> </u>		<u> </u>		1		I VI I										

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123026.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.499	BH. No. :BH-P2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.20	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Day - CC 11 10 2021	Data of Completion 114 10 2021								

Boring t	ring type :Shell & Auger						Dia. of Boring: 150 mm Depth of Casing (m): Not Used						
Date of	Start :11	-10-2021					Date of Completion :14-10-2021	•					
	. ĉ		В	low coun per 15cm	ts I			ion			suc		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	SPT N Value)	Special Observations		
30.030.531.031.532.032.533.033.534.0	31 32.5	SPT-14 SPT-15	40 25	100 (12cm)	- 41	98 >100					80 90 100		
34.5 _35.0_ _35.5_ _36.0_ _36.5_	35.5	SPT-16	18	38	50	88	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL					
37.0 _37.5_	37	SPT-17	19	40	48	88							
38.0 _38.5_ _39.0_ _39.5_	38.5	SPT-18	18	36	45	81							
40.0	40	SPT-19	15	34	43	77							

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana	Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana.								
BH Location/Chainage :28+075 km	Northing :3123026.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.499	BH. No. :BH-P2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.20	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :11 10 2021	Date of Completion :14-10-2021								

-		ll & Auge					Dia. of Boring :150 mm	Dep	th of Casing	g (m):Not Used	
Date of	Start :11	-10-2021					Date of Completion :14-10-2021				
	_ @		В	low cour per 15cn	nts 1			tion			_ _ ;
Depth (m)	- % 6	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Special
40.0								0	0	10 20 30 40 50 60 70 8	0 90 100
40.5											
41.0											
41.5	41.5	SPT-20	22	31	45	76				 	
42.0											
43.0	43	SPT-21	24	32	45	77					
43.5											
44.0											
44.5	44.5	UDS-9									
45.0							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			
45.5 _46.0_	46	SPT-22	40	40	60 (11cm)	>100					
46.5											
47.0											
47.5	47.5	SPT-23	32	62	38 (7cm)	>100					•
48.0											
48.5	49	SPT-24	36	73	27 (3cm)	>100					
49.5	43	JI 1-24	30	73	(JUII)	- 100					
50.0											

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123026.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.499	<i>BH. No.</i> :BH-P2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.20	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							

Boring	ype :She	ell & Auge	er				Dia. of Boring :150 mm Depth of Casing (m) :Not Used					
Date of	Start :11	-10-2021					Date of Completion :14-10-2021					
Depth (m)	In-Situ Sample Depth (m)	Sample		low cour per 15cm		SPT N	Strata Description	IS Classification	Graphic Log	(Depth v/s	Special Observations	
50.0	Sa Dep	Type	N1	N2	N3	Value	Description	Class	0 10	SPT N Value)	90 100 S	
50.5	50.5	SPT-25	34	66	34 (6cm)	>100					-	
51.0 _51.5_												
52.0	52	SPT-26	39	58	42 (8cm)	>100					-	
52.5							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL				
53.5	53.5	SPT-27	43	75	25 (4cm)	>100					-	
54.0 54.5												
55.0	55	_SPT-28_	33	51	49 _(12cm)_	_>100_						

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123004.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.616	BH. No. :BH-A2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.21	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Day - CC 16 10 2021	Data of Commission 119 10 2021								

Boring	type :She	ell & Auge	er				Dia. of Boring :150 mm	Дер	th of Casin	ng (m): Not Used																					
Date of	Start :16	-10-2021					Date of Completion :18-10-2021																								
	~ E		В	low coun per 15cm	its 1			tion			l ons																				
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	SPT Strata N Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations																				
0.0		DS								0 10 20 30 40 50 60 70 80 90100	\dashv																				
0.5																															
1.0 1.5	1	UDS-1																													
2.0							Brown, Stiff, Silty clay of low plasticity	CL																							
2.5	2.5	SPT-1	5	6	6 6 12	12																									
3.0																															
4.0	4	UDS-2																													
4.5																															
5.0			12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12								
5.5	5.5	SPT-2																						12	18	22	40	Brown, Dense, Sandy silt of low plasticity with gravel	ML-CL		
6.5																															
7.0	7	UDS-3																													
7.5																															
8.0	0 =	8.5 SPT-3 7 1	7	44	4.4	25	Brown, Very stiff to hard, Silty clay																								
8.5	8.5		SPT-3	11	14	25	of low plasticity with gravel	CL																							
9.5																															
10.0_	10	_UDS-4_																													

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
Northing :3123004.726 m	Easting :697330.724 m								
<i>BH. No.</i> :BH-A2	BH Termination Depth (m):55								
Water Table (m):33.21	Inclination : Vertical								
Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
	Northing:3123004.726 m BH. No.:BH-A2 Water Table (m):33.21								

Boring i	type :She	ell & Auge	er				Dia. of Boring :150 mm	Depi	th of Casing (m): Not Used												
Date of	Start :16	-10-2021					Date of Completion :18-10-2021														
Depth (m)	In-Situ Sample Depth (m)	Sample Type		low coun per 15cm	nts n	SPT Strata N Description		IS Classification	Graphic (Depth v/s SPT N Value)												
	Sal Dep	туре	N1	N2	N3	Value	lue Description		SPT N Value)												
10.0									0 10 20 30 40 50 60 70 80 90100												
11.0																					
11.5	11.5	SPT-4	11	14	17	31			•												
12.0																					
12.5	13	UDS-5																			
13.5							Brown, Very stiff to hard, Silty clay of low plasticity with gravel	CL													
14.0							of low plasticity with gravel	OL.													
14.5	14.5	SPT-5	10	13	18	31															
15.5																					
16.0	16	UDS-6																			
16.5																					
17.5	17.5	SPT-6	100 (13cm)	-	-	>100															
18.0																					
18.5	19	UDS-7					Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL													
19.5																					
20.0																					

FIELD BOREHOLE LOG								
Project Name: GTI for (HORC) project from Palwal to Hars	Client :HRIDCL							
BH Location/Chainage :28+075 km	Northing :3123004.726 m	Easting :697330.724 m						
Reduced Level (m):(+)270.616	BH. No. :BH-A2	BH Termination Depth (m):55						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.21	Inclination : Vertical						
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
D 00 1610 2021	D . CC 1 .: 10.10.2021	<u> </u>						

Boring	type :She	ll & Auge	r				Dia. of Boring :150 mm	Dep	oth of Casing (m): Not Used	
Date of	Start :16	-10-2021					Date of Completion :18-10-2021			
	2		В	low cour per 15cn	nts 1			ion		Suc
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic (Depth v/s SPT N Value)	Special Observations
20.0								Ö	0 10 20 30 40 50 60 70 80	90 100
20.5	20.5	SPT-7	15	21	29	50				
21.0										
21.5										+
22.0	22	UDS-8								
22.5										
23.5	23.5	SPT-8	17	25	35	60				
24.0										
24.5										
25.0	25	UDS-9					Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL		
25.5										
26.0					52					
26.5	26.5	SPT-9	30	48	(14cm)	>100				
27.0										
28.0	28	SPT-10	32	40	48	88				
28.5										
29.0										<u>'</u>
29.5	29.5	SPT-11	21	32	43	75				+
30.0	DC not a	ecovered	1							

FIELD	BOREHOLE LO	\overline{G}						
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL								
BH Location/Chainage :28+075 km	Northing :3123004.726 m	Easting :697330.724 m						
Reduced Level (m):(+)270.616	BH. No. :BH-A2	BH Termination Depth (m):55						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.21	Inclination : Vertical						
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
Date of Start :16-10-2021	Date of Completion :18-10-2021							

Boring i	type :She	ell & Auge	er				Dia. of Boring :150 mm	Depi	th of Casing (m)	:Not Used
Date of	Start :16	5-10-2021					Date of Completion :18-10-2021			
	a c		В	low cour per 15cn	nts n			tion		
Depth (m)30.0	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)
30.5 _31.0_ _31.5_	. 31	SPT-12	20	42	58 (14cm)	>100				
32.0 _32.5_ _33.0_	32.5	SPT-13	19	34	45	79		,		
33.5 _34.0_ _34.5_	. 34	SPT-14	20	35	42	77		_	33.21m	
35.0 _35.5_ _36.0_	35.5	SPT-15	28	40	52	92	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL		
36.5 _37.0_ _37.5_	. 37	SPT-16	42	64	64 (7cm) >100					
38.0 _38.5_ _39.0_	38.5	SPT-17	38	61	39 (8cm) >100					
39.5 _40.0_		SPT-18		40	42	82				

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+075 km	Northing :3123004.726 m	Easting :697330.724 m							
Reduced Level (m):(+)270.616	BH. No. :BH-A2	BH Termination Depth (m):55							
Proposed / Existing Structure : Major Bridge	Water Table (m):33.21	Inclination : Vertical							
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :16-10-2021	Date of Completion :18-10-2021								

Depth Service 16-10-2021 Depth Service Servi	Boring i	ype :She	ell & Auge	er				Dia. of Boring :150 mm	Dep	oth of Casi	ng (m)	:Not	Used	1																
Depth Series Se	Date of	Start :16	5-10-2021					Date of Completion :18-10-2021																						
40.5 41.5 SPT-19 19 42 48 90 42.5 43.5 SPT-20 22 41 47 88 43.5 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.5 44.5 SPT-22 21 38 45 83 46.5 46.5 47.5 SPT-23 28 42 50 92 48.0 49 SPT-24 30 70 (10cm) >100 Brown, Very damae, Sandy silt of low plasticity with gravel ML-CL 56.0 49 SPT-24 30 70 (10cm) >100 Brown, Very damae, Sandy silt of low plasticity with gravel ML-CL 56.0 56.0		, (c		В	low cour per 15cn	nts n			tion								l													
40.5 41.5 SPT-19 19 42 48 90 42.5 43.5 SPT-20 22 41 47 88 43.5 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.5 44.5 SPT-22 21 38 45 83 46.5 46.5 47.5 SPT-23 28 42 50 92 48.0 49 SPT-24 30 70 (10cm) >100 Brown, Very damae, Sandy silt of low plasticity with gravel ML-CL 56.0 49 SPT-24 30 70 (10cm) >100 Brown, Very damae, Sandy silt of low plasticity with gravel ML-CL 56.0 56.0	Depth	Situ mple th (n	Sample					Strata	IS ficat	Graphic	114 1/2			ecial																
40.5 41.5 SPT-19 19 42 48 90 42.5 43.5 SPT-20 22 41 47 88 43.5 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.5 44.5 SPT-22 21 38 45 83 46.5 46.5 47.5 SPT-23 28 42 50 92 48.0 49 SPT-24 30 70 (10cm) >100 Brown, Very damae, Sandy silt of low plasticity with gravel ML-CL 56.0 49 SPT-24 30 70 (10cm) >100 Brown, Very damae, Sandy silt of low plasticity with gravel ML-CL 56.0 56.0	(m)	Sai Dep	Туре	N1	N2	N3	Value	Description	assi	Log		S	PT N	Valu	1 e)		Spo													
41.0_ 41.5_ 41.5_ SPT-19 19 42 48 90 42.5_ 43.0_ 43_ SPT-20 22 41 47 88 43.5_ 44.0_ 44.5_ 44.5_ SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel 45.0_ 45.0_ 46.0_ 46_ SPT-22 21 38 45 83 46.5_ 47.0_ 47.5_ 47.5_ SPT-23 28 42 50 92 48.5_ 48.0_ 49_ SPT-24 30 70 (10cm) >100 Brown, Vary damse, Sandy silt of few passicity with gravel ML-CL	_40.0_								๋		0 10 2	20 30	40 5	50 60	70	80 90	100													
41.0_ 41.5_ 41.5_ SPT-19 19 42 48 90 42.5_ 43.0_ 43_ SPT-20 22 41 47 88 43.5_ 44.0_ 44.5_ 44.5_ SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel 45.0_ 45.0_ 46.0_ 46_ SPT-22 21 38 45 83 46.5_ 47.0_ 47.5_ 47.5_ SPT-23 28 42 50 92 48.5_ 48.0_ 49_ SPT-24 30 70 (10cm) >100 Brown, Vary damse, Sandy silt of few passicity with gravel ML-CL																														
41.5	_40.5_															Ш														
41.5 SPT-19 19 42 48 90 42.0 42.0 43.0 43. SPT-20 22 41 47 88 44.5 44.5 44.5 44.5 45.0 46.8 Brown, Hard, Silty clay of low plasticity with gravel CL 46.0 46.5 47.0 47.5 47.7 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5 48.5 49.0 49. SPT-24 30. 70 40. (10cm) 40. SPT-20 40. SPT-24 40. All 41. All 41. All 42. All 43. All 44. All 4																$ \cdot $														
41.5 41.5 SPT-19 19 42 48 90 42.5 43.0 43 SPT-20 22 41 47 88 43.5 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel 45.1 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel 46.0 46 SPT-22 21 38 45 83 46.5 47.0 47.5 SPT-23 28 42 50 92 48.5 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel 49.5 60.0	_41.0_									####						Ш														
42.5. 43.0. 43 SPT-20 22 41 47 88 44.0. 44.5. 44.5 SPT-21 24 40 46 86 Brown, Hard, Slity day of low plasticity with gravel 45.0. 45.5. 46.0. 46 SPT-22 21 38 45 83 46.5. 47.0. 47.5. 47.5 SPT-23 28 42 50 92 48.5. 48.0. 48.5. 49.0. 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy slit of low plasticity with gravel 60.0.																														
.42.0_	_41.5_	41.5	SPT-19	19	42	48	90																							
42.5																														
42.5 43.0 43 SPT-20 22 41 47 88 44.0 44.5 44.5 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.5 46.0 46 SPT-22 21 38 45 83 47.0 47.0 47.5 47.5 SPT-23 28 42 50 92 48.5 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel	_42.0_																													
43.5																														
43.0 43 SPT-20 22 41 47 88 43.5 44.0 44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.0 45.5 46.0 46 SPT-22 21 38 45 83 46.5 47.0 47.5 SPT-23 28 42 50 92 48.5 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy silt of low plasticity with gravel Brown, Very dense, Sandy	42.5																													
43.5. 44.0. 44.5. 44.5. 47.0. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.6. 48.6.																														
43.5. 44.0. 44.5. 44.5. 47.0. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.5. 47.6. 48.6.	43.0	43	SPT-20	22	41	47	88																							
44.0																														
44.0	43.5																													
44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.0 46.0 46 SPT-22 21 38 45 83 46.5 47.0 47.5 SPT-23 28 42 50 92 48.0 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel	_ 10.0_																													
44.5 SPT-21 24 40 46 86 Brown, Hard, Silty clay of low plasticity with gravel CL 45.0 46.0 46 SPT-22 21 38 45 83 46.5 47.0 47.5 SPT-23 28 42 50 92 48.0 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel	44.0																													
	0_															Ш														
	44.5	44.5	SPT-21	24	40	46	86	Brown, Hard, Silty clay of low	01																					
		77.0	01 1-21	24	40	40		plasticity with gravel	CL																					
45.5 46.0 46 SPT-22 21 38 45 83 46.5 47.0 47.5 47.5 SPT-23 28 42 50 92 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL	45.0															Ш														
46.0	_43.0_															Ш														
46.0	15.5																													
47.0 47.5 SPT-23 28 42 50 92 48.0 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL	_43.3_																													\prod
47.0 47.5 SPT-23 28 42 50 92 48.0 48.5 49.0 49 SPT-24 30 70 (10cm) >100 Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL	46.0	46	CDT 22	04	20	45	02																							
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	_46.0_	46	SP 1-22	21	30	45	03									1														
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	16 E																													
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	_40.5_															\forall														
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	47.0																													
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	L47.U_														+	+														
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	17 5	17 5	SDT 00	20	40	E0.	02																							
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	_47.5_	47.5	JOP 1-23	20	42	30	92								+															
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	40.0															'	\													
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	<u>_</u> 48.U_														+	++	\forall													
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	40.5																													
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	<u>_</u> 48.5_														+	++	\forall													
Brown, Very dense, Sandy silt of low plasticity with gravel ML-CL ML-CL	40.0	40	ODT O	00	70	30																								
50.0	49.0	49	SP [-24	30	/0	(10cm)									+	++	†													
50.0								Drown Vandanas Caralicalitis																						
50.0	_49.5_							low plasticity with gravel	ML-CL			+	+		+	++														
IDS*-LIDS not recovered		D0 -	I		<u> </u>	i .			1	111111111																				

FIELD BOREHOLE LOG								
Project Name : GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client : HRIDCL								
BH Location/Chainage :28+075 km	Northing :3123004.726 m	Easting :697330.724 m						
Reduced Level (m):(+)270.616	BH. No. :BH-A2	BH Termination Depth (m):55						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.21	Inclination : Vertical						
Boring type :Shell & Auger	Dia. of Boring :150 mm	Depth of Casing (m): Not Used						
D 60 1610 2021	D . CC 1 .: 10.10.2021	•						

Boring	type :She	ll & Auge	er				Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :16	-10-2021					Date of Completion :18-10-2021						
	-		В	low coun per 15cm	its 1			ion		Su			
Depth (m)50.0	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value) o 10 20 30 40 50 60 70 80 80 100			
50.5	50.5	SPT-25	33	68	32 (9cm)	>100				•			
51.0 _51.5_ _52.0_	52	SPT-26	36	72	26 (7cm)	>100							
52.5					,		Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL					
53.5 _54.0_	53.5	SPT-27	35	75	25 (8cm)	>100							
54.5 _55.0_	55	_SPT-28_	39	74	26 _(8cm)_	>100							

FIELD	BOREHOLE LO	OG
Project Name: GTI for (HORC) project from Palwal to Harsan	na Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123109.166 m	Easting :697053.722 m
Reduced Level (m):(+)268.602	BH. No. :BH-A1	BH Termination Depth (m):40
Proposed / Existing Structure : Major Bridge	Water Table (m):34.78	Inclination: Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Data of Start :12 10 2021	Date of Completion :14-10-2021	·

Boring	type :Rot	ary					Dia. of Boring :150 mm	Dep	oth of Casing ((m):Not Used	1			
Date of	Start :13	-10-2021					Date of Completion :14-10-2021							
	ء ج		В	low coun per 15cm	its 1			ion					ons	
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(De v SPT N	epth /s Value)		Special Observations	
0.0	۵							Cla	0 1	10 20 30 40 5	50 60 70	80 90 100	ဝိ	
		DS												
0.5														
1.0	1	SPT-1	2	2	3	5								
1.5													-	
2.5	2.5	UDS-1												
3.0							Brown, Loose, Silty sand	SM					-	
3.5													-	
4.0	4	SPT-2	3	4	6	10							-	
4.5													-	
5.0	5.5	UDS-2											-	
6.0	3.3	000-2												
6.5													-	
7.0	7	SPT-3	8	12	17	29							-	
7.5							Brown, Medium dense, Silty sand with clay	SM-SC					-	
8.0							with clay						_	
8.5	8.5	UDS-3]	
9.0														
10.0		_SPT-4_	7	12	15	27								

FIEL	<i>D BOREHOLE 1</i>	LOG
Project Name: GTI for (HORC) project from Palwal to Har	rsana Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123109.166 m	Easting :697053.722 m
Reduced Level (m):(+)268.602	BH. No. :BH-A1	BH Termination Depth (m):40
Proposed / Existing Structure : Major Bridge	Water Table (m):34.78	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :13-10-2021	Date of Completion :14-10-2021	

Boring	type :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used							
Date of	Start :13	-10-2021					Date of Completion :14-10-2021							
	. 6		В	low coun per 15cm	ts 1			ion	l l l l l l l l l l l l l l l l l l l					
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic (Depth v/s SPT N Value) Servations					
10.0								່ວິ	0 10 20 30 40 50 60 70 80 90 100					
10.5	44.5	LIDS 4					Brown, Medium dense, Silty sand with clay	SM-SC						
11.5	11.5	UDS-4												
12.5 13.0	13	SPT-5	12	18	24	42								
13.5														
14.0 14.5	14.5	UDS-5					Brown, Dense, Silty sand with							
15.0	14.5	одз-3					gravel	SM						
15.5														
16.0_ 16.5_	16	SPT-6	10	16	27	43								
17.0														
17.5	17.5	UDS-6												
18.0_ 18.5														
19.0	19	SPT-7	20	27	33	60	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL						
19.5														
20.0	DC ==+.	recovered	ı											

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Hars	sana Kalan in the state of Haryana.	Client :HRIDCL							
BH Location/Chainage :28+360 km	Northing :3123109.166 m	Easting :697053.722 m							
Reduced Level (m):(+)268.602	BH. No. :BH-A1	BH Termination Depth (m):40							
Proposed / Existing Structure : Major Bridge	Water Table (m):34.78	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :13-10-2021	Date of Completion :14-10-2021								

Boring	type :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used										
Date of	Start :13	-10-2021					Date of Completion :14-10-2021										
	_ e ê		В	low cour per 15cn	nts n			IS Classification									Special Observations
Depth (m)	In-Situ Sample Depth (m)	Sample Type				SPT N	Strata Description	IS ifica	Graphic Log			(Dep	3			ŀ	rvati
	Sa Dep	туре	N1	N2	N3	Value	Description	lass	Log		SP	TN	/alu	e)		ŀ	sp
20.0								<u> </u>		0 10 20	30	40 50	60	70 8	80 90	100	0
														\setminus			
20.5	20.5	UDS-7												+	\vdash		
21.0														+	\vdash		
21.5														$+\!\!+$	\vdash		
22.0	22	SPT-8	24	33	45	78								$\downarrow \downarrow$,—		
														\	\		
22.5														_	\vdash		
23.0														╄	Ш		
23.5	23.5	UDS-8											_	+	\sqcup		
24.0															<u> </u>		
																$\backslash \mid$	
24.5															Ш	\setminus	
																\setminus	
25.0	25	SPT-9	22	42	58 (13cm)	>100	Brown, Very dense, Sandy silt of	ML-CL	-					_	Ш		
							low plasticity with gravel	02								Ī	
25.5															Ш		
26.0																	
26.5	26.5	SPT-10	31	49	52 (9cm)	>100											
																Ĭ	
27.0																	
27.5																	
28.0	28	SPT-11	28	58	42 (6cm)	>100											
					(-)											Ĭ	
28.5																	
												П					
29.0																	
												П		T	П		
29.5	29.5	SPT-12	16	47	53 (8cm)	>100											
	20.0	J: 1-12	10	7′	(3011)	100						П		T	П	•	
30.0																	
	DC not i	ecovered			•				. (_				

Cu	FILE INTERPRETATION				FIE	LD	BOREHOLE L	OG					
Project .	Name :G	GTI for (H	ORC) pro	oject from	Palwal to	o Harsana	Kalan in the state of Haryana.	Clie	ent :HRIDO	CL			
BH Loca	ation/Ch	ainage :2	8+360 kr	n			Northing :3123109.166 m	Eas	ting :6970	53.722 m			
Reduced	l Level (1	m):(+)268	.602				BH. No. :BH-A1	ВН	BH Termination Depth (m):40				
Propose	ed / Exist	ing Struct	ure :Maj	or Bridge			Water Table (m):34.78	Incl	Inclination: Vertical				
Boring t	type :Rot	tary					Dia. of Boring :150 mm	Depth of Casing (m): Not Used					
Date of	Start :13	3-10-2021					Date of Completion :14-10-2021	Date of Completion :14-10-2021					
	, e		_	low coun				tion		Cial (Depth ations			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	Checkial Special (Opeth Alace) Special (Opet			
50.0													

Boring i							Dia. of Boring :150 mm	Дер	th of Casii	ng (m):Not Used		
Date of	Start :13	3-10-2021		low cour	-t-		Date of Completion :14-10-2021					
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	per 15cn	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	SPT N Value)		Special Observations
30.0 _30.5_ _31.0_ _31.5_	. 31	SPT-13	31	49	51 (7cm)	>100				0 10 20 30 40 50 60 7	0 80 90100	
32.0 _32.5_ _33.0_	32.5	SPT-14	23	54	46 (8cm)	>100						
33.5 _34.0_ _34.5_	. 34	SPT-15	38	74	26 (6cm)	>100		M24.79m			,	
35.0 _35.5_ _36.0_	35.5	SPT-16	24	55	46 (7cm)	>100	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL	¥34.78m		-	,
36.5 _37.0_ _37.5_	37	SPT-17	27	64	36 (5cm)	>100						,
38.0 _38.5_ _39.0_	38.5	SPT-18	25	72	28 (8cm)	>100						,
39.5 _40.0_	40	SPT-19	29	45	55 (13cm)	_>100_						

FIELD BOREHOLE LOG									
Project Name :GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL							
BH Location/Chainage :28+360 km	Northing :3123091.386 m	Easting :697050.915 m							
Reduced Level (m):(+)267.861	BH. No. :BH-P1	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):34.10	Inclination : Vertical							
Boring type: Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
	D 66 1 . 15 10 2021								

							Dia. of Boring :150 mm Depth of Casing (m) :Not Used											
Date of	Start :13	-10-2021					Date of Completion :15-10-2021											
			В	low coun per 15cm	its 1			ion		Suc								
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	O to 20 30 40 50 60 70 80 90 00 00 00 00 00 00 00 00 00 00 00 00								
0.0		DS																
0.5	_																	
1.0_ 1.5_	1	UDS-1																
2.0	-						Brown, Medium dense, Silty sand with clay	SM-S	c									
2.5_ 3.0_	2.5	SPT-1	3	5	7	12												
3.5_	<u> </u> 																	
4.0_	4	UDS-2																
4.5																		
5.0_																		
5.5_	5.5	SPT-2	13	15	19	34												
		SPT-2	SPT-2	SPT-2	SPT-2	SPT-2	SPT-2	SPT-2	SPT-2	SPT-2	.0							
6.0_																		
6.5_																		
7.0_	7	UDS-3					Brown, Dense, Sandy silt of low plasticity with gravel	ML-C	;L									
7.5_																		
8.0_									EL III									
8.5_	8.5	SPT-3	16	20	25	45	45											
		01 1-0	10	20	20	40												
9.0_																		
9.5_	1																	
10.0		_UDS-4_																

FIELD BOREHOLE LOG									
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL									
BH Location/Chainage :28+360 km	Northing :3123091.386 m	Easting :697050.915 m							
Reduced Level (m):(+)267.861	<i>BH. No.</i> :BH-P1	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):34.10	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
1									

Boring type :Rotary							Dia. of Boring: 150 mm Depth of Casing (m): Not Used								
Date of	Start :13	-10-2021					Date of Completion :15-10-2021								
	٠, ٦		В	low coun per 15cm	ts 1			tion		Suc					
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	SPT N Value)					
10.0										0 10 20 30 40 50 60 70 80 90100					
10.5															
11.0															
11.5	11.5	SPT-4	10	13	16	29	Brown, Very stiff, Silty clay of low plasticity with gravel	CL							
12.0															
12.5															
13.0	13	UDS-5													
13.5															
14.0															
14.5	14.5	SPT-5	15	21	23	44									
15.0															
15.5															
16.0	16	UDS-6													
16.5							Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL							
17.0 17.5	17.5	SPT-6	18	25	28	53									
18.0		2 0	.0		20										
18.5															
19.0	19	UDS-7													
19.5															
20.0															

FIELD	BOREHOLE LO	\overline{OG}
Project Name : GTI for (HORC) project from Palwal to Harsar	a Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123091.386 m	Easting :697050.915 m
Reduced Level (m):(+)267.861	<i>BH. No.</i> :BH-P1	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):34.10	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
1		

Boring	type :Rot	агу					Dia. of Boring :150 mm	Дері	th of Casing (m) :Not Used
Date of	Start :13	3-10-2021					Date of Completion :15-10-2021		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	low coun per 15cm N2	n N3	SPT N Value	Strata Description	IS Classification	Graphic (Depth v/s SPT N Value)
20.0 20.5 21.0 21.5	20.5	SPT-7	28	33	36	69	Brown, Dense to very dense, Sandy silt of low plasticity with gravel		0 10 20 30 40 50 60 70 80 90 100
22.0 _22.5_ _23.0_ _23.5_ _24.0_ _24.5_	23.5	UDS-8	16	18	21	39	Brown, Hard, Silty clay of low plasticity with gravel	CL	
25.0 25.5	25 25.5	UDS*	32	43	50	93			
26.0 _26.5_ _27.0_	26.5	SPT-10	31	45	53	98			
27.5 _28.0_ _28.5_	28	SPT-11	14	22	32	54	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL	
29.0 _29.5_ _30.0_	29.5	SPT-12	18	26	37	63			

FIEL	LD BOREHOLE I	LOG
Project Name: GTI for (HORC) project from Palwal to H	larsana Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123091.386 m	Easting :697050.915 m
Reduced Level (m):(+)267.861	BH. No. :BH-P1	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):34.10	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :13-10-2021	Date of Completion :15-10-2021	

Boring	type :Rot	ary					Dia. of Boring :150 mm	Dep	oth of Casi	ng (n	n) :N	lot	Use	d				
Date of	Start :13	-10-2021					Date of Completion :15-10-2021											
	∞ €		В	low coun per 15cm	its 1			tion										ons
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log			SF	V	epth //s I Val				Special Observations
30.0	_							วี		0 10	20	30	40	50 6	0 70	80 9	90 100	_ 6
30.5																+		
31.0	31	UDS-9																
31.5																		
32.0	32.5	SPT-13	21	27	35	62												
33.0															\downarrow			
33.5															\perp	+		
34.0	. 34	UDS-10							▼ 34.10m						_	+		
34.5																+		
35.0	05.5	ODT 44	40	F0	47	. 400	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL										
35.5	35.5	SPT-14	40	53	(7cm)	>100												
36.5																		
37.0	. 37	SPT-15	45	57	43 (5cm)	>100												ı
37.5													+			_		
38.0					25								+					
38.5	38.5	SPT-16	44	65	35 (7cm)	>100							+					
39.0																		
39.5	40 <u></u>	SPT-17	48	69	31 _(6cm)_	_>100 <u></u>										<u> </u>		
1100*11	DC not	ecovered																

100	Vame :G	TI for (H	ORC) pro			BOREHOLE Kalan in the state of Haryana.	LO	_	at :HRIDO	CL			
 BH Locα	tion/Ch	ainage :28	3+360 kr	n		Northing :3123091.386 m		Easti	ing :6970:	50.915 m			
Reduced	Level (n	n):(+)267	.861			<i>BH. No.</i> :BH-P1		BH Termination Depth (m):50					
Propose	d / Existi	ing Struct	ure :Maj	or Bridge		Water Table (m):34.10							
Boring t	vpe :Rot	ary				Dia. of Boring :150 mm		Dept	h of Casii	ng (m):Not Used			
Date of S	Start :13	-10-2021				Date of Completion :15-10-202	1	•					
Depth (m)	In-Situ Sample Depth (m)	Sample Type		low cour per 15cn N2	SPT N Value	Strata Description	٥	Classification	Graphic Log	(Depth spot as SPT N Value)			

Date of		3-10-2021					Date of Completion :15-10-2021			8 ()	
	_ @		В	low coun per 15cm	its 1			tion			suo
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations
40.0								อี		0 10 20 30 40 50 60 70 80 90	100 0
40.5											
41.0											+
41.5	41.5	SPT-18	35	53	47 (5cm)	>100					+
42.0											-
42.5					40						+
43.0	43	SPT-19	37	60	40 (5cm)	>100					+
43.5											+
44.0					36						+
44.5	44.5	SPT-20	40	64	(7cm)	>100					+
45.0							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			
45.5					20						\dashv
46.0	46	SPT-21	50	80	(4cm)	>100					+
46.5											
47.0	47.5	ODT 00	40	70	30	. 100					
47.5	47.5	SPT-22	40	70	(6cm)	>100					
48.0 _48.5_											
49.0	49	SPT-23	40	100 (10cm)	_	>100					
49.5	49.25		70	(10011)		>100					
50.0_											
										·	

FIELI	D BOREHOLE L	OG
Project Name: GTI for (HORC) project from Palwal to Hars	ana Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123064.68 m	Easting :697046.7 m
Reduced Level (m):(+)267.285	<i>BH. No.</i> :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):33.85	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :12 10 2021	Data of Completion :14-10-2021	

Boring t	type :Rot	ary					Dia. of Boring :150 mm	Dept	th of Casing (m): Not Used
Date of	Start :12	-10-2021					Date of Completion :14-10-2021		
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	low coun per 15cm N2	nts N3	SPT N Value	Strata Description	IS Classification	Graphic (Depth IS SPT N Value)
0.0								Sis Circ	0 10 20 30 40 50 60 70 80 90 100
0.5 1.0 1.5	1	DS SPT-1	2	4	6	10			
2.0 2.5 3.0	2.5	UDS-1					Brown, Loose, Sandy silt of low plasticity	ML-CL	
3.5	4	SPT-2	7	9	11	20			
4.5 5.0 5.5 6.0 6.5	5.5	UDS-2					Brown, Medium dense, Silty sand with clay	SM-SC	
7.0 7.5	7	SPT-3	11	15	19	34			
8.0 8.5 9.0	8.5	UDS-3					Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL	
9.5 _10.0	10	_SPT-4_	13	17	23	40			

FIELD	BOREHOLE LC	OG
Project Name :GTI for (HORC) project from Palwal to Harsa	na Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123064.68 m	Easting :697046.7 m
Reduced Level (m):(+)267.285	BH. No. :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):33.85	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :12-10-2021	Date of Completion :14-10-2021	

Doring	<i>type</i> :Rot	ary					Dia. of Boring :150 mm	Dep	oth of Casing (m): Not Used
Date of	Start :12	-10-2021					Date of Completion :14-10-2021	•	
Depth (m)	In-Situ Sample Depth (m)	Sample Type		low coun per 15cm	1	SPT N	Strata Description	IS Classification	Graphic (Depth v/s SPT N Value) Operion of the control of the cont
10.0	- S e	, , , , , , , , , , , , , , , , , , ,	N1	N2	N3	Value	·	Clas	SPT N Value)
10.0_ 10.5_ 11.0_ 11.5_ 12.0_	. 11.5	UDS-4						-	
12.5 _13.0_ _13.5_	. 13	SPT-5	16	26	29	55			
14.0_ 14.5_ 15.0_	. 14.5	UDS-5					Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL	
15.5_ 16.0_ 16.5_ 17.0_	16	SPT-6	19	24	31	55			
17.5_	17.5	UDS-6							
18.5_ 19.0_ 19.5_ 20.0_	. 19	SPT-7	31	60	40 (5cm)	>100			

FIELD	BOREHOLE LO	OG
Project Name: GTI for (HORC) project from Palwal to Harsan	a Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+360 km	Northing :3123064.68 m	Easting :697046.7 m
Reduced Level (m):(+)267.285	BH. No. :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):33.85	Inclination: Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
D	Data of Completion 114 10 2021	

Boring	type :Rot	ary					Dia. of Boring :150 mm	Depti	h of Casing (m):Not Used	
Date of	Start :12	-10-2021					Date of Completion :14-10-2021				
	∞ €		В	low coun per 15cm	its 1			tion			ons
Depth (m)20.0	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations
20.5	20.5	UDS*									
21.5					45						
22.0	22	SPT-8	39	55	(5cm)	>100				•	
23.0	22.5	UDS*									
23.5	23.5	ODS.									
24.5 _25.0_ _25.5_	25	SPT-9	45	79	21 (4cm)	>100	Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL)
26.0 _26.5_	26.5	UDS*									
27.0											
27.5	. 28	SPT-10	43	65	35 (7cm)	>100				+	1
28.5 _29.0_											
29.5	29.5	UDS*									
30.0											

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Hars	Client :HRIDCL									
BH Location/Chainage :28+360 km	Northing :3123064.68 m	Easting :697046.7 m								
Reduced Level (m):(+)267.285	BH. No. :BH-P2	BH Termination Depth (m):50								
Proposed / Existing Structure : Major Bridge	Water Table (m):33.85	Inclination : Vertical								
Boring type:Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :12-10-2021	Date of Completion :14-10-2021									

Boring type: Rotary							Dia. of Boring: 150 mm Depth of Casing (m): Not Used																			
Date of	Start :12	2-10-2021					Date of Completion :14-10-2021			 																
	ē		В	low cour per 15cm	nts n			ion							Suc											
Depth (m)	In-Situ Sample Depth (m)	Sample Type	Sample Type N1 N2 N3 Value SPT Strata Description	Strata Description	IS Classification	Graphic Log	c (Depth v/s SPT N Value)					Special Observations														
30.0								Cla			40 50	60 70	0 80	90 100	Ö											
30.5	31	SPT-11	38	63	37 (4cm)	>100			▼ 33.85m																	
31.5																										
32.0																										
32.5	32.5	UDS*																								
33.0					47 (6cm)	>100		2																		
34.0	34	SPT-12	49	53					₹33.85m						,											
34.5											\prod															
35.0							Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CI	L		$\frac{1}{1}$															
35.5	35.5	UDS*																				$\frac{ \cdot }{ \cdot }$				
36.0																										
36.5	0.7	ODT 40	00		37																					
37.0	37	SPT-13	39	63	(5cm)	>100									•											
38.0																										
38.5	38.5	SPT-14	48	69	31 (8cm)	>100					\prod			+	•											
39.0											H															
39.5					00						$\frac{1}{1}$															
40.0		SPT-15		72	28 _(5cm)_	_>100								┙												

FIELI	O BOREHOLE I	OG							
Project Name: GTI for (HORC) project from Palwal to Hars	ana Kalan in the state of Haryana.	alan in the state of Haryana. Client :HRIDCL							
BH Location/Chainage :28+360 km	Northing :3123064.68 m	Easting	Easting :697046.7 m						
Reduced Level (m):(+)267.285	BH. No. :BH-P2	BH Ter	BH Termination Depth (m):50						
Proposed / Existing Structure : Major Bridge	Water Table (m):33.85	Inclina	tion: Vertical						
Boring type: Rotary	Dia. of Boring :150 mm	Dia. of Boring: 150 mm Depth of Casing (m): Not Used							
Date of Start :12-10-2021	Date of Completion :14-10-2021	'							
Blow counts		uo		ns					

		2-10-2021		Blow coun per 15cm	ts		Date of Completion :14-10-2021	o					7
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Dep v/s SPT N	s Value)	00.40	Special
40.0 _40.5_ _41.0_ _41.5_ _42.0_	41.5	SPT-16	42	68	32 (7cm)	>100		,		0 20 30 40 50	6P 7D 1		
42.5 _43.0_ _43.5_	43	SPT-17	49	75	25 (9cm)	>100							•
44.0 _44.5_ _45.0_	44.5	SPT-18	52	100 (10cm)	-	>100	Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL					•
45.5 _46.0_ _46.5_	46	SPT-19	40	100 (15cm)	-	>100							•
47.0 _47.5_ _48.0_	47.5	SPT-20	48	100 (3cm)	-	>100							•
48.5 _49.0_ _49.5_	49 49.23	SPT-21	45	100 (8cm)	-	>100							•

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Hars	Client :HRIDCL									
BH Location/Chainage :28+360 km	Northing :3123046.953 m	Easting :697043.901 m								
Reduced Level (m):(+)267.528	BH. No. :BH-A2	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):34.20	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
D	D. 4 (C 1-4; 12 10 2021	·								

Boring	type :Rot	tary					Dia. of Boring :150 mm	Dep	oth of Casii	ıg (m) :No	ot Use	d ———					
Date of	Start :12	2-10-2021					Date of Completion :13-10-2021										
	Depth (m) Sample Type		В	low cour per 15cm	nts 1	CDT		ation			(D :	41-			al ions		
Depth (m)	In-Situ Sampl Depth (Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log		SPT N				Special Observations		
0.0		DS						၁		0 10 20 3	30 40	50 60	70 80	90 100	0		
0.5																	
1.0 1.5	1	UDS-1															
2.0							Brown, Loose, Silty sand	SM									
2.5	2.5	SPT-1	3	4	5	9											
3.5																	
4.0	4	UDS-2															
4.5		ODT 0	12														
5.0	-																
5.5	5.5	SPT-2		12	19	25	44										
6.0	-																
6.5																	
7.0	. 7	UDS-3					Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL									
7.5																	
8.0																	
8.5	8.5	.5 SPT-3 14	14	22	28	50											
9.0	-												_				
9.5																	
10.0		UDS-4															

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsar	Client :HRIDCL									
BH Location/Chainage :28+360 km	Northing :3123046.953 m	Easting :697043.901 m								
Reduced Level (m):(+)267.528	BH. No. :BH-A2	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):34.20	Inclination : Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :12-10-2021	Date of Completion :13-10-2021									

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana	Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana.									
BH Location/Chainage :28+360 km	Northing :3123046.953 m	Easting :697043.901 m								
Reduced Level (m):(+)267.528	BH. No. :BH-A2	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):34.20	Inclination : Vertical								
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								

Boring	type :Rot	ary					Dia. of Boring :150 mm	Dep	pth of Casin	g (m):Not Used							
Date of	Start :12	-10-2021					Date of Completion :13-10-2021										
	, e		В	low coun per 15cm	its า			tion				Special Observations					
Depth (m)	In-Situ Sample Depth (m)	Sample Type		N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)							
20.0								ပ		10 20 30 40 50 60	70 80 90 100						
20.5	20.5	SPT-7	44	100 (15cm)	-	>100											
21.0																	
21.5																	
22.0	22	UDS*															
22.5																	
23.0																	
23.5	23.5	SPT-8	39	52	48 (6cm)	>100					+						
24.0																	
24.5																	
25.0	25	UDS*					Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL									
25.5																	
26.0					20												
26.5	26.5	SPT-9	44	70	30 (5cm)	>100					 						
27.0																	
27.5																	
28.0	28	UDS*															
28.5																	
29.0				100													
29.5	29.5	SPT-10	45	(10cm)	-	>100											
30.0_	<u> </u>	coovered		<u> </u>	<u> </u>	<u> </u>		<u> </u>									

FIELD BOREHOLE LOG												
Project Name: GTI for (HORC) project from Palwal to H	arsana Kalan in the state of Haryana.	Client :HRIDCL										
BH Location/Chainage :28+360 km	Northing :3123046.953 m	Easting :697043.901 m										
Reduced Level (m):(+)267.528	BH. No. :BH-A2	BH Termination Depth (m):40										
Proposed / Existing Structure : Major Bridge	Water Table (m):34.20	Inclination : Vertical										
Boring type:Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used										
Date of Start :12-10-2021	Date of Completion :13-10-2021											
Rlow counts												

Boring type :Rotary							Dia. of Boring :150 mm Depth of Casing (m) :Not Used											
Date of	Start :12	2-10-2021					Date of Completion :13-10-2021											
	, e		В	low cour per 15cn	nts n			IS Classification								Observations		
Depth (m)	epth (m) Sample Type					SPT N	Strata	IS ficat	Graphic		(D	epth v/s			ecial	vation		
(m)	Sar Dept	Type	N1	N2	N3	Value	Description	l assi	Log	5	SPT I	Val	ue)		Spe)ser		
30.0								<u>์</u>		0 10 20 30	0 40	50 6	70	80 90	100	ŏ		
30.5																		
31.0	31	UDS*																
31.5																		
32.0					25													
32.5	32.5	SPT-11	48	75	(4cm)	>100									+			
33.0																		
33.5																		
34.0	34	UDS*							▼34.20m									
34.5																		
35.0							Brown, Dense to very dense, Sandy silt of low plasticity with gravel	ML-CL	-					+				
35.5	35.5	SPT-12	38	63	37 (10cm)	>100			-						+			
36.0																		
36.5																		
37.0	37	UDS*																
37.5																		
38.0					51													
38.5	38.5	SPT-13	32	49	(13cm)	>100									†			
39.0														+				
39.5														+	-			
40.0		SPT-14		69	31 _(10cm)_	_>100												

FIELD BOREHOLE LOG										
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL										
BH Location/Chainage :28+900 km	Northing :3123223.834 m	Easting :696531.197 m								
Reduced Level (m):(+)262.678	BH. No. :BH-A1	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):36.90	Inclination : Vertical								
Boring type: Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18-10-2021	Date of Completion :21-10-2021									

l	Boring type :Rotary						Dia. of Boring: 150 mm Depth of Casing (m): Not Used															
Date of	Start :18	3-10-2021					Date of Completion :21-10-2021															
	:u ile (m)		В	low coun per 15cm	its 1	SPT	_	ation		(Depth	al tions											
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations											
0.0		DS							0 10	20 30 40 50 60 70 80 90100												
0.5	-																					
1.0	1	SPT-1	7	12	15	27																
1.5																						
2.0_	0.5	1100 4																				
2.5	2.5	UDS-1																				
3.5	-																					
4.0	. 4	SPT-2	7	9	11	20				•												
4.5	-																					
5.0	-											Brown, Medium dense to dense, Sandy silt of low plasticity with gravel	ML-CL									
5.5	5.5	UDS-2																				
6.5																						
7.0	. 7	SPT-3	9	13	16	29																
7.5																						
8.0																						
8.5	. 8.5	UDS-3																				
9.0 9.5																						
	10	_SPT-4_	11	15	17	32																

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL										
BH Location/Chainage :28+900 km	Northing :3123223.834 m	Easting :696531.197 m								
Reduced Level (m):(+)262.678	BH. No. :BH-A1	BH Termination Depth (m):40								
Proposed / Existing Structure : Major Bridge	Water Table (m):36.90	Inclination: Vertical								
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Date of Start :18-10-2021	Date of Completion :21-10-2021									

Depth of Name Name	Boring type : Rotary							Dia. of Boring :150 mm	Depi	Depth of Casing (m): Not Used					
Depth Receipt Depth Receipt Depth Receipt Depth Receipt Depth Receipt Depth Receipt Depth Receipt Depth Receipt Depth Dept	Date of	Start :18	-10-2021					Date of Completion :21-10-2021	'						
	Depth (m)	In-Situ Sample Depth (m)	Sample Type		per 15cm	1	N	Strata Description	IS Classification	Graphic Log SPT N Value) Special Operations					
	10.5	11 5	UDS-4					Sandy silt of low plasticity with							
	12.012.513.013.514.0	13	SPT-5					Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL						
	15.0 15.5 16.0 16.5														
<u></u>	_18.0_ _18.5_ _19.0_ _19.5_			35	57		>100	Brown, Hard, Silty clay of low plasticity with gravel	CL						

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+900 km	Northing :3123223.834 m	Easting :696531.197 m							
Reduced Level (m):(+)262.678	BH. No. :BH-A1	BH Termination Depth (m):40							
Proposed / Existing Structure : Major Bridge	Water Table (m):36.90	Inclination : Vertical							
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
		·							

Boring type :Rotary							Dia. of Boring: 150 mm Depth of Casing (m): Not Used														
Date of	Start :18	3-10-2021					Date of Completion :21-10-2021														
	Blow c		low cour per 15cn	nts n			ion								Suc						
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log		(C SPT	Dept v/s N Va				Special Observations					
20.0								Cla	0	10 20 3	30 40	50	60 70	0 80	90 100	ಕಿ					
20.5	20.5	SPT-9	38	49	51 (6cm)	>100								_	_	•					
21.0																					
22.0	22	SPT-10	35	60	40 (9cm)	>100								_	_	•					
22.5																					
23.0					46	46	46														
23.5	23.5	SPT-11	41	56	(6cm)	>100										,					
24.0																					
25.0	25	SPT-12	37	53	47 (8cm) >100	47 (8cm)	>100	Brown, Hard, Silty clay of low plasticity with gravel	CL						_		•				
25.5																					
26.0 26.5	26.5	SPT-13	40	51	49 (10cm)	>100															
27.0																					
27.5														_	_						
28.0	28	SPT-14	38	53	47 (8cm)				_)					
28.5															+						
29.0 29.5	29.5	SPT-15	41	52	48 (7cm)	>100								<u> </u>		,					
30.0	DC	recovered	1																		

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+900 km	Northing :3123223.834 m	Easting :696531.197 m							
Reduced Level (m):(+)262.678	BH. No. :BH-A1	BH Termination Depth (m):40							
Proposed / Existing Structure : Major Bridge	Water Table (m):36.90	Inclination : Vertical							
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :18-10-2021	Date of Completion :21-10-2021								

Boring type :Rotary							Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :18	-10-2021					Date of Completion :21-10-2021	,					
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	ow cour per 15cn N2	nts 1 N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth (Depth V/s SPT N Value) Opecial			
30.5 _31.0_ _31.5_	31	SPT-16	26	52	48 (10cm)	>100							
32.0 _32.5_ _33.0_	32.5	SPT-17	34	40	60 (8cm)	>100							
33.5 _34.0_ _34.5_	34	SPT-18	19	43	57 (15cm)	>100							
35.0 _35.5_ _36.0_	35.5	SPT-19	23	45	55 (8cm)	>100	Brown, Hard, Silty clay of low plasticity with gravel	CL					
36.5 _37.0_ _37.5_	37	SPT-20	19	58	42 (5cm)	>100		:	36.90m				
38.0 _38.5_ _39.0_	38.5	SPT-21	100 (10cm)	-	-	>100							
39.5 _40.0_		SPT-22	60 L(15cm)_	100		_>100							

FIELD BOREHOLE LOG										
Project Name: GTI for (HORC) project from Palwal to Harsana	Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+900 km	Northing :3123214.311 m	Easting :696528.146 m								
Reduced Level (m):(+)263.022	BH. No. :BH-P1	BH Termination Depth (m):50								
Proposed / Existing Structure : Major Bridge	Water Table (m):38.10	Inclination : Vertical								
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
Day - CC 10 10 2021	Data of Completion (22.10.2021									

	type :Rot						Dia. of Boring :150 mm	Дер	th of Casing	(m):Not Used						
Date of	Start :19	-10-2021					Date of Completion :22-10-2021									
	<u> </u>	Blow counts per 15cm		_ @ <u>E</u>		its 1			tion		_ ons					
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT Strata <u>v</u> Value Description	IS Classification	Graphic Log	(Depth V/s SPT N Value) 10 20 30 40 50 60 70 80 80100							
0.0		DS						0		10 20 30 40 50 60 70 80 90 100						
0.5																
1.0 1.5	1	UDS-1														
2.0							Brown, Medium dense, Sandy silt of low plasticity with gravel	ML-CL								
2.5	2.5	SPT-1	7	9	13	22										
3.0																
4.0	4	UDS-2														
4.5																
5.0 5.5	5.5	SPT-2	15	24	29	53	53	53	53							
6.0																
6.5	_												Decree Hand Cilbrater of law			
7.0 7.5	7	UDS-3					Brown, Hard, Silty clay of low plasticity with gravel	CL								
8.0																
8.5_	8.5	SPT-3	12	19	27	46										
9.0 9.5																
10.0	10	UDS-4_	1													

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL									
BH Location/Chainage :28+900 km	Northing :3123214.311 m	Easting :696528.146 m							
Reduced Level (m):(+)263.022	BH. No. :BH-P1	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):38.10	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
		· · · · · · · · · · · · · · · · · · ·							

Boring	type :Rot	ary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used						
Date of	Start :19	-10-2021					Date of Completion :22-10-2021						
	, <u>c</u>		В	low coun per 15cm	its 1			tion		- I ons			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification		(Depth v/s SPT N Value) Opservations			
10.0									0 10 20 3	90 40 50 60 70 80 90 100 O			
10.5													
11.0							Daywe Hand Cilbs along of law						
11.5_ 12.0_	11.5	SPT-4	23	34	42	76	Brown, Hard, Silty clay of low plasticity with gravel	CL					
12.5													
13.0	. 13	UDS-5											
13.5	13.5	SPT-5	29	45	55 (7cm)	>100							
14.0_ 14.5_	14.5	SPT-6	24	38	44	82							
15.0_	14.0	01 1 0	24	00		02							
15.5													
16.0	. 16	UDS-6											
16.5_ 17.0_							Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL					
17.5	17.5	SPT-7	28	47	53 (8cm)	>100							
18.0													
18.5					50								
19.0	19	SPT-8	32	50	(6cm)	>100							
19.5_ 20.0_													

FIELD BOREHOLE LOG									
Kalan in the state of Haryana.	Client :HRIDCL								
Northing :3123214.311 m	Easting :696528.146 m								
BH. No. :BH-P1	BH Termination Depth (m):50								
Water Table (m):38.10	Inclination: Vertical								
Dia. of Boring :150 mm	Depth of Casing (m): Not Used								
	Kalan in the state of Haryana. Northing:3123214.311 m BH. No.:BH-P1 Water Table (m):38.10								

Boring t	ype :Rot	ary					Dia. of Boring :150 mm	Dep	th of Casing ((m) :Not Used				
Date of	Start :19	-10-2021					Date of Completion :22-10-2021							
	ر. (۱		В	low cour per 15cn	nts n			ion			Suc			
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations			
20.0								Cla	0 1	0 20 30 40 50 60 70 80	90 100			
20.5	20.5	SPT-9	36	53	47 (7cm)	>100					 			
21.0 _21.5_														
22.0	22	SPT-10	35	100 (13cm)	-	>100	>100	>100	>100	Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			+
22.5														
23.5	23.5	SPT-11	30	46	54 (10cm)	>100					$\downarrow \downarrow$			
24.0														
24.5 _25.0_ _25.5_	25	SPT-12	25	47	53 (12cm)	>100								
26.0 _26.5_ _27.0_	26.5	SPT-13	28	48	52 (10cm) >100 Brown, Hard, Silty clay of low plasticity with gravel CL	Brown, Hard, Silty clay of low plasticity with gravel	Brown, Hard, Silty clay of low plasticity with gravel	CL						
27.5 _28.0_ _28.5_	28	SPT-14	34	60	40 (7cm)	>100								
29.0 _29.5_ _30.0_	29.5	SPT-15	42	56	44 (8cm)	>100								

FIELD BOREHOLE LOG									
Project Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDCL									
BH Location/Chainage :28+900 km	Northing :3123214.311 m	Easting :696528.146 m							
Reduced Level (m):(+)263.022	BH. No. :BH-P1	BH Termination Depth (m):50							
Proposed / Existing Structure : Major Bridge	Water Table (m):38.10	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Data of Stant 10 10 2021	Data of Completion 22 10 2021								

Boring i	type :Rot	ary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used							
Date of	Start :19	-10-2021					Date of Completion :22-10-2021	·						
	. 7		В	low coun per 15cm	its 1			ion						
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth (Depth Special				
30.0 _30.5_ _31.0_ _31.5_ _32.0_	31	SPT-16	19	36	54	90								
32.5 _33.0_ _33.5_	32.5	SPT-17	38	55	45 (9cm)	>100								
34.0 _34.5_ _35.0_	34	SPT-18	43	57	43 (7cm)	>100	Brown, Hard, Silty clay of low plasticity with gravel	CL						
35.5 _36.0_	35.5	SPT-19	35	44	56 (8cm)	>100				•				
36.5 _37.0_ _37.5_	37	SPT-20	41	62	38 (8cm)	>100				•				
38.0	38.5	SPT-21	100 (15cm)	-	-	>100		_	¥38.10m					
39.0 _39.5_				100			Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL						
40.0	40	SPT-22	46	(13cm)_	<u> </u>	_>100								

AT THE REAL PROPERTY.				FIE	ELD	BOREHOLE L	O	\overline{G}			
Name :G	TI for (H	ORC) pro	oject from	Palwal t	o Harsana	Kalan in the state of Haryana.		Clien	t :HRIDO	CL	
ation/Ch	ainage :2	8+900 kn	n			Northing :3123214.311 m		Easti	ing :69652	28.146 m	
d Level (1	n):(+)263	.022				<i>BH. No.</i> :BH-P1		ВН Т	Terminatio	on Depth (m):50	
ed / Exist	ing Struci	ure :Maj	or Bridge	:		Water Table (m):38.10		Inclination : Vertical			
type :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used				ng (m):Not Used	
Start :19	-10-2021					Date of Completion :22-10-2021	•				
, <u>c</u>		_						tion		l I	
Depth (m) Sample Type N1 N2 N3 Value						Strata Description	<u>v</u>	Classificat	Graphic Log	Special Observations	
	ation/Ch d Level (t ed / Exist type :Rot Start :19	ation/Chainage :2 d Level (m):(+)263 ed / Existing Struct type :Rotary Start :19-10-2021 page 5 Sample	ation/Chainage :28+900 km d Level (m):(+)263.022 ed / Existing Structure :Maj type :Rotary Start :19-10-2021	Name :GTI for (HORC) project from ation/Chainage :28+900 km d Level (m):(+)263.022 ed / Existing Structure :Major Bridge type :Rotary Start :19-10-2021	Name :GTI for (HORC) project from Palwal t ation/Chainage :28+900 km d Level (m):(+)263.022 ed / Existing Structure :Major Bridge type :Rotary Start :19-10-2021 Blow counts	Name :GTI for (HORC) project from Palwal to Harsana ation/Chainage :28+900 km d Level (m):(+)263.022 ed / Existing Structure :Major Bridge type :Rotary Start :19-10-2021 Blow counts	Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. ation/Chainage :28+900 km Northing :3123214.311 m d Level (m):(+)263.022 BH. No. :BH-P1 ed / Existing Structure :Major Bridge type :Rotary Dia. of Boring :150 mm Start :19-10-2021 Date of Completion :22-10-2021	Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. ation/Chainage :28+900 km Northing :3123214.311 m d Level (m):(+)263.022 BH. No. :BH-P1 ed / Existing Structure : Major Bridge type :Rotary Dia. of Boring :150 mm Start :19-10-2021 Date of Completion :22-10-2021	ation/Chainage :28+900 km Northing :3123214.311 m Easting description in the control of the control	Name :GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client :HRIDG ation/Chainage :28+900 km Northing :3123214.311 m Easting :6965. d Level (m):(+)263.022 BH. No. :BH-P1 BH Termination ed / Existing Structure : Major Bridge Water Table (m):38.10 Inclination : Very type :Rotary Dia. of Boring :150 mm Depth of Casin Structure :19-10-2021	

Date of	Start :19	9-10-2021					Date of Completion :22-10-2021				Ji Osc				
Depth	In-Situ Sample Depth (m)	Sample Type		low coun per 15cm	1	SPT N	Strata Description	IS Classification	Graphi Log	1	١	epth			Special
40.0_	Sa Dep	Туре	N1	N2	N3	Value	Description	Class	Log		SPT N		lue) _{ο 7ρ}	80 90	100 d
_40.5															
41.0_	41.5	SPT-23	51	100 (12cm)		>100	Brown, Very dense, Sandy silt of								
_42.0	. 41.5	SP 1-23	51	(12CIII)	-	>100	low plasticity with gravel	ML-CL							_
_42.5					47										
_43.0	43	SPT-24	47	53	(9cm)	>100								+	†
_44.0 _44.5	44.5	SPT-25	52	65	35 (8cm)	>100									
.45.0_	44.5	SF 1-23	32	03	(OCIII)	7100									
.45.5_	46	SPT-26	55 (10cm)	100	_	>100									
_46.5			,				Brown, Hard, Silty clay of low plasticity with gravel	CL							
_47.0 _47.5	47.5	SPT-27	100 (13cm)	_	_	>100									
48.0_			,												
.48.5_	49	SPT-28	80	100 (7cm)	_	>100									
49.5_	49.22	-		(1 2.11)		.50									
50.0_															\perp

FIELI	D BOREHOLE L	OG
Project Name: GTI for (HORC) project from Palwal to Hars	ana Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123189.55 m	Easting :696520.214 m
Reduced Level (m):(+)263.955	<i>BH. No.</i> :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):34.55	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :15 10 2021	Data of Completion :18-10-2021	

Boring	type :Rot	tary					Dia. of Boring :150 mm	De	pth of Co	asing	(m) :1	Not	Use	d						
Date of	Start :15	5-10-2021					Date of Completion :18-10-2021													
	, <u>c</u>		В	low cour per 15cm	nts n			IS Classification										Special Observations		
Depth (m)	In-Situ Sample Depth (m)	Sample		İ		SPT N	Strata	S ficat	Grapi	hic			(De	epth //s	ı			ecial		
(m)	Sar	Туре	N1	N2	N3	Value	Description	l assi	Log	9		SF	T N	l Va	lue)			Spe		
0.0	_							ธั		0	10 20	30	40	50 6	0 70	80 9	90 100	ŏ		
		DS																		
0.5																				
1.0	1	SPT-1	3	4	5	9														
1.5																				
2.0																				
_2.5	2.5	UDS-1																		
							Brown, Loose to medium dense,	MI OI												
3.0							Sandy silt of low plasticity	ML-CL	·		Ш									
5.0																				
3.5									IIII H											
5.5																				
4.0	4	SPT-2	5	7	11	18														
4.0_	4	351-2	5	'	''	10					1									
4.5																				
4.5																				
5.0																				
5.0											$\parallel \parallel$									
		LIDC 0										\								
5.5	5.5	UDS-2																		
													$\ $							
6.0																				
6.5																				
			_																	
7.0	7	SPT-3	8	14	17	31						+								
7.5																				
							Brown, Dense to very dense, Sandy silt of low plasticity with gravel	CL												
8.0										#		+								
8.5	8.5	UDS-3									+	+	+			+				
9.0											+	+	+	-	\vdash	+	\vdash			
9.5											+	+	+			+	+			
10.0	10	SPT-4_	12	16	18	34				#										
HDC* I	DC not	recovered	1																	

FIELD	O BOREHOLE LC	∂G
Project Name: GTI for (HORC) project from Palwal to Harsa	na Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123189.55 m	Easting :696520.214 m
Reduced Level (m):(+)263.955	BH. No. :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):34.55	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Data of Start :15 10 2021	Data of Completion :18 10 2021	·

Boring i	type :Rot	ary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used							
Date of	Start :15	5-10-2021					Date of Completion :18-10-2021							
	<u> </u>		В	low coun per 15cm	its 1			ion			suc			
Depth (m)	In-Situ Sample Depth (m)	Sample Type			-	SPT N	Strata	IS Classification	Graphic	(Depth v/s	Observations			
(m)	In-S San	Type	N1	N2	N3	Value	Description	SSif	Log	SPT N Value)	ser			
10.0	a							Cla		0 10 20 30 40 50 60 70 80 90 100	o			
10.5														
10.5														
,, ,														
11.0														
11.5	11.5	UDS-4												
12.0														
12.5														
13.0	13	SPT-5	14	21	26	47								
13.5														
_ 10.0_							Brown, Dense to very dense, Sandy	01						
14.0							Brown, Dense to very dense, Sandy silt of low plasticity with gravel	CL						
_ 14.0_														
14.5	14.5	UDS-5							-					
15.0														
15.5														
16.0	16	SPT-6	25	29	41	70								
16.5														
17.0														
17.5	17.5	UDS-6												
18.0														
_ 10.0_														
18.5							D 11 1 0''' 1 11							
							Brown, Hard, Silty clay of low plasticity with gravel	ML-CL						
19.0	19	SPT-7	20	23	32	55	. , ,							
19.5														
20.0														
IIDe* II	DC not	ecovered	ı											

FIELD	BOREHOLE LO	OG
Project Name: GTI for (HORC) project from Palwal to Harsan	na Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123189.55 m	Easting :696520.214 m
Reduced Level (m):(+)263.955	<i>BH. No.</i> :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):34.55	Inclination: Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :15-10-2021	Date of Completion :18-10-2021	

Boring	type :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used								
Date of	Start :15	-10-2021					Date of Completion :18-10-2021								
	, e		В	low coun per 15cm	its า			tion			ons				
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification	Graphic Log	(Depth v/s SPT N Value)	Special Observations				
20.0								<u> </u>	0	10 20 30 40 50 60 70 80	90 100				
20.5	20.5	UDS-7													
21.0															
21.5											H				
22.0	22	SPT-8	58	100 (10cm)	-	>100									
22.5															
23.0															
23.5	23.5	SPT-9	70	100 (15cm)	-	>100									
24.0															
24.5															
25.0	25	SPT-10	34	45	55 (8cm)	>100	Brown, Hard, Silty clay of low plasticity with gravel	ML-CL							
25.5															
26.0															
26.5	26.5	SPT-11	50	82	18 (2cm)	>100									
27.0															
27.5															
28.0	28	SPT-12	25	52	48 (10cm)	>100					+				
28.5															
29.0															
29.5	29.5	SPT-13	42	100 (15cm)	-	>100					+				
30.0															

FIELD	BOREHOLE LO	G
Project Name :GTI for (HORC) project from Palwal to Harsana	Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123189.55 m	Easting :696520.214 m
Reduced Level (m):(+)263.955	BH. No. :BH-P2	BH Termination Depth (m):50
Proposed / Existing Structure : Major Bridge	Water Table (m):34.55	Inclination : Vertical
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Date of Start :15-10-2021	Date of Completion :18-10-2021	

Boring t	ype :Rot	ary					Dia. of Boring: 150 mm Depth of Casing (m): Not Used Data of Completion: 18, 10, 2021							
Date of	Start :15	5-10-2021					Date of Completion :18-10-2021	·						
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	low coun per 15cm N2	nts 1 N3	SPT N Value	Strata Description	IS Classification		(Depth viser N Value)				
30.0 _30.5_ _31.0_ _31.5_ _32.0_ _32.5_	31 32.5	SPT-14	44	60	40 (7cm) 56 (11cm)	>100			0 10 20 30	40 50 60 70 80 90100 C				
33.0 _33.5_ _34.0_ _34.5_	34	SPT-16	30	85	15 (2cm)	>100	Brown, Hard, Silty clay of low plasticity with gravel		34.55m					
35.0 _35.5_ _36.0_ _36.5_	35.5	SPT-17	32	50	50 (7cm)	>100		ML-CL		•				
37.0	37	SPT-18	41	65	35 (8cm)	>100		>100			•			
38.0 _38.5_ _39.0_ _39.5_	38.5	SPT-19	47	100 (5cm)	-	>100				•				
40.0	40	SPT-20	45	100 _(7cm)_		_>100								

FIELD	BOREHOLE LC	∂G										
Project Name: GTI for (HORC) project from Palwal to Harsana Kalan in the state of Haryana. Client: HRIDCL												
BH Location/Chainage :28+900 km												
Reduced Level (m):(+)263.955	BH. No. :BH-P2	BH Termination Depth (m):50										
Proposed / Existing Structure : Major Bridge	Water Table (m):34.55	Inclination : Vertical										
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used										
Date of Start :15-10-2021 Date of Completion :18-10-2021												
Blow counts per 15cm SPT	Shuata	Castion (Depth sial										

Boring							Dia. of Boring: 150 mm Depth of Casing (m): Not Used Date of Completion: 18, 10, 2021									
Date of	Start :15	-10-2021			_		Date of Completion :18-10-2021									
Denth	itu ple (m)	Sample		low coun per 15cm	its 1	SPT	Strata	IS Classification	Graphic	(Depth						
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	N Value	Description	IS Iassifi	Log	v/s SPT N V	alue)	Special Observations				
40.0								Ö	0	10 20 30 40 50	60 70 80 90 10	0				
40.5												_				
41.0				100							-					
41.5	41.5	SPT-21	1 52	(4cm)	-	>100						†				
42.0																
43.0	43	SPT-22	100 (15cm)	-	-	>100										
43.5																
44.0				400								-				
44.5	44.5	SPT-23	80	80	80	100 (9cm)	-	>100						+		
45.0 _45.5_							Brown, Hard, Silty clay of low plasticity with gravel	ML-CL				-				
46.0	46	SPT-24	65	100 (7cm)	-	>100										
46.5		SPT-24	SPT-24												_	
47.0			400							-						
47.5	47.5	SPT-25	(14cm)	0 m) >100						•						
48.0 _48.5_																-
48.5	49	SPT-26	100 (9cm)	100 0cm) >100	0 m) >100		00									
49.5	49.08	-														
50.0																

FIELD	BOREHOLE LO	G
Project Name :GTI for (HORC) project from Palwal to Harsana	a Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123180.027 m	Easting :696517.163 m
Reduced Level (m):(+)263.847	BH. No. :BH-A2	BH Termination Depth (m):40
Proposed / Existing Structure : Major Bridge	Water Table (m):34.50	Inclination : Vertical
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
D 00 1610 2001	D : CC 1 :: 10.10.2021	

Boring	type :Rot	ary					Dia. of Boring :150 mm	Depi	th of Cas	ing (m	ı) :No	t Use	ed								
Date of	Start :16	-10-2021					Date of Completion :18-10-2021														
	∞ €		В	low coun per 15cm	its 1			IS Classification									Special Observations				
Depth (m)	In-Situ Sample Depth (m)	Sample				SPT N	Strata	IS ficat	Graphi	ic (Depth v/s					ecial						
(m)	Sai Dep	Type	N1	N2	N3	Value	Description	l assi	Lòg		5	SPT	N Va	lue)			Spe				
0.0								ວັ		0 10	20 30	0 40	50	60 70	80 9	90 100	<u>ō</u>				
		DS																			
0.5																					
1.0	1	UDS-1																			
1.5																					
2.0							Brown, Very stiff, Silty clay of low	CL													
							plasticity	OL													
2.5	2.5	SPT-1	7	9	13	22															
											Ĭ										
3.0																					
3.5																					
4.0	4	UDS-2																			
4.0_	7	000-2																			
4.5												\setminus									
4.5																					
5.0																					
5.0																					
		CDT 0	40	40	04	0.7	Brown, Dense, Sandy silt of low					\parallel									
5.5	5.5	SPT-2	12	16	21	37	plasticity with gravel	ML-CL				•									
6.0																					
6.5																					
	_																				
7.0	7	UDS-3																			
7.5																					
8.0												+									
8.5	8.5	SPT-3	9	12	24	36	Brown, Hard, Silty clay of low plasticity with gravel	CL		\vdash		+		Н							
							, , 5														
9.0										1	+	+	+								
9.5										\vdash	+	+	+	H		\vdash					
10.0	10	UDS-4																			
1106*11	DC not	ecovered																			

FIELD	BOREHOLE LO	G
Project Name :GTI for (HORC) project from Palwal to Harsan	a Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123180.027 m	Easting :696517.163 m
Reduced Level (m):(+)263.847	BH. No. :BH-A2	BH Termination Depth (m):40
Proposed / Existing Structure : Major Bridge	Water Table (m):34.50	Inclination : Vertical
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
Data of Start :16 10 2021	Date of Completion :18-10-2021	· · · · · · · · · · · · · · · · · · ·

Boring	type :Rot	ary					Dia. of Boring :150 mm	Dept	h of Casing (m) :N	ot Used	
Date of	Start :16	-10-2021					Date of Completion :18-10-2021				
	, E		В	low coun per 15cm	its 1			tion			ons
Depth (m)	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Strata Description	IS Classification		(Depth v/s SPT N Value)	Observations
10.010.511.011.512.012.513.013.514.015.516.016.517.017.518.018.5	11.5	SPT-4 UDS-5 UDS-6	14	18	22 29	40 48	Brown, Hard, Silty clay of low plasticity with gravel	CLas			, ob
19.0_ 19.5	. 19	UDS-7					Brown, Very dense, Sandy silt of low plasticity with gravel	ML-CL			
20.0											

FIELD	BOREHOLE LO	\overline{G}
Project Name: GTI for (HORC) project from Palwal to Harsa	na Kalan in the state of Haryana.	Client :HRIDCL
BH Location/Chainage :28+900 km	Northing :3123180.027 m	Easting :696517.163 m
Reduced Level (m):(+)263.847	BH. No. :BH-A2	BH Termination Depth (m):40
Proposed / Existing Structure : Major Bridge	Water Table (m):34.50	Inclination: Vertical
Boring type : Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used
D + CC+ + 1C 10 2021	Data of Committee and 10, 10, 2021	<u> </u>


Boring i	type :Rot	ary					Dia. of Boring :150 mm Depth of Casing (m) :Not Used							
Date of	Start :16	-10-2021					Date of Completion :18-10-2021							
	ء ج		Blow counts per 15cm					iion		Special Specia				
Depth (m)20.0	In-Situ Sample Depth (m)	Sample Type	N1	N2	N3	SPT N Value	Class iffication		Strata Description Strata Description Strata Description Output Desc					
20.5	20.5	SPT-7	34	100 (15cm)	-	>100				0 10 20 30 40 50 60 70 80 90 100				
21.0 21.5 22.0 22.5	22	SPT-8	37	100 (10cm)	-	>100	Brown, Very dense, Sandy silt of	ML-CL						
23.0 _23.5_ _24.0_	23.5	SPT-9	100 (10cm)	-	-	>100	low plasticity with gravel	WE-GE						
24.5 _25.0_	. 25	SPT-10	33	75	25 (3cm)	>100								
25.5 26.0 26.5	26.5	SPT-11	45	100 (4cm)	-	>100								
27.0 _27.5_ _28.0_ _28.5_	28	SPT-12	48	52	48 (4cm)	>100	Brown, Hard, Silty clay of low plasticity with gravel	CL						
29.0 _29.5_ _30.0_	29.5	SPT-13	51	100 (7cm)	-	>100								

FIELD BOREHOLE LOG									
Project Name: GTI for (HORC) project from Palwal to Har	rsana Kalan in the state of Haryana.	Client :HRIDCL							
BH Location/Chainage :28+900 km	Northing :3123180.027 m	Easting :696517.163 m							
Reduced Level (m):(+)263.847	BH. No. :BH-A2	BH Termination Depth (m):40							
Proposed / Existing Structure : Major Bridge	Water Table (m):34.50	Inclination : Vertical							
Boring type :Rotary	Dia. of Boring :150 mm	Depth of Casing (m): Not Used							
Date of Start :16-10-2021	Date of Completion :18-10-2021								

Boring t	ype :Rot	ary					Dia. of Boring :150 mm	Dep	th of Casing	g (m) :N	ot Us	sed								
Date of	Start :16	-10-2021					Date of Completion :18-10-2021	·												
	. ĉ		В	low coun per 15cm	its 1			IS Classification								Special Observations				
Depth (m)	In-Situ Sample Depth (m)	Sample				SPT N	Strata	S Ficat	Graphic	c (Depth v/s					cial					
(m)	Sar Dept	Type	N1	N2	N3	Value	Description	l assi	Log		SPT	N V	alue)			Spe				
30.0								อื		10 20	30 40	50	60 70	0 80	90 100	ŏ				
30.5																				
31.0	31	SPT-14 41	41	53 (7cm)	47	>100									_	•				
31.5									_						-					
32.0	32.5	SPT-15	32	47	53 (4cm)	>100														
32.5	32.3	3F1-15	32	47	(4011)	7100														
33.0															+					
33.5																+				
34.0	34	SPT-16	45	59	41 (6cm)		>100						 	•						
34.5									₹34.50m						\perp					
35.0							Brown, Hard, Silty clay of low plasticity with gravel	CL												
35.5	35.5	SPT-17	58	100 (5cm)	-	>100										•				
36.0																				
36.5																				
37.0	37	SPT-18	35	48	52 (8cm)	>100										•				
37.5																				
38.0				55 (6cm) >100									1	+						
38.5	38.5	SPT-19	38		45 (6cm) >100								+	•						
39.0														+	+					
39.5																		+	+	
40.0		SPT-20		100 _(15cm)_		_>100														

CEG TEST HOUSE & RESEARCH CENTRE PVT. LTD., JAIPUR

CONDUCTING GEOTECHNICAL INVESTIGATION, PREPARATION OF GEOTECHNICAL REPORT FOR DESIGNING OF BRIDGES AND FOR EMBANKMENT IN CONNECTION WITH CONSTRUCTION OF HARYANA ORBITAL RAIL CORRIDOR (HORC) PROJECT FROM PALWAL TO HARSANA KALAN INCLUDING CONNECTIVITY TO EXISTING IR NETWORK IN THE STATE OF HARYANA.

OCH-28+900/NCH-29+567_BH-A2 E-696517.163 N-3123180.027 R.L.=(+)263.847m ž Depth 20.5 22 MI-CL 23.5 587.0Mtr. OCH-28+900NCH-29+567_BH-P2 E-696520.214 N-3123189.550 San HDS ž Depth 52 52 58 52 58 52 31 29 OCH-28+900NCH-29+567_BH-P1 CONDUCTING GEOTECHNICAL INVESTIGATION, PREPARATION OF GEOTECHNICAL REPORT FOR DESIGNING OF BRIDGES AND FOR EMBANKMENT IN CONNECTION WITH CONSTRUCTION OF HARYANA ORBITAL RAIL CORRIDOR (HORC) PROJECT FROM PALWAL TO HARSANA KALAN INCLUDING CONNECTIVITY TO EXISTING IR NETWORK IN THE STATE OF HARYANA. E- 696528.146 N- 3123214.311 46 LIDS LIDS , 100 100 ^100 NDS nDS Depth 38.5 35 38 35 35 5 17.5 9 9 OCH-28+900NCH-29+567_BH-A1 E-696531.196 N-3123223.834 san 00 A SON >100 49 R.L.=(+)262.678m OCH-28+360/NCH-29+028_BH-A2 E- 697043.901 N- 3123046.953 ×100 WATER UDS* ¥ ×100 *San ×100 *SQN *San *SQN ^100 >100 , S O N San nBS ž Depth 29.5 38.5 26.5 9 25 0 OCH-28+360/NCH-29+028_BH-P2 E-697046.700 N-3123064.680 San ODS × 100 × ×100 ×100 ¥ 90 ×400 9 NDS. × 100 100 ×100 ×100 400 ×100 540.0Mtr. Depth 32.5 26.5 29.5 ML-0 2.5 35.5 6 MEC OCH-28+360/NCH-29+028_BH-P1 E-697050.914 N-3123091.386 ×100 × 100 ¥ >100 ×100 ×100 SON R.L.=(+)267.861m ž £ 44 5 48 5 49 28 29.5 <u>6</u> OCH-28+360/NCH-29+028_BH-A1 R.L.=(+)268.602m E-697053.721 N-3123109.166 , 198 7 8 × 8 80 S , 19 8 7100 ×100 ×100 2 × × ×100 San Ž SCALE:- VER:- 1:285 ∏-C[SM-SC -Clayey Sand (Having fines Less Than 50% and in the hatched zone (4<PI<7) WATER TABLE Depth SM-Silty Sand (Having fines Less Than 50% and no plasticity or below A-line) CEG TEST HOUSE & RESEARCH CENTRE PVT. LTD., JAIPUR HOR: 88 80 66 1 Cl- Clay of medium plasticity (Above A-line, 35≤LL<50) OCH-28+075/NCH-28+743_BH-A2 E- 697330.717 N- 3123064.726 DESCRIPTION CL-Silty Clay of low plasticity (Above A-line, LL<35) SCALE:-× 100 ×100 nDs × 100 SON 82 83 92 40 Note:- Fines= Percentage of Silty + Clay A-line=.73(wl-20) 0 4 4 4 4 0 1 0 Depth 50.5 BOREHOLE REQUIRED 52 53 53 53 5.5 ML-CL 24.00 27.100 SYMBOL

APPENDIX – B (LAB TEST RESULTS)

Appendix No.	ITEMS
B-1	SOIL CHARACTERISTICS SHEETS
B-2	RESULT OF CHEMICAL ANALYSIS OF SOIL SAMPLES
B-3	RESULT OF CHEMICAL ANALYSIS OF WATER SAMPLES
B-4	GSD CURVES
B-5	SHEAR CURVE
B-6	CONSOLIDATION CURVE

de	1-22	s	u	Compression Index (C _c)	1	ı	1	ı	1	1	-	1	1
Ref. Code	SR-544_21-22	rameter		M _v x 10 ⁻² (cm ² /Kg)	1	ı	1	ı	1	ı	ı	ı	,
	IS	ation Pa		C _v x 10 ⁻⁴ (cm ² /Sec)	1	1	1	1	1	1	-	1	ı
L.	(+)270.946 m SR-544_21. Consolidation Parameters			Pressure (kg/cm ²⁾	1	1	1	1	1	1	ı	,	1
R.	(+)270		(0;	9) oita Ratio (e	i	ı	1	ı	i	1	ı	1	i
	5 m	Á	Permeability (cm/sec)			1	1	1	1	1	-	1	1
	,N) 3123079.115 m			Swelling Pr (kg/cm	1	1	1	1	1	1	1	1	1
Cordinates (E,N)	312	кəј	1	Free Swell (%)	1	1	'	1	1	1	1	1	,
Cordinat	m ,	ıgth	(Angle of 'o' (° o')	ı	1	1	1	ı	1	ı	1	1
)	697786.663 m	Shear Strength		O noisədoD (kg/cm²)	1	ı	ı	ı	1	1	-	,	1
	.69	She	1	туре of Tes	ı	1	1	1	ı	1	ı	1	1
nation th	m (γti	AB.	Specific Gr	1	ı	1	ı	1	1	1	1	
Termination Depth	40.00 m	(°ma)(g)	Dry Density	1	,		,		1	1		1
Table		Bulk Density (g/cm³) Natural Moisture Content (%)			1				1	1	1	1	1
Depth of Water	33.10 m				1	ı	1	ı	1	1	1	1	1
Depth (Shrinkage Limit	1	ı	ı	1	1	1	1	1	1
No.	.A1	Limits 9		Plasticity Index	-	11			111	1	-	11	-
B.H. No.	27+620 Major Bridge BH-A1	Atterberg Limits %	1	Inid other	ı	22	ı	i	22	ı	ı	21	1
ion		A	1	imiJ biupiJ	1	33	1	1	33	1	1	32	
Chainage (km.)/Location			ivel	Coarse	1	0	1	1	2	1	-	0	1
(kn		etained	Grave	Fine	ı	11	ı	ı	6	ı	ı	∞	ı
	12-10-2021	1 % wt r		Coarse	ı	2	ı	ı	'n	ı	ı	4	1
ring	12-10	tribution	Sand	Medium	1	ю	1	ı	8	1	1	4	,
Date of Boring	to	Grain Size Distribution % wt retained		Pine	1	21	1	1	20	1	1	23	1
Da	11-10-2021	Grain		JIIS	,	52	,	,	49	1	-	50	1
	11-1(Clay		Ξ	,	'	12			=	-
lesigning bital Rail	y to		loc	Janys SI									
report for α Taryana Or	Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.		ite	offisseID 2I	1	CF	,	,	CL	1	1	CL	1
gation, preparation of geotechnican connection with construction of				Soil Description		•	•	•	Brown, Hard, Silty clay of low plasticity with gravel			•	
cting geotechnical investigges and for embankment ir	Corridor (HORC) project from Palwal to He existing IR network in the state of Haryana.		dS	Observed SP (N) Corrected Value (I	100 100 (20cm)	100 100 (24cm)	- >100	100 100 (25cm)	84 84	91 91	>100	100 100 (18cm)	88
Conduc	Conducting of bridges Corridor (Fexisting IR		T.	Depth from (1 28.00	2 29.50	3 31.00	4 32.50	5 34.00	6 35.50	7 37.00	8 38.50	9 40.00
Projec	Projec			T əlqm ₆ 2	SPT-11	SPT-12	SPT-13	SPT-14	SPT-15	SPT-16	SPT-17	SPT-18	SPT-19

SPT-10

Sample Type

Project

SPT-12

SPT-11

SPT-13

SPT-14

SPT-15

Index (C_c) Compression

> $(gX/^2ms)$ ².01 x ₂M $(292^{7}m_{2})$

SR-544_21-22

Ref. Code

SPT-16

SPT-17

SPT-18

8	8
Hala	due
nso	Sa
(nco	ndex
H	met
hear Test, UIUT-U	T. Ke
est,	10-15
Tag.	Te
	INB
rect S	1
2	rained
DS	lia)
10	P. C.
OVC	afterd
160	pyo
net	Inconsofid
Ř	Cinc
le, UDS*-UDS	3
8	5
ple.	de UUT
Sam	has
poe	S
Indisturb	Pine
indi	еше
ST	in R
5	uo isa
Cest	ear T
9	1022
	-
Brab	rect Shea
Penetration	neer Sh
ard Penetration	neer Sh
andard Penetration	neer Sh
T-Standard Penetration	Fest, DST+ - Direct Sh
SPT-Standard Penetration	Fest, DST+ - Direct Sh
uple, SFT-Standard Penetration	Fest, DST+ - Direct Sh
Saruple, SPT-Standard Penetration	Fest, DST+ - Direct Sh
hed Saruple, SPT-Standard Penetration	Fest, DST+ - Direct Sh
sturbed Sample, SPT-Standard Penetration	neer Sh

9	-22		Compression Index (C _c)		1	1	1
Ref. Code	SR-544_21-22	ameters		(cm ² /Kg)	1	-	
~	SR	ion Par		C _v x 10 ⁻⁴ (cm ² /Sec)	1	-	
R.L.	1	Consolidation Parameters		Pressure (kg/cm ²⁾	ı	1	ı
æ			(0	e) oita Matio (e	1	1	
	, m	Á		Permeabi oss/mo)	1	1	
	3123021.117 m	nre		Swelling Pro (kg/cm ²	ı	-	ı
s (E,N)	3123	хәр	u	Tree Swell (%)	ı	1	1
Cordinates (E,N)	υ	ų	(Angle of (°p) moitoira	1	1	1
	697786.129 m	Shear Strength		O noisəno (kg/cm²)	1	-	1
	<i>L</i> 69	Shea	1	Type of Test	1	1	1
Termination Depth	60.00 m	ţti	ar	Specific Gr	ı	ı	ı
	90.09	Dry Density (g/cm³)			1	-	1
r Table		nre)		oM leruteN) trestreO	ı	ı	ı
Depth of Water T	33.13 ш	(_E mɔ/	3)	Bulk Density	-	-	-
Depth		%		Shrinkage Limit	ı	ı	1
B.H. No.	BH-P3	Atterberg Limits %		Plasticity Application	ı	11	1
T'B	IB	tterber	1	Plastic Limid	i	21	-
e ijon	ge	Ą	1	imiA biupiA	ı	32	ı
Chainage (km.)/Location	27+620 Major Bridge		Gravel	Coarse	1	0	1
(k	Ŋ	etained	5	Fine	ı	6	
	20-11-2021	% wt r		Coarse	1	3	ı
ing	20-11	ribution	Sand	muibəM	ī	4	-
Date of Boring	to	Grain Size Distribution % wt retained		Fine		26	
Da	-2021	Grain		ılis		47	
	18-11-2021			Clay	1	111	
igning of Rail	o existing		ю	dmy2 SI			
eport for des	onnectivity to	uo	its	IS Classific		CL	
Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.				Soil Description		Brown, Hard, Silty clay of low plasticity with gravel	
chnical in	project fr state of H			Corrected (A) suls (A)	78	26	ı
ing geotec and for em	Corridor (HORC) project from Pal- IR network in the state of Haryana.	ənlsV	J	Observed SPT (N)	78	67	
Conduct. bridges a	Corridor IR netwo	(w) "	ľ	Depth from G	58.00	59.50	60.00
Duction	Project			T əlqms2	SPT-27	SPT-28	DS-2

LIUT-Unconsolidated	Remoulded Sample.
est, UDS-Undsturbed Sample, UDS*-UDS net recovered, DST-Direct Shear Test, UUT-Unconsolid	temoulded Sample, ULIT Unconsolidated Undrained Tri-axial Test on Remoulded Sampl
ale, UDS*-UDS not recover	e ULIT Unconso idated
17054	st on B
Tration T	T+ Direct Shear To
d Saruple, SFT-Standt	rained Triaxial Shear Test, DST+ - Dit
Disturba	Tanned T

٠	-22		υ	Compression Index (C _c)	ı	1	ı	
Ref. Code	SR-544_21-22	ameters		(cm ² /Kg)	1	-	1	
	SR	ıtion Paı		C _v x 10 ⁻⁴ (cm ² /Sec)	1	1	1	
ز	080 m	Consolidation Parameters		Pressure (kg/cm ²⁾	ı	ı	ı	
R.L.	(+)271.080 m		(0	e) oitaA bioV	1	1	1	
	m ç	Ã		idsəmrə¶ əs/mɔ)	1	-	1	
	3123047.116 m	nre		Swelling Pr (kg/cm	-	-	-	
s (E,N)	312.	хәр	uj	Free Swell (%)	-	-	-	
Cordinates (E,N)	m	th	(To əlgnA (°q) noitəirT	ı	ı	ı	
ŭ	697786.377 m	Shear Strength		Cohesion C (kg/cm²)	ı	ı	ı	
	<i>L</i> 69	Shea	1	Type of Tes	ı	ı	ı	
ation !h	m (ţti	AB.	3 office Gr	1	1	1	
Termination Depth	60.00 m	cm ₃)	/g)	Dry Density	1	1	1	
Table				oM lerural Mo Content (,	1	
Depth of Water Table	33.00 m	(_c m ₃)	(8)	Bulk Density	1	1	1	
Depth o	(1)	. 6		Shrinkage Limit	ı	ı	1	
No.	-P2	Atterberg Limits %		Plasticity Index	1	1	,	
B.H. No.	BH-P2	tterberg	1	imiA sitseI¶	1	1	1	
e ion	ge	¥	1	imiJ biupiJ	1	-	-	
Chainage (km.)/Location	27+620 Major Bridge		Gravel	Coarse	1	1	ı	
(kr	Ŋ	etained	Ę.	əniA	ı	ı	ı	
	21-11-2021	Grain Size Distribution % wt retained		Coarse	1	1	1	
oring	21-1	stributio	Sand	muibəM	ı	ı	ı	
Date of Boring	to	ı Size Di		Pine	ı	ı	ı	
Q	18-11-2021	Grain		ıiis	1	1	ı	
	18-1			Clay				
designing bital Rail		loc	dmy2 SI					
otechnical report for designing action of Haryana Orbital Rail	connectivit	uoj	its	IS Classific	1	1	ı	
Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.				Soil Description		Brown, Hard, Silty clay of low plasticity with gravel		
				Corrected 1) sulaV	08	95	1	
ting geote	or (HORC.	anls V	L	Observed SP(N)	80	95	1	
Conduc of bridg	Corridc existing	(w) "	J.t	Depth from О	8 58.00	9 59.50	90.00	
	rioje	Э	dΛ	T əlqms2	SPT-28	SPT-29	1	

Project

Compression Index (C_c)

6-SQN

6-LdS

UDS-3

SPT-4

UDS-4

SPT-5

SPT-7

UDS-7

9-LAS

ODS-6

UDS-2

SPT-3

SPT-2

DS

Sample Type

Project

Sample Type

UDS-10

SPT-12

SPT-13

Index (C_e) Compression

(gX\²m2)

SPT-15

SPT-17

					<u> </u>		T	ı	T	Γ	Γ	I	I		ı	1	I	1	1	ı		T
de	1-22	ş		Compressio	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı
Ref. Code	SR-544_21-22	rameter		² -01 x ₂ M (gX ² /Kg)	i	i	ı	i	ı	1	1	ı	ı	1	ı	ı	ı	i	ı	ī	1	ı
				C _v x 10 ⁻⁴ (cm ² /Sec)	i	1	1	ı	1	1	ı	1	ı	1	1	1	1	1	1	1	1	ı
ŗ.	R.L. (+)269.806 m	Consolidation Parameters		Pressure (kg/cm ²⁾		1		1		1	1		1	1				1			1	1
R.]	(+)269.)	(0 0)) oita Ratio (1	1	1	1	1	1	1	ı	1	1	1	1	ı	1	1	1	1	
	m	Á		Permeal es/mɔ)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ı
,N) 3123086.726 m		Swelling Pressure (kg/cm²)			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
es (E,N)	312:	хәр		Free Swell (%)	i	ı	ı	Í	i.	ı	ı	ī	ı	ı	i.	ı	ī	Ī	ı	I.	ı	i
Cordinates (E,N)	m	gth		no əlgnA γ) noticirA	,	,	,	,	1	1	1	,	,	1	1	,	,	,	,	,	1	,
С	697330.702 m	Shear Strength		Cohesion ((kg/cm²)	1	1	1	1	1			ı			1	1	ı	1	1	ı		,
	169	She	1s	Type of Tea	-	-	1	1	1	-	-	1	-	-	1	1	1	1	1	1	-	-
ıtion h	m	V Ji	rav	D officeq2				1	,	1	1		1	1				1		,	1	
Termination Depth	55.00	(*mɔ/g) yii		Dry Density		,	1	1	1	1	1	1	1	1	1	1	1		1	1	1	
Table		((%)	Content	1	1	1	1	1	ı	ı	1	1	ı	1.	1	1	1	1	1	ı	ı
	32.67 m		Bulk Density (g/cm³ Natural Moisture		1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Depth of Water	32.			timi.I		,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
		nits %		Index	7	1	9	1	7	1	7	1	9	1	7	1	7	1	9	1	7	
B.H. No.	BH-A1	Atterberg Limits		Plastic Lim Plasticity	21		21		20		61		20		21	1	20		20		20	
		Atter	timid biupid		28		27		27		56		792		28	1	27		26		27	
Chainage (km.)/Location	-075 Bridge			Coarse	0		0		0	1	1 2		0	1	0		1 2		0		0 2	
Chai (km.)/I	28+075 Major Bridge	peu	Gravel	Fine	13		8		7	1			10	1	12	1	∞		11		12	
	21	wt retained	-	Coarse	3		2		3		2				1		2		0	,	1	
	18-10-2021	%	Sand	muibəM	10		9		∞		3		6		2		8		-	,	3	
Date of Boring	to 1	Grain Size Distribution	Sa	Fine	22		33		26	1	30		25	1	59	1	30		27		30	
Date of		rain Size		H!S	4		84		49		49		49		48		49		55 2	,	47	
	16-10-2021	G		Clay	×	1	, 9	1	, ,	1	,	1	9	1	∞	1	, ,	1	9	1	,	1
ning Rail		Iodmy2 21																				
for designa a Orbital	tivity to				J.		ij		J.		ij		ij		J.		ij		J.		ij	
ical report of Haryar	ing connec	uo	ites	IS Classiff	ML-CL	'	ML-CL	1	ML-CL	'	ML-CI	'	ML-CL	'	ML-CL	1	ML-CL	1	ML-CL	'	ML-CL	1
f geotechn onstruction	lan includi			u									ndy silt of	gravel								
paration o	larsana Ka			Soil Description									dense, Saı	city with								
Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail	Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.			Soil I									Brown, Very dense, Sandy silt of	low plasticity with gravel								
al investig	ect from P the state o		(°NT) ənlaV							_											
geotechnic d for emba	ORC) proje etwork in		AS I	(N) Corrected balled (S)	0 37	100 (25cm)	77 35	9 28	78 25	5 27	5 27	100 (19cm)	8 28	100 (27cm)	100 (25cm)	100 28cm)	100 (23cm)	- 00	100 (28cm)	100 (22cm)	100 23cm)	100 (22cm)
ting g	dor (HC ng IR n		\ L	Depth from Observed SF	0	31.00 100 (25cm	32.50 77	34.00 89	35.50 78	37.00 85	38.50 85	40.00 10	41.50 88	43.00 10 $(27c)$	44.50 10	46.00 100 (28cm)	47.50 100 (23cm	49.00 >100	50.50 10	52.00 100 (22cm	53.50 100 (23cm)	55.00 100 (22cm
nduc	rri Sti	(w) "	י ר		. 5	. —	N	4					. —	· (7)							(L)	55
Conduc of bridg	r roject _{Corri} existi			Sample 7	SPT-11 2	SPT-12 3	SPT-13 33	SPT-14 3	SPT-15 3:	SPT-16 37	SPT-17 38	SPT-18 40	SPT-19 43	SPT-20 4	SPT-21 44	SPT-22 46	SPT-23 47	SPT-24 49	SPT-25 50	SPT-26 52	SPT-27 5	SPT-28

ə	-22			Compression Index (C _c)	-	ı	i	ı	ı	-	ı	ı	ı
Ref. Code	SR-544_21-22	ameters		² -01 x ₁ M (gA\ ² /Kg)	1	1	ı	1	1	1	1	1	1
×	SR	tion Par	Ī	C _v x 10 ⁻⁴ (cm ² /Sec)	1			1	-	1	1	1	
. 1	502 m	Consolidation Parameters		Pressure (kg/cm ²⁾	1	1	1	1	1	1	1	1	1
R.L.	(+)268.602 m		(Void Ratio (e ₀	1	1	1	1	1	1	1	1	1
	Ш	Á		lidesmrs4 (ces/mc)	1	ı	ı	1	1	1	1	1	ı
	3123109.166 m	nre	SS	Swelling Pres (² mɔ/gʎ)	ı	i	ı	ı	ı	1	ı	ı	ı
s (E,N)	3123	хəр	pu	И Пэw2 ээтЧ (%)	1	1	ı	1	1	1	1	1	1
Cordinates (E,N)	ц	th		Angle of Friction (°)	-	1	ı	1	-	1	-	1	1
ŭ	697053.722 m	Shear Strength		Cohesion C (kg/cm²)	,			,	,		1	,	
	<i>L</i> 69	Shea		Type of Test	1	1	1	1	1	1	1	1	1
nation th) m	Ų	ΔΊ	Specific Gra	1	1		1	1	1	1	1	1
Termination Depth	40.00 m	cm ³))/ā	Bry Density (g	1	1		1	1	1	1	1	1
r Table				doM leruteN P) tastaoO	1	1	,	1	1	1	1	1	1
Depth of Water	34.78 m	(_E mɔ/	/S	Bulk Density (1	ı	ı	ı	ı	ı	ı	ı	ı
Depth		9/		Shrinkage Limit	ı	ı	ı	ı	ı	1	ı	1	ı
B.H. No.	BH-A1	Limits 9		Plasticity xəbn1	1	7	,	7	1	9	1	9	1
B.H	ВН	tterberg	After Diquid Limit Plastic Limit Plasticity Plasticity Index Se			21		19	1	21	ı	20	
ion	ge	A			-	28		26	-	27	-	26	-
Chainage (km.)/Location	28+360 Major Bridge		Crovel	Coarse	ı	0	ı	0	ı	0	ı	0	ı
(kn	Σ	etained	נֿי	Fine	1	111	ı	10	ı	8	ı	111	ı
	14-10-2021	ı % wtr		Coarse	1	2	,	1	-	2	1	2	1
ring	14-1(tributior	Cond	muibəM	-	9	ı	13	-	5	-	7	1
Date of Boring	to	Grain Size Distribution % wt retained		Fine	1	26	,	25	ı	27	ı	26	1
D	13-10-2021	Grain		HIS	1	47	1	4	1	52	1	47	1
	13-1			Clay	-	8	I	7	-	9	-	7	-
lesigning bital Rail	y to		Ic	odmy2 SI									
l report for d Haryana Orl	connectivity	uo	ij	IS Classifica	ı	ML-CL	ı	ML-CL	ı	ML-CL	ı	ML-CL	ı
Conducting geotechnical investigation, preparation of geotechnical report for designing	Corridor (HORC) project from Palwal to Harsana Kalan including existing IR network in the state of Haryana.	Soil Description						Brown, Very dense, Sandy silt of low plasticity with gravel					
echnical i) project ork in the			Corrected S N) sulay	1	1	1	1	1	1	1	1	1
cting geot	or (HORC g IR netw	alue/	١.	Observed SPT (N)	(21cm)	(23cm)	100 (22cm)	100 (23cm)	(21cm)	100 (22cm)	(20cm)	100 (23cm)	100 (28cm)
Condu	Corrid existing			Depth from G	11 28.00	12 29.50	13 31.00	14 32.50	15 34.00	16 35.50	17 37.00	18 38.50	19 40.00
	Froje	Э	d	Sample Ty	SPT-11	SPT-12	SPT-13	SPT-14	SPT-15	SPT-16	SPT-17	SPT-18	SPT-19

Sample Type

de	1-22	ys.	Compression Index (C _c)	1	1	ı	1	1	ı	ı	1	1	1	ı	ı	1	ı	ı	1
Ref. Code	SR-544_21-22	Consolidation Parameters	M _v x 10 ⁻² (cm ² /Kg)	1	-	1	1	1	1	1	-	1	1	,	1	-	1	1	1
	<u> </u>	lation Pa	C _v x 10 ⁻⁴ (cm ² /Sec)	1	-	1	1	1	1	1	-	1	1	'	1	-	1	1	1
R.L.	(+)267.285 m	Consolid	Pressure (kg/cm ²⁾	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ı	ı
~	(+)267		Void Ratio (e ₀)	ı	-	ı	ı	1	ı	-	-	1	1	ı	ı	-	1	1	ı
	10 m	Á	Permeability (cm/sec)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	3123064.680 m	nre	Swelling Press (kg/cm²)	1	ı	ı	,	1	1	ı	ı	ı	1	1	ı	ı	ı	ı	1
Cordinates (E,N)	31	хəр	Free Swell Inc	1	1	1	'	1	'	1	1	1	1	1	1	1	1	1	1
ordina	В	gth	Angle of (°)	ı	1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1
	697046.700 m	Shear Strength	Cohesion C (kg/cm²)	1	ı	ı	1	1	1	ı	ı	1	1	1	ı	ı	1	ı	1
	69	She	Type of Test	,	-	,	1	1	'	1	-	,	1	,	1	-	1	,	'
Termination Depth	50.00 m	Ų	Specific Grav	ı	ı	ı	ı	1	ı	1	ı	1	ı	ı	-	ı	ı	1	ı
Termi Dej	50.0	(_E mo	Dry Density (g/o	1	-	1	1	1		-	-	1	1	1	1	-	1	1	1
r Table			datural Moist (%) tnatnoO	-	1	1	,	1	-	1	1	ı	ı	1	-	1	ı	1	1
Depth of Water	33.85 m	([£] mɔ)	Bulk Density (g/	,	-		ı	1	1	-	-	1	1	,	-	-	1	1	1
Depth		%	Shrinkage Limit	,	-		ı	1	1	-	-	1	1	,	-	-	1	1	1
B.H. No.	ВН-Р2	g Limits	Plasticity Index	7	1	9	,	9	1	L	1	7	1	7	1	L	1	1	,
B.H	BF	Atterberg Limits	Plastic Limit	20	-	21	,	20	'	20	-	21	,	20	1	19	1	,	,
ge ítion	dge	7	timid biupid	27	-	27	1	26	1	27	-	28	1	27	1	26	1	1	1
Chainage (km.)/Location	28+360 Major Bridge		Coarse	0	1	0	,	0	'	0	1	0	,		1	1	1	1	1
(k		etained	Fine Q	∞	-	10	1	7	'	6	-	∞	1	7	-	6	1	1	1
	14-10-2021	n % wtı	Coarse	2	1	3	,	-1	'	4	1	2	,		1	4	1	1	1
ring	14-1	Grain Size Distribution % wt retained	San muibəM	7	1	9	1	S	1	8	1	10	1	11	1	6	1	1	1
Date of Boring	to	n Size Di	Fine	28	1	24	'	29	'	22	1	24	'	26	1	25	1	1	1
	12-10-2021	Graii	His	47	-	50	1	52	'	50	-	48	1	47	1	45	1	1	1
			Clay	8		7	1	9		7		8	-	7	-	7	-		-
r designing Orbital Raii	ity to		lodmy2 21			1				,						1			
al report fo	g connectiv	uo	IS Classificati	ML-CL	1	ML-CL	ı	ML-CL	ı	ML-CI	1	ML-CL	ı	ML-CL	1	ML-CL	1	ı	ı
Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail	Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.		Soil Description								Brown, Dense to very dense, Sandy	silt of low plasticity with gravel							
echnical in)) project f. ork in the		Corrected SP Value (N _c)	46	1	1	1	,	1	1	ı	I.	,	1	ı	1	ı	ı	1
ucting geot	idor (HORC		Observed SPT V	00 100	- 09	100 (19cm)	- 02	100 (21cm)	- 02	100 (20cm)	50 100 (23cm)	100 (20cm)	100 (22cm)	100 (24cm)	50 >100	00 >100	50 >100	00 >100	
Cond of briv	existi		Depth from G.L	2	3 29.50	11 31.00	32.50	12 34.00	35.50	13 37.00	14 38.50	15 40.00	16 41.50	17 43.00	18 44.50	19 46.00	20 47.50	21 49.00	49.23
	Froject	Э	Sample Typ	SPT-10	*SQN	SPT-11	*SQN	SPT-12	*SQN	SPT-13	SPT-14	SPT-15	SPT-16	SPT-17	SPT-18	SPT-19	SPT-20	SPT-21	1

Hidated	anthe
-Unconso	sounded Sa
est, UUT	ton Rem
ShearT	axial Tes
ST-Direc	ined Tri-
wered, D.	ed Under
net rece	onsorda
3017*SO	T. Unc
ple, UI	JE 10
acd Sam	ed Samp
Indistrut	emonide
L'IDS-I	lost on R
tion Test	Shear
idard Penetra	- Direct
Standard	St DST
le, SPT.	hear Te
d Sarren	riaxial s
Disturbe	rained 7
10	E

Part of Experimental Investment properties of Section (1974) Part of Borble (1974) Part of Borbl													
Confine Conf	le	1-22	s		1	1	1	1	1	1	ı	1	1
Confine Conf	lef. Cod	-544_21	ameter		ı	ı	ı	1.	ı	ı	ı	ı	i
Confinence (E.N) Confinence		SR	ion Par	(cm ² /Sec)	1	1	,	1			ı	1	1
Confinence (E.N) Confinence	T.	.528 m	Consolidat	(kg/cm ²⁾								1	1
Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Baring Pate of Coarse Pate	<u> </u>	(+)267		Void Ratio (e ₀)	1	1		1	1	1	1	1	1
Condingto Chainage		В	Á		1	1	1		ı	ı	1	1	1
Confining Conf		146.953		(kg/cm²)	1	1	1		ı	ı	1	1	1
12-10-2021 13-	(E,N)	31230		(%)	1	1	1	1	1	1	1	1	1
12-10-2021 13-	dinates			Friction (0°)	1	1	1	1	ı	ı	ı	ı	1
12-10-2021 10 13-10-2021 13	Cor	43.901 m	r Strength	(kg/cm²)	1	1	1		1	1	1	1	1
Capinage Chainage	0269	Shea	Type of Test				1	1	1	1	1	1	
Capinage Chainage nation xth	0 m	γji	Vrstd offices	1	1	1	1	1	1	1	1	ı	
Claimage Chainage Chain Size Distribution % wt retained Crain Size Distribution % wt retained Crave Finne Fin	Termii Deț	40.0	(_E ma	Dry Density (g/o	ı	ı	1	1	1	1	1	1	ı
Chainage Date of Boring Chainage B.H. No.	r Table				1	,	,	ı	ı	ı	1	ı	1
Chainage Date of Boring Chainage B.H. No.	of Wate	34.20 m	(cm ₃)	Bulk Density (g/	1	,	1	1	1	1	1	1	1
Can of Boring Chainage Chainage Chainage Chainage 13-10-2021 Chainage Ch	Depth		%		ı	ı	ı	ı	ı	ı	ı	ı	1
Can of Boring Chainage Chainage Chainage Chainage 13-10-2021 Chainage Ch	. No.	I-A2	Limits		,	ı	,	7	1	9	1	1	1
Can of Boring Chainage Chainage Chainage Chainage 13-10-2021 Chainage Ch	B.H	BH	tterberg	Plastic Limit	1	ı	ı	20	ı	20	1	1	1
Clay Clay	ion	ge	¥	timi.I biupi.I	ı	ı	1	27	ı	26	ı	i	ı
Clay Clay	Chainage n.)/Locat	28+360 ajor Brid		Coarse	ı	ı	ı	0	ı	3	ı	i	i.
Clay Clay	(kr	Z	etained	Fine	1	1	1	6	1	∞	1	1	1
Clay Clay)-2021	ı % wt r	Coarse	,	,	,	7		4		1	
Clay Clay	ring	13-10	tribution	S muibəM	1	1	,	10	1	13	1	1	1
Clay Clay	te of Bo	to	Size Dis	Fine	1	1	1	20	1	19	1	1	1
	Da)-2021	Grain	His			,	47	1	47	1	1	
Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Conridor (HOCD) project from Palval to Haryana. Is Sample Type Conforce (HOCD) project from Palval to Haryana Kalani including connectivity to existing IR network in the state of Haryana. Is Sample Type Corrected SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT Value (N) Observed SPT (N) Observed SPT Value (N) Observed SPT V		12-10		Clay	,	1	,	7	,	9	,	1	,
Conducting geotechnical investigation, preparation of geotechnical report for de Coridor (HORC) project from Palval to Harsana Kalan including connectivity existing IR network in the state of Haryana. Conducting geotechnical investigation, preparation of geotechnical report for description (TOPC) project from Palval to Haryana. Controcted SPT Value Corrected SPT Value Corrected SPT Value Corrected SPT Spine Corrected	signing tal Rail	Ω.		lodmy2 21									
Project Conducting geotechnical investigation, preparation of geotechnica of bridges and for embankment in connection with construction of corridor (HORC) project from Palwal to Harsana Kalan including existing IR network in the state of Haryana. Confidence SPT Value	l report for des Haryana Orbi	connectivity t	uo	IS Classificati	1	1	1	ML-CL	1	ML-CL		1	ı
Conducting geotechnical of bridges and for embanal of bridges and for embanal of bridges and for embanal corridor (HORC) project existing IR network in the caristing IR	investigation, preparation of geotechnica ment in connection with construction of	from Palwal to Harsana Kalan including state of Haryana.		Soil Description					Brown, Dense to very dense, Sandy silt of low plasticity with gravel				
Conducting geo of bridges and f Conducting geo of bridges and f Corridor (HORG existing IR netw	echnical	C) project ork in the	T	Corrected SP	,		,		1		1		
Condu Cond	cting geot ges and fc	or (HORC g IR netw) કાપલ										
Proje SPT-1 SP	Conduct of bridg	Corrido existing	(w) •	Depth from G.L									
	-	rro <u>je</u>	Э	Sample Typ	NDS*	SPT-1(NDS*	SPT-1	NDS*	SPT-1	NDS*	SPT-1	SPT-1

Project

SPT-15

Sample Type

SPT-16

SPT-21

SPT-22

SPT-19

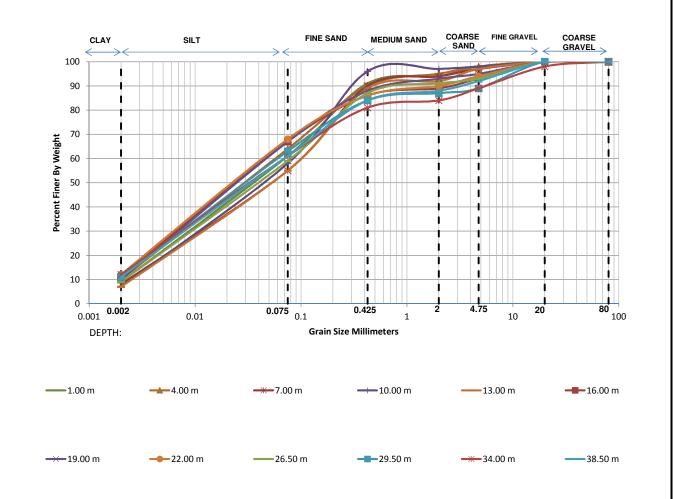
SPT-18

SPT-20

Sample Type

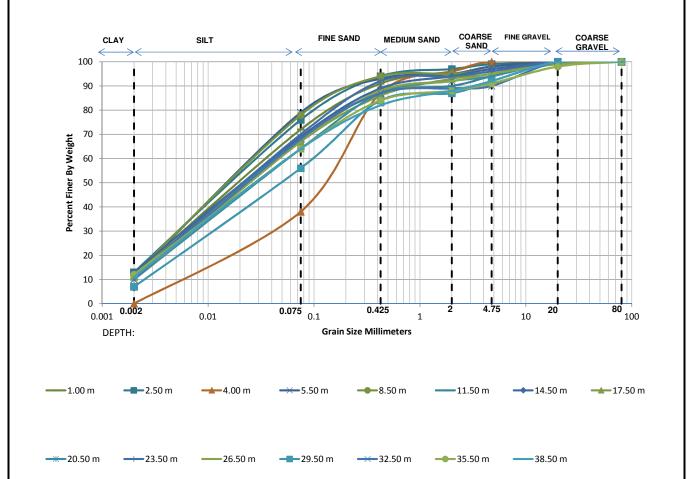
RESULT OF CHEMICAL ANALYSIS OF SOIL SAMPLES

					~-~	0.00			
C.	Chainago	Chainago		Depth of		Chlorides (CI ⁻)	es (CI')	Sulphate (SO ₃ ²⁻)	SO_3^{2-}
No No	Old (km)	New (km)	BH No.	collected sample (m)	$^{\mathrm{hd}}$	(mg/kg)	(%)	(mg/kg)	(%)
1.	003.70	Locioc	BH-A1	19.00	7.93	78.34	0.0078	30.71	0.0031
2.	070+/7	/07±07	BH-P1	2.50	7.40	48.78	0.0049	25.81	0.0026
3.	360-96	27L+8C	BH-A1	2.50	7.00	57.13	0.0057	30.91	0.0031
4.	C/0+07	C+/+07	BH-P1	25.00	8.01	61.08	0.0061	21.95	0.0022
5.	092780	$\delta U + U U$	BH-A1	1.00	6.85	47.45	0.0047	28.27	0.0028
6.	7005	23±020	BH-P1	34.00	8.61	57.04	0.0057	34.12	0.0034
7.	000-86	L95 ⁺ LC	BH-A1	17.5	7.95	63.25	0.0063	34.74	0.0035
8.	7006+07	706+77	BH-P2	14.5	8.11	52.26	0.0052	31.04	0.0031

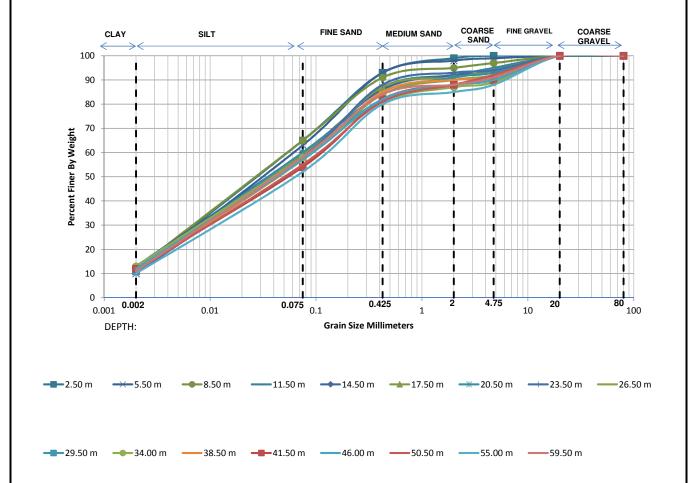

Appendix – B3

RESULT OF CHEMICAL ANALYSIS OF WATER SAMPLE

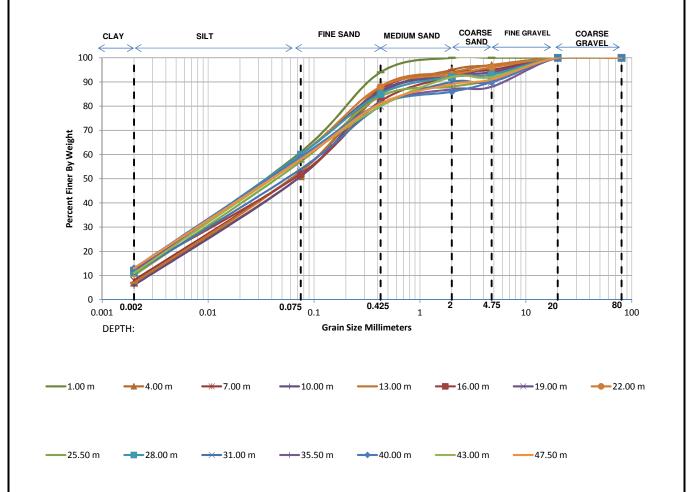
Sr.	Chainage Old	Chainage New	, a sta	•	Chlorides (Cl ⁻)	Sulphate (SO ₃ ²⁻)
No	(km)	(km)	BH No.	рн	(mg/l)	(mg/l)
<u>;</u>	27+620	28+287	BH-A1	7.86	696.25	412.17
2.	28+075	28+743	BH-A1	7.94	526.14	346.28
3.	28+360	29+028	BH-P1	7.86	491.25	274.26
4	28+900	29+567	BH-A1	7.63	484.16	304.18


Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 27+620 Major Bridge B.H. No. BH-A1

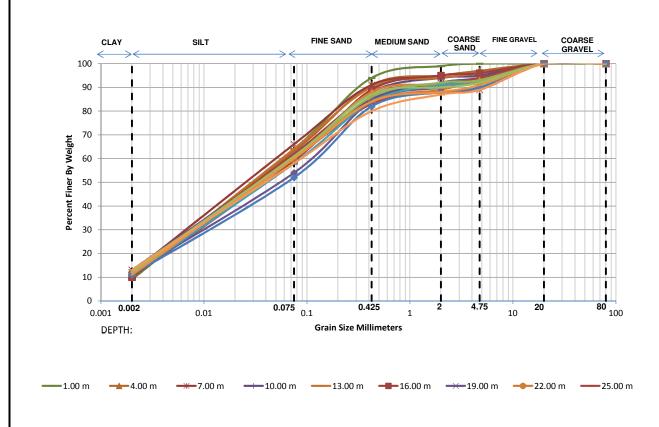
			Grain Size	Distribution %	wt retained							
Depth	Clay	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	9.00	52.00	30.00	3.00	4.00	2.00	0.00	0.0024	0.0183	0.0725	30.19	1.92
4.00 m	10.00	54.00	26.00	5.00	3.00	2.00	0.00	0.0020	0.0159	0.0655	32.76	1.94
7.00 m	8.00	47.00	35.00	4.00	3.00	3.00	0.00	0.0030	0.0230	0.0923	31.23	1.93
10.00 m	7.00	51.00	38.00	1.00	1.00	2.00	0.00	0.0036	0.0223	0.0804	22.45	1.73
13.00 m	7.00	48.00	34.00	3.00	5.00	3.00	0.00	0.0036	0.0240	0.0925	25.52	1.72
16.00 m	11.00	56.00	19.00	3.00	4.00	7.00	0.00	-	0.0138	0.0591	-	-
19.00 m	10.00	57.00	21.00	5.00	2.00	5.00	0.00	0.0020	0.0147	0.0594	29.71	1.83
22.00 m	12.00	56.00	18.00	4.00	4.00	6.00	0.00	-	0.0126	0.0569	-	-
26.50 m	9.00	50.00	28.00	4.00	2.00	7.00	0.00	0.0024	0.0192	0.0779	32.38	1.96
29.50 m	11.00	52.00	21.00	3.00	2.00	11.00	0.00	-	0.0152	0.0675	-	-
34.00 m	12.00	49.00	20.00	3.00	5.00	9.00	2.00	-	0.0150	0.0723	-	-
38.50 m	11.00	50.00	23.00	4.00	4.00	8.00	0.00	-	0.0160	0.0724	-	-


Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 27+620 Major Bridge B.H. No. BH-P1

			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	12.00	60.00	19.00	5.00	4.00	0.00	0.00	-	0.0117	0.0504	-	-
2.50 m	13.00	63.00	18.00	3.00	2.00	1.00	0.00	-	0.0102	0.0446	-	-
4.00 m	0.00	38.00	49.00	9.00	4.00	0.00	0.00	0.0086	0.0516	0.1688	19.55	1.82
5.50 m	11.00	68.00	14.00	2.00	3.00	2.00	0.00	-	0.0111	0.0420	-	-
8.50 m	12.00	66.00	16.00	1.00	2.00	3.00	0.00	-	0.0106	0.0427	-	-
11.50 m	11.00	58.00	18.00	3.00	4.00	6.00	0.00	-	0.0132	0.0555	-	-
14.50 m	13.00	56.00	20.00	5.00	3.00	3.00	0.00	-	0.0116	0.0549	-	-
17.50 m	12.00	55.00	19.00	7.00	2.00	5.00	0.00	-	0.0129	0.0588	-	-
20.50 m	10.00	54.00	23.00	5.00	2.00	6.00	0.00	0.0020	0.0158	0.0654	32.72	1.91
23.50 m	11.00	59.00	22.00	2.00	2.00	4.00	0.00	-	0.0131	0.0540	-	-
26.50 m	10.00	57.00	21.00	4.00	3.00	4.00	1.00	0.0020	0.0147	0.0594	29.71	1.83
29.50 m	7.00	49.00	28.00	3.00	5.00	8.00	0.00	0.0036	0.0230	0.0903	25.10	1.63
32.50 m	10.00	58.00	19.00	2.00	1.00	10.00	0.00	0.0020	0.0144	0.0575	28.77	1.79
35.50 m	12.00	52.00	20.00	4.00	3.00	7.00	2.00	-	0.0139	0.0650	-	-
38.50 m	11.00	53.00	18.00	6.00	4.00	8.00	0.00	-	0.0147	0.0651	-	-

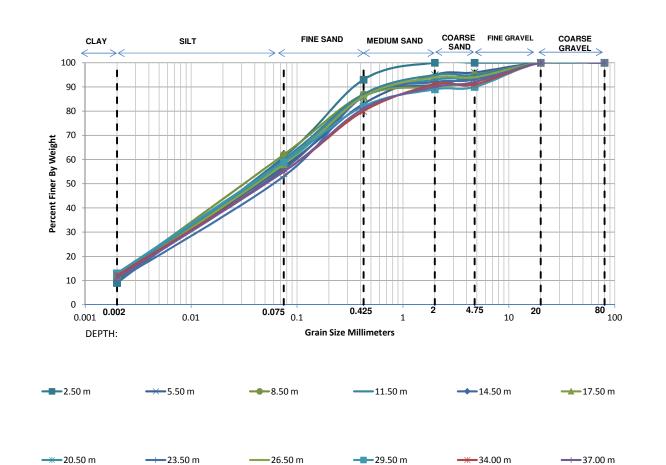

Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 27+620 Major Bridge B.H. No. BH-P3

			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
2.50 m	11.00	54.00	28.00	6.00	1.00	0.00	0.00	-	0.0147	0.0633	-	-
5.50 m	10.00	53.00	30.00	5.00	1.00	1.00	0.00	0.0020	0.0165	0.0678	33.90	2.00
8.50 m	12.00	53.00	26.00	4.00	2.00	3.00	0.00	-	0.0138	0.0631	-	-
11.50 m	11.00	48.00	28.00	5.00	3.00	5.00	0.00	-	0.0172	0.0780	-	-
14.50 m	13.00	47.00	26.00	6.00	1.00	7.00	0.00	-	0.0148	0.0750	-	-
17.50 m	12.00	47.00	28.00	4.00	3.00	6.00	0.00	-	0.0162	0.0780	-	-
20.50 m	11.00	49.00	24.00	7.00	2.00	7.00	0.00	-	0.0165	0.0750	-	-
23.50 m	10.00	48.00	30.00	5.00	1.00	6.00	0.00	0.0020	0.0188	0.0813	40.67	2.17
26.50 m	12.00	45.00	27.00	6.00	2.00	8.00	0.00	-	0.0172	0.0865	-	-
29.50 m	11.00	47.00	24.00	6.00	2.00	10.00	0.00	-	0.0175	0.0824	-	-
34.00 m	13.00	45.00	23.00	6.00	2.00	11.00	0.00	-	0.0155	0.0828	-	-
38.50 m	11.00	46.00	28.00	5.00	1.00	9.00	0.00	-	0.0182	0.0860	-	-
41.50 m	12.00	42.00	28.00	6.00	2.00	10.00	0.00	-	0.0191	0.1035	-	-
46.00 m	12.00	45.00	25.00	6.00	2.00	10.00	0.00	-	0.0171	0.0872	-	-
50.50 m	11.00	44.00	26.00	7.00	4.00	8.00	0.00	-	0.0193	0.0988	-	-
55.00 m	10.00	42.00	28.00	5.00	3.00	12.00	0.00	0.0020	0.0226	0.1176	58.79	2.18
59.50 m	11.00	47.00	26.00	4.00	3.00	9.00	0.00	-	0.0176	0.0819	-	-


Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 27+620 Major Bridge B.H. No. BH-P4

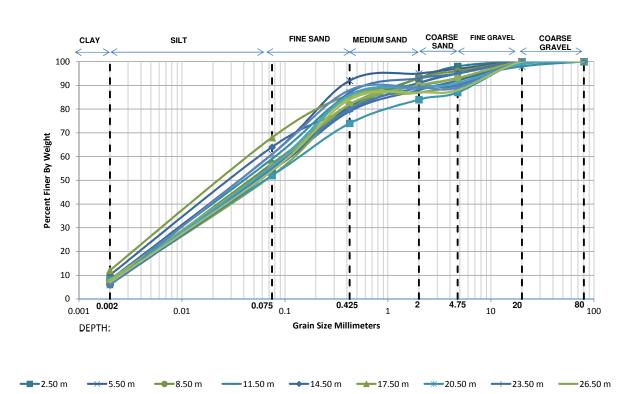
			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Ciay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	11.00	50.00	33.00	6.00	0.00	0.00	0.00	-	0.0165	0.0725	-	-
4.00 m	7.00	44.00	34.00	10.00	2.00	3.00	0.00	0.0037	0.0271	0.1156	31.28	1.72
7.00 m	8.00	45.00	34.00	7.00	1.00	5.00	0.00	0.0030	0.0244	0.1032	34.73	1.93
10.00 m	6.00	45.00	35.00	6.00	4.00	4.00	0.00	0.0046	0.0284	0.1133	24.84	1.56
13.00 m	7.00	46.00	35.00	6.00	3.00	3.00	0.00	0.0037	0.0255	0.1021	27.90	1.75
16.00 m	12.00	40.00	30.00	10.00	1.00	7.00	0.00	-	0.0206	0.1160	-	-
19.00 m	11.00	49.00	26.00	7.00	1.00	6.00	0.00	-	0.0166	0.0750	-	-
22.00 m	11.00	49.00	28.00	5.00	3.00	4.00	0.00	-	0.0167	0.0750	-	-
25.50 m	10.00	47.00	27.00	4.00	3.00	9.00	0.00	0.0020	0.0192	0.0861	43.07	2.14
28.00 m	12.00	48.00	25.00	7.00	1.00	7.00	0.00	-	0.0156	0.0750	-	-
31.00 m	11.00	43.00	26.00	10.00	0.00	10.00	0.00	-	0.0200	0.1066	-	-
35.50 m	12.00	46.00	23.00	6.00	1.00	12.00	0.00	-	0.0165	0.0827	-	-
40.00 m	13.00	46.00	22.00	5.00	4.00	10.00	0.00	-	0.0150	0.0784	-	-
43.00 m	11.00	47.00	22.00	12.00	0.00	8.00	0.00	-	0.0174	0.0831	-	-
47.50 m	13.00	45.00	23.00	8.00	2.00	9.00	0.00	-	0.0155	0.0829	-	-

Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 27+620 Major Bridge B.H. No. BH-P2



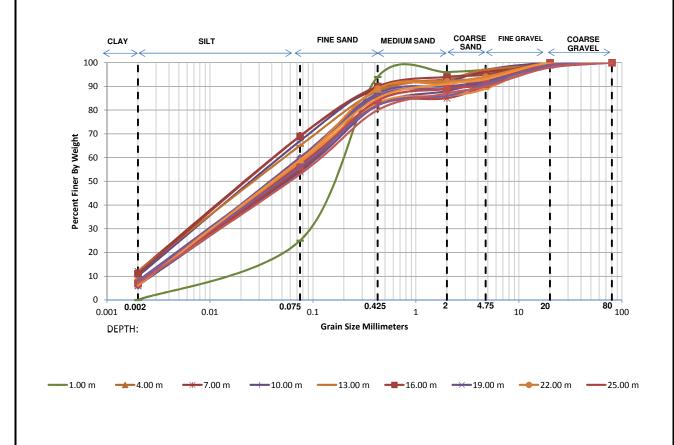
			Grain Size	Distribution %	wt retained							ĺ
Depth	Clav	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	9.00	55.00	30.00	5.00	1.00	0.00	0.00	0.0024	0.0170	0.0658	27.46	1.84
4.00 m	11.00	52.00	28.00	4.00	2.00	3.00	0.00	-	0.0155	0.0676	-	-
7.00 m	12.00	54.00	25.00	3.00	2.00	4.00	0.00	-	0.0134	0.0610	-	-
10.00 m	11.00	50.00	27.00	6.00	1.00	5.00	0.00	-	0.0162	0.0724	-	-
13.00 m	10.00	54.00	26.00	4.00	2.00	4.00	0.00	0.0020	0.0159	0.0655	32.76	1.94
16.00 m	10.00	49.00	30.00	6.00	1.00	4.00	0.00	0.0020	0.0183	0.0779	38.94	2.14
19.00 m	13.00	48.00	24.00	7.00	2.00	6.00	0.00	-	0.0143	0.0723	-	-
22.00 m	12.00	49.00	23.00	5.00	4.00	7.00	0.00	-	0.0151	0.0723	-	-
25.00 m	11.00	51.00	25.00	4.00	3.00	6.00	0.00	-	0.0157	0.0699	-	-
28.00 m	12.00	42.00	30.00	6.00	2.00	8.00	0.00	-	0.0192	0.1016	-	-
31.00 m	12.00	48.00	28.00	3.00	2.00	7.00	0.00	-	0.0158	0.0750	-	-
34.00 m	10.00	50.00	23.00	5.00	1.00	11.00	0.00	0.0020	0.0174	0.0750	37.50	2.03
37.00 m	11.00	47.00	26.00	7.00	1.00	8.00	0.00	-	0.0176	0.0820	-	-
40.00 m	11.00	41.00	30.00	6.00	2.00	10.00	0.00	-	0.0217	0.1147	-	-
43.00 m	13.00	47.00	26.00	6.00	1.00	7.00	0.00	-	0.0148	0.0750	-	-
47.50 m	11.00	49.00	24.00	4.00	3.00	9.00	0.00	-	0.0165	0.0750	-	-
52.00 m	12.00	49.00	26.00	3.00	2.00	8.00	0.00	-	0.0153	0.0723	-	-
56.50 m	13.00	45.00	22.00	7.00	2.00	11.00	0.00	-	0.0155	0.0831	-	-

→28.00 m →31.00 m →34.00 m →40.00 m →40.00 m →47.50 m →52.00 m


Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 27+620 Major Bridge B.H. No. BH-A2

			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
2.50 m	9.00	52.00	32.00	7.00	0.00	0.00	0.00	0.0024	0.0184	0.0725	30.20	1.94
5.50 m	11.00	46.00	26.00	12.00	1.00	4.00	0.00	-	0.0181	0.0871	-	-
8.50 m	12.00	50.00	25.00	6.00	2.00	5.00	0.00	-	0.0148	0.0698	-	-
11.50 m	10.00	50.00	27.00	8.00	0.00	5.00	0.00	0.0020	0.0176	0.0750	37.50	2.07
14.50 m	11.00	45.00	30.00	5.00	3.00	6.00	0.00	-	0.0189	0.0902	-	-
17.50 m	13.00	45.00	28.00	4.00	2.00	8.00	0.00	-	0.0158	0.0818	-	-
20.50 m	12.00	47.00	27.00	7.00	1.00	6.00	0.00	-	0.0162	0.0781	-	-
23.50 m	10.00	43.00	33.00	6.00	1.00	7.00	0.00	0.0020	0.0222	0.1044	52.22	2.35
26.50 m	11.00	47.00	28.00	8.00	0.00	6.00	0.00	-	0.0177	0.0817	-	-
29.50 m	13.00	46.00	23.00	7.00	1.00	10.00	0.00	-	0.0151	0.0784	-	-
34.00 m	12.00	43.00	25.00	11.00	0.00	9.00	0.00	-	0.0182	0.1007	-	-
37.00 m	11.00	44.00	26.00	9.00	2.00	8.00	0.00	-	0.0193	0.0991	-	-

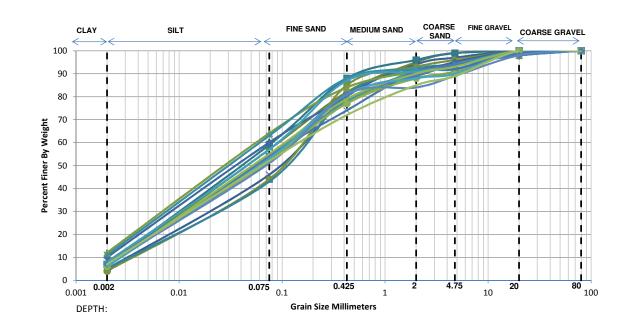
Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+075 Major Bridge B.H. No. BH-A1

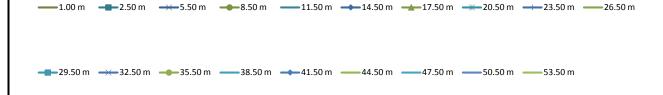


			Grain Size	Distribution %	wt retained							
Depth	Clay	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
2.50 m	7.00	48.00	26.00	12.00	5.00	2.00	0.00	0.0036	0.0235	0.0988	27.39	1.55
5.50 m	8.00	53.00	31.00	3.00	2.00	3.00	0.00	0.0029	0.0194	0.0726	24.94	1.78
8.50 m	6.00	51.00	23.00	13.00	3.00	4.00	0.00	0.0044	0.0233	0.0880	20.21	1.41
11.50 m	7.00	49.00	26.00	9.00	4.00	5.00	0.00	0.0036	0.0229	0.0920	25.60	1.59
14.50 m	10.00	54.00	16.00	11.00	4.00	5.00	0.00	0.0020	0.0155	0.0652	32.61	1.84
17.50 m	12.00	56.00	18.00	4.00	3.00	7.00	0.00	-	0.0126	0.0569	-	-
20.50 m	8.00	51.00	27.00	4.00	3.00	5.00	2.00	0.0029	0.0201	0.0779	26.68	1.78
23.50 m	6.00	48.00	25.00	9.00	4.00	7.00	1.00	0.0044	0.0253	0.1069	24.11	1.35
26.50 m	7.00	45.00	30.00	5.00	3.00	10.00	0.00	0.0037	0.0260	0.1134	30.93	1.63
29.50 m	8.00	44.00	22.00	10.00	3.00	13.00	0.00	0.0030	0.0244	0.1364	45.93	1.47
32.50 m	6.00	48.00	33.00	6.00	2.00	5.00	0.00	0.0045	0.0258	0.0980	21.96	1.52
35.50 m	7.00	49.00	26.00	8.00	3.00	7.00	0.00	0.0036	0.0229	0.0919	25.57	1.59
38.50 m	7.00	49.00	30.00	3.00	2.00	8.00	1.00	0.0036	0.0231	0.0894	24.84	1.66
41.50 m	6.00	49.00	25.00	9.00	1.00	10.00	0.00	0.0044	0.0246	0.0993	22.51	1.39
44.50 m	8.00	48.00	29.00	2.00	1.00	12.00	0.00	0.0029	0.0220	0.0899	30.54	1.82
47.50 m	7.00	49.00	30.00	3.00	2.00	8.00	1.00	0.0036	0.0231	0.0894	24.84	1.66
50.50 m	6.00	55.00	27.00	1.00	0.00	11.00	0.00	0.0043	0.0214	0.0726	16.95	1.47
53.50 m	7.00	47.00	30.00	3.00	1.00	12.00	0.00	0.0036	0.0245	0.1000	27.54	1.65

---29.50 m → 32.50 m → 35.50 m → 41.50 m → 44.50 m → 47.50 m

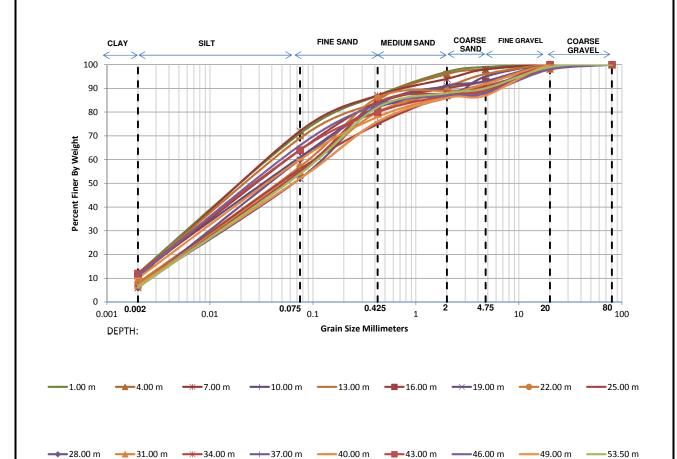
Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+075 Major Bridge B.H. No. BH-P1



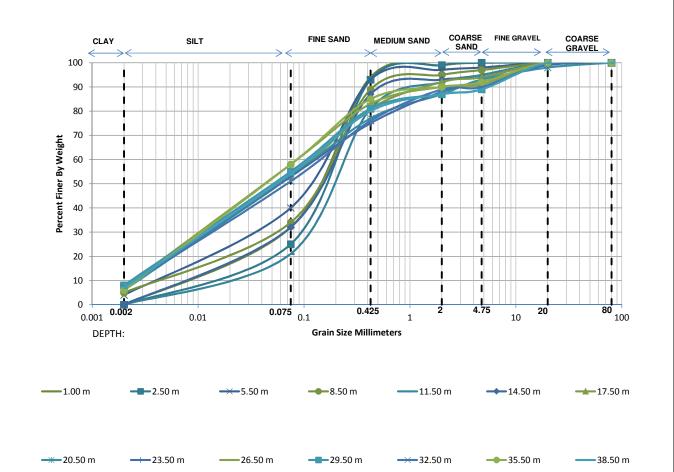

			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	0.00	25.00	69.00	2.00	1.00	3.00	0.00	0.0188	0.0928	0.1971	10.48	2.32
4.00 m	7.00	48.00	32.00	6.00	3.00	4.00	0.00	0.0036	0.0239	0.0936	25.87	1.68
7.00 m	12.00	57.00	20.00	4.00	3.00	3.00	1.00	-	0.0124	0.0552	-	-
10.00 m	10.00	57.00	23.00	2.00	5.00	3.00	0.00	0.0020	0.0148	0.0595	29.75	1.84
13.00 m	12.00	53.00	23.00	5.00	4.00	2.00	1.00	-	0.0137	0.0629	-	-
16.00 m	11.00	58.00	21.00	4.00	1.00	5.00	0.00	-	0.0133	0.0556	-	-
19.00 m	6.00	48.00	28.00	6.00	4.00	7.00	1.00	0.0044	0.0255	0.1023	23.00	1.43
22.00 m	8.00	51.00	30.00	3.00	2.00	6.00	0.00	0.0029	0.0203	0.0778	26.62	1.81
25.00 m	7.00	48.00	29.00	5.00	4.00	5.00	2.00	0.0036	0.0237	0.0953	26.37	1.63
28.00 m	6.00	54.00	27.00	3.00	2.00	7.00	1.00	0.0043	0.0219	0.0750	17.42	1.48
31.00 m	7.00	52.00	30.00	2.00	3.00	6.00	0.00	0.0036	0.0214	0.0777	21.86	1.65
34.00 m	7.00	50.00	25.00	3.00	5.00	9.00	1.00	0.0036	0.0222	0.0864	24.16	1.60
37.00 m	8.00	51.00	27.00	3.00	2.00	7.00	2.00	0.0029	0.0201	0.0779	26.68	1.79
40.00 m	7.00	51.00	25.00	3.00	3.00	11.00	0.00	0.0036	0.0217	0.0817	22.95	1.61
43.00 m	7.00	49.00	28.00	5.00	2.00	9.00	0.00	0.0036	0.0230	0.0904	25.15	1.63
46.00 m	8.00	48.00	26.00	4.00	5.00	8.00	1.00	0.0029	0.0218	0.0916	31.15	1.76
49.00 m	6.00	53.00	26.00	6.00	2.00	7.00	0.00	0.0043	0.0223	0.0779	18.02	1.48
52.00 m	7.00	46.00	27.00	7.00	3.00	8.00	2.00	0.0036	0.0250	0.1113	30.55	1.54

→28.00 m →31.00 m →34.00 m →40.00 m →40.00 m →40.00 m

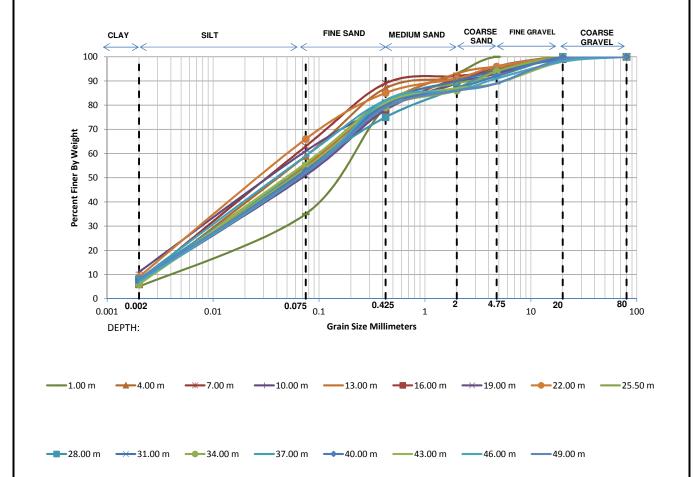
Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+075 Major Bridge B.H. No. BH-P2



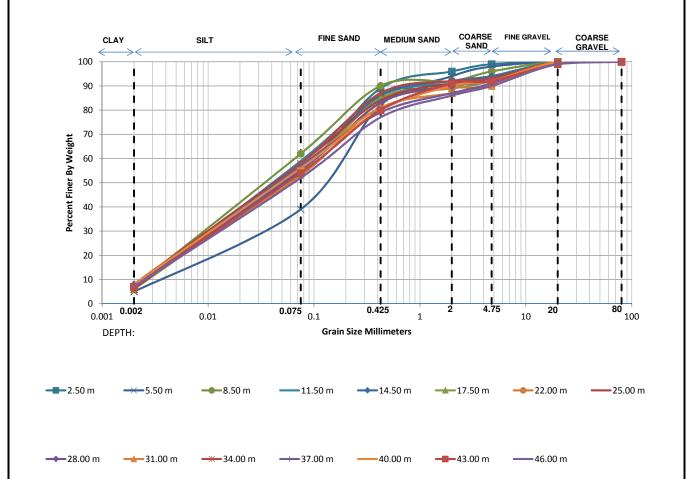
			Grain Size	Distribution % v	wt retained							1
Depth	Clay	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	6.00	51.00	25.00	13.00	4.00	1.00	0.00	0.0044	0.0234	0.0870	19.94	1.44
2.50 m	7.00	52.00	29.00	8.00	3.00	1.00	0.00	0.0036	0.0213	0.0778	21.88	1.65
5.50 m	5.00	41.00	34.00	14.00	3.00	3.00	0.00	0.0059	0.0348	0.1549	26.32	1.32
8.50 m	4.00	40.00	41.00	8.00	3.00	4.00	0.00	0.0075	0.0391	0.1489	19.75	1.37
11.50 m	5.00	38.00	38.00	11.00	2.00	4.00	2.00	0.0061	0.0393	0.1662	27.08	1.51
14.50 m	10.00	50.00	19.00	11.00	5.00	5.00	0.00	0.0020	0.0172	0.0750	37.50	1.98
17.50 m	12.00	52.00	20.00	7.00	3.00	4.00	2.00	-	0.0139	0.0650	-	-
20.50 m	11.00	52.00	25.00	4.00	2.00	6.00	0.00	-	0.0153	0.0676	-	-
23.50 m	8.00	45.00	25.00	13.00	3.00	6.00	0.00	0.0030	0.0238	0.1171	39.50	1.63
26.50 m	7.00	45.00	26.00	10.00	3.00	9.00	0.00	0.0037	0.0257	0.1229	33.57	1.47
29.50 m	7.00	47.00	24.00	13.00	1.00	8.00	0.00	0.0036	0.0241	0.1099	30.35	1.46
32.50 m	6.00	48.00	20.00	17.00	1.00	7.00	1.00	0.0044	0.0250	0.1217	27.55	1.16
35.50 m	6.00	47.00	24.00	11.00	2.00	10.00	0.00	0.0045	0.0260	0.1185	26.58	1.28
38.50 m	8.00	49.00	30.00	4.00	3.00	6.00	0.00	0.0029	0.0214	0.0851	28.99	1.83
41.50 m	7.00	47.00	27.00	8.00	5.00	4.00	2.00	0.0036	0.0243	0.1040	28.69	1.56
44.50 m	6.00	49.00	24.00	11.00	3.00	7.00	0.00	0.0044	0.0246	0.1009	22.89	1.36
47.50 m	6.00	47.00	28.00	7.00	2.00	10.00	0.00	0.0045	0.0262	0.1095	24.47	1.41
50.50 m	7.00	44.00	30.00	3.00	5.00	9.00	2.00	0.0037	0.0269	0.1203	32.61	1.63
53.50 m	7.00	45.00	20.00	13.00	4.00	11.00	0.00	0.0036	0.0253	0.1480	40.61	1.19


Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+075 Major Bridge B.H. No. BH-A2

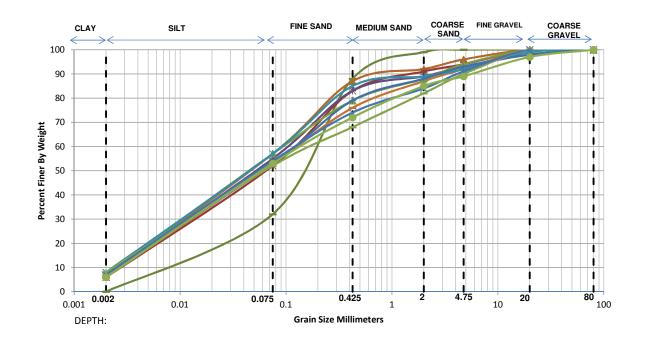
			Grain Size	Distribution %	wt retained							
Depth	Clay	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	12.00	59.00	16.00	10.00	2.00	1.00	0.00	-	0.0119	0.0518	1	-
4.00 m	8.00	46.00	31.00	11.00	2.00	2.00	0.00	0.0030	0.0234	0.1005	33.95	1.84
7.00 m	10.00	62.00	15.00	7.00	4.00	2.00	0.00	0.0020	0.0132	0.0510	25.50	1.72
10.00 m	12.00	49.00	21.00	4.00	9.00	5.00	0.00	-	0.0150	0.0723	1	-
13.00 m	11.00	58.00	15.00	7.00	5.00	4.00	0.00	-	0.0131	0.0553	-	-
16.00 m	11.00	53.00	20.00	6.00	3.00	7.00	0.00	-	0.0148	0.0652	-	-
19.00 m	7.00	45.00	31.00	8.00	2.00	7.00	0.00	0.0037	0.0261	0.1127	30.70	1.65
22.00 m	8.00	49.00	29.00	3.00	0.00	9.00	2.00	0.0029	0.0214	0.0853	29.06	1.82
25.00 m	7.00	49.00	19.00	12.00	3.00	10.00	0.00	0.0036	0.0225	0.1004	28.05	1.40
28.00 m	6.00	54.00	22.00	6.00	4.00	8.00	0.00	0.0043	0.0216	0.0750	17.47	1.45
31.00 m	7.00	48.00	25.00	8.00	2.00	9.00	1.00	0.0036	0.0235	0.0993	27.53	1.54
34.00 m	6.00	49.00	29.00	4.00	3.00	7.00	2.00	0.0044	0.0249	0.0950	21.48	1.47
37.00 m	7.00	45.00	24.00	10.00	2.00	12.00	0.00	0.0037	0.0256	0.1287	35.20	1.39
40.00 m	10.00	50.00	18.00	9.00	5.00	8.00	0.00	0.0020	0.0172	0.0750	37.50	1.97
43.00 m	12.00	52.00	16.00	7.00	2.00	11.00	0.00	-	0.0137	0.0649	-	-
46.00 m	11.00	55.00	17.00	4.00	1.00	10.00	2.00	-	0.0140	0.0609	-	-
49.00 m	7.00	45.00	24.00	10.00	1.00	13.00	0.00	0.0037	0.0256	0.1287	35.20	1.39
53.50 m	6.00	48.00	28.00	6.00	2.00	9.00	1.00	0.0044	0.0255	0.1023	23.00	1.43


Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+360 Major Bridge B.H. No. BH-A1

			Grain Size	Distribution %	wt retained							
Depth	Clay	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	SIIt	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	0.00	32.00	62.00	5.00	1.00	0.00	0.00	0.0120	0.0685	0.1751	14.65	2.24
2.50 m	0.00	25.00	68.00	6.00	1.00	0.00	0.00	0.0188	0.0930	0.2002	10.67	2.30
5.50 m	4.00	36.00	53.00	4.00	1.00	2.00	0.00	0.0082	0.0467	0.1499	18.36	1.78
8.50 m	5.00	29.00	55.00	6.00	2.00	3.00	0.00	0.0076	0.0608	0.1812	24.00	2.70
11.50 m	0.00	21.00	60.00	11.00	3.00	5.00	0.00	0.0250	0.1117	0.2477	9.90	2.01
14.50 m	0.00	32.00	55.00	6.00	1.00	6.00	0.00	0.0117	0.0683	0.1905	16.26	2.09
17.50 m	7.00	46.00	28.00	11.00	2.00	6.00	0.00	0.0036	0.0251	0.1106	30.34	1.56
20.50 m	6.00	47.00	24.00	10.00	6.00	5.00	2.00	0.0045	0.0260	0.1182	26.51	1.28
23.50 m	7.00	46.00	22.00	13.00	4.00	7.00	1.00	0.0036	0.0247	0.1254	34.53	1.34
26.50 m	7.00	51.00	25.00	7.00	1.00	9.00	0.00	0.0036	0.0217	0.0819	22.98	1.61
29.50 m	8.00	47.00	26.00	6.00	2.00	11.00	0.00	0.0029	0.0224	0.0980	33.26	1.74
32.50 m	7.00	44.00	25.00	13.00	1.00	10.00	0.00	0.0037	0.0265	0.1373	37.35	1.39
35.50 m	6.00	52.00	27.00	5.00	2.00	8.00	0.00	0.0043	0.0229	0.0814	18.73	1.49
38.50 m	7.00	47.00	26.00	7.00	2.00	11.00	0.00	0.0036	0.0242	0.1051	29.01	1.54

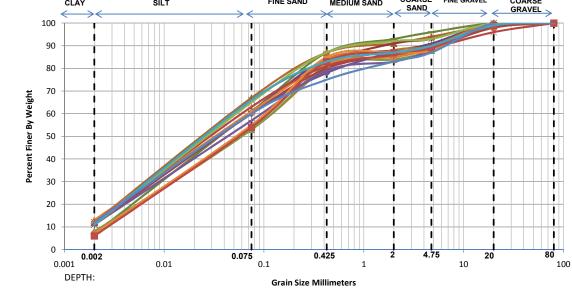

Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+360 Major Bridge B.H. No. BH-P1

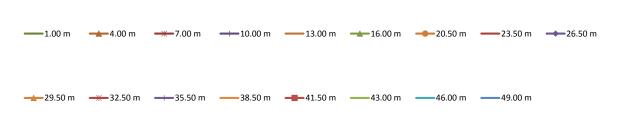
			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	5.00	30.00	44.00	14.00	7.00	0.00	0.00	0.0072	0.0571	0.2118	29.40	2.14
4.00 m	6.00	53.00	28.00	4.00	4.00	5.00	0.00	0.0043	0.0225	0.0778	17.97	1.50
7.00 m	7.00	56.00	26.00	3.00	2.00	6.00	0.00	0.0035	0.0193	0.0681	19.43	1.57
10.00 m	11.00	50.00	18.00	10.00	7.00	4.00	0.00	-	0.0158	0.0723	-	-
13.00 m	6.00	49.00	26.00	12.00	3.00	4.00	0.00	0.0044	0.0247	0.0986	22.35	1.40
16.00 m	7.00	46.00	25.00	13.00	3.00	5.00	1.00	0.0036	0.0249	0.1169	32.12	1.46
19.00 m	7.00	44.00	27.00	11.00	4.00	7.00	0.00	0.0037	0.0267	0.1300	35.31	1.49
22.00 m	9.00	57.00	19.00	6.00	5.00	4.00	0.00	0.0024	0.0159	0.0615	25.70	1.72
25.50 m	7.00	49.00	26.00	7.00	3.00	8.00	0.00	0.0036	0.0229	0.0918	25.54	1.59
28.00 m	8.00	46.00	21.00	12.00	7.00	6.00	0.00	0.0030	0.0228	0.1170	39.66	1.50
31.00 m	7.00	46.00	28.00	9.00	4.00	5.00	1.00	0.0036	0.0251	0.1102	30.22	1.57
34.00 m	6.00	48.00	25.00	7.00	8.00	6.00	0.00	0.0044	0.0253	0.1065	24.00	1.36
37.00 m	8.00	51.00	23.00	4.00	3.00	10.00	1.00	0.0029	0.0199	0.0781	26.78	1.75
40.00 m	7.00	46.00	27.00	7.00	5.00	8.00	0.00	0.0036	0.0250	0.1113	30.55	1.54
43.00 m	6.00	50.00	25.00	6.00	2.00	9.00	2.00	0.0044	0.0240	0.0922	21.02	1.42
46.00 m	7.00	45.00	30.00	4.00	5.00	7.00	2.00	0.0037	0.0260	0.1132	30.86	1.63
49.00 m	8.00	44.00	27.00	7.00	3.00	10.00	1.00	0.0030	0.0247	0.1197	40.24	1.71


Project Name Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana. Location/Chainage 28+360 Major Bridge B.H. No. BH-P2

			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gr	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
2.50 m	7.00	48.00	34.00	7.00	3.00	1.00	0.00	0.0036	0.0240	0.0928	25.61	1.72
5.50 m	5.00	34.00	43.00	12.00	4.00	2.00	0.00	0.0066	0.0470	0.1821	27.62	1.84
8.50 m	7.00	55.00	28.00	2.00	4.00	4.00	0.00	0.0035	0.0199	0.0703	19.98	1.59
11.50 m	6.00	53.00	27.00	5.00	3.00	6.00	0.00	0.0043	0.0224	0.0778	17.99	1.49
14.50 m	7.00	49.00	30.00	6.00	2.00	5.00	1.00	0.0036	0.0231	0.0896	24.90	1.66
17.50 m	6.00	49.00	30.00	4.00	3.00	8.00	0.00	0.0044	0.0249	0.0944	21.32	1.49
22.00 m	7.00	46.00	30.00	6.00	1.00	10.00	0.00	0.0036	0.0252	0.1068	29.26	1.63
25.00 m	8.00	50.00	26.00	7.00	2.00	7.00	0.00	0.0029	0.0206	0.0818	27.95	1.78
28.00 m	8.00	47.00	28.00	7.00	2.00	8.00	0.00	0.0029	0.0226	0.0964	32.70	1.79
31.00 m	7.00	50.00	24.00	6.00	3.00	10.00	0.00	0.0036	0.0222	0.0871	24.36	1.58
34.00 m	6.00	52.00	29.00	5.00	1.00	7.00	0.00	0.0044	0.0230	0.0811	18.65	1.50
37.00 m	7.00	50.00	22.00	8.00	4.00	9.00	0.00	0.0036	0.0221	0.0883	24.74	1.54
40.00 m	8.00	48.00	24.00	10.00	2.00	8.00	0.00	0.0029	0.0217	0.0937	31.90	1.71
43.00 m	7.00	47.00	26.00	11.00	1.00	7.00	1.00	0.0036	0.0242	0.1060	29.25	1.53
46.00 m	7.00	45.00	25.00	9.00	4.00	9.00	1.00	0.0037	0.0257	0.1252	34.24	1.44

	GRAIN SIZE DISTRIBUTION CURVES
Project Name	Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.
Location/Chainage	28+360 Major Bridge
B.H. No.	BH-A2

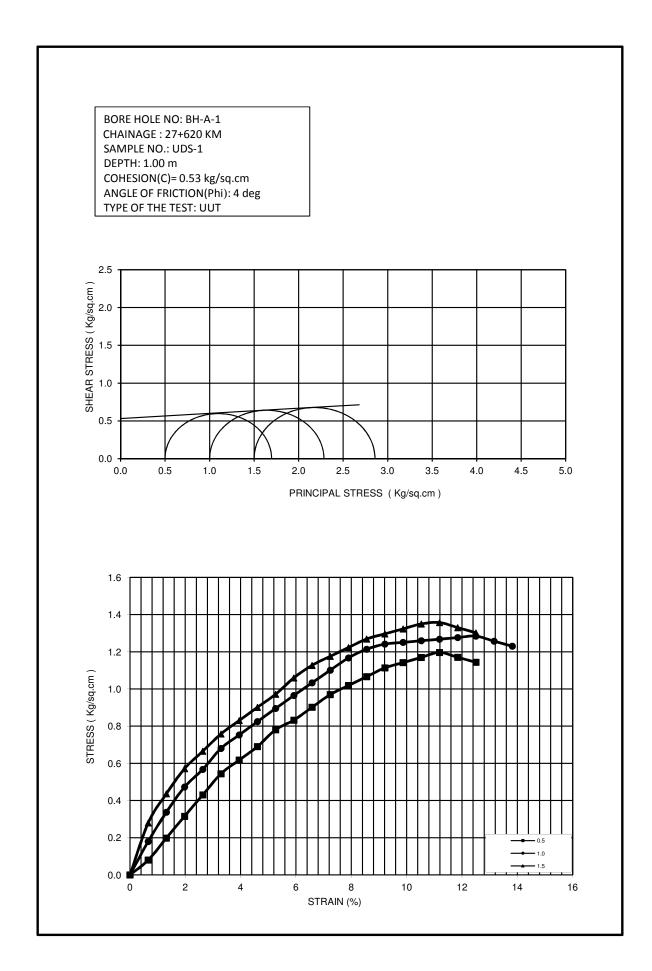

			Grain Size	Distribution %	wt retained							
Depth	Clay	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Clay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	0.00	32.00	56.00	11.00	1.00	0.00	0.00	0.0118	0.0683	0.1896	16.13	2.09
4.00 m	7.00	50.00	30.00	5.00	4.00	4.00	0.00	0.0036	0.0225	0.0850	23.72	1.66
7.00 m	6.00	46.00	31.00	8.00	3.00	6.00	0.00	0.0045	0.0272	0.1124	24.91	1.46
10.00 m	7.00	48.00	28.00	6.00	4.00	5.00	2.00	0.0036	0.0237	0.0961	26.62	1.61
13.00 m	6.00	47.00	23.00	11.00	5.00	8.00	0.00	0.0045	0.0259	0.1213	27.22	1.24
17.50 m	7.00	50.00	22.00	9.00	6.00	6.00	0.00	0.0036	0.0221	0.0884	24.76	1.54
20.50 m	8.00	49.00	28.00	4.00	3.00	7.00	1.00	0.0029	0.0213	0.0856	29.17	1.81
23.50 m	7.00	46.00	26.00	9.00	5.00	5.00	2.00	0.0036	0.0250	0.1136	31.21	1.51
26.50 m	8.00	44.00	16.00	14.00	8.00	10.00	0.00	0.0030	0.0239	0.1829	61.73	1.06
32.50 m	7.00	47.00	20.00	10.00	7.00	9.00	0.00	0.0036	0.0238	0.1193	33.03	1.32
35.50 m	6.00	47.00	19.00	13.00	4.00	8.00	3.00	0.0044	0.0256	0.1384	31.17	1.07

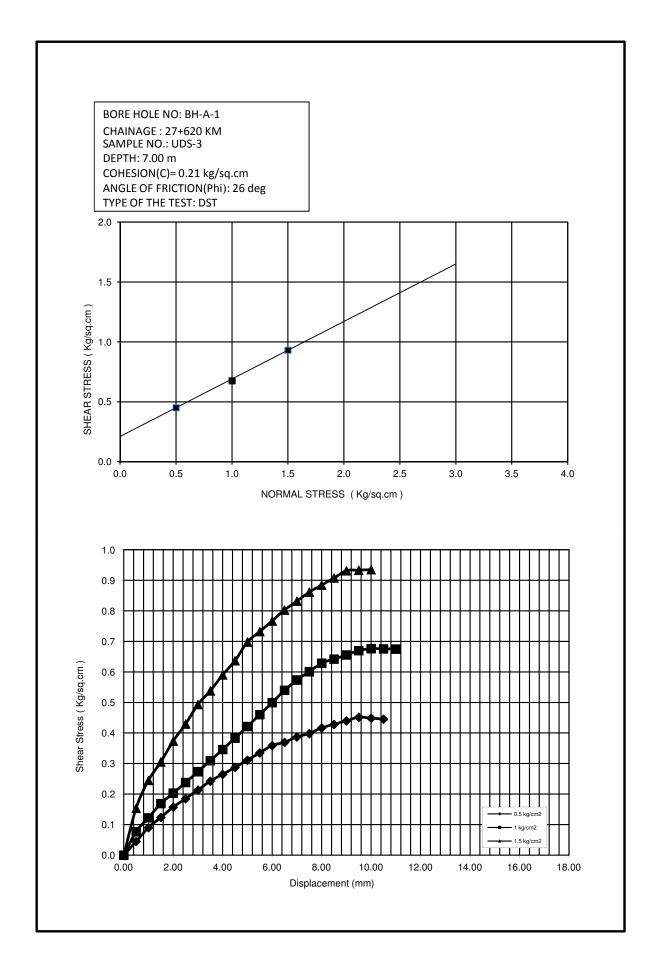


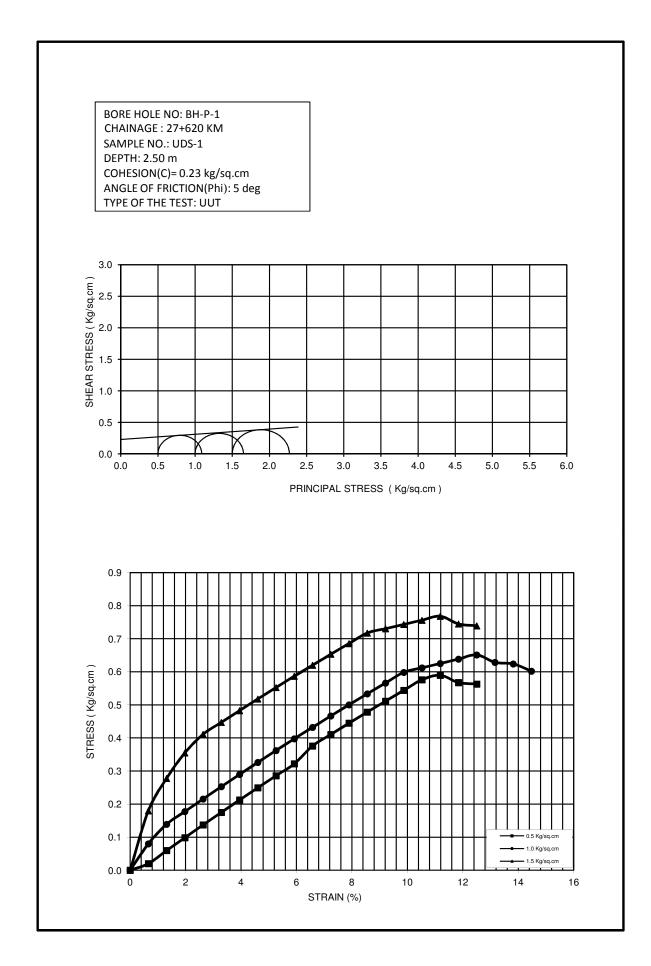
			GRA	AIN SIZE DIS	STRIBUTIO	ON CURVES						
	Project Name		connection with	echnical investigat construction of Ha xisting IR network	ryana Orbital R	ail Corridor (HOR						
L	ocation/Chaina	ge	28+900 Major B	ridge								
	B.H. No.	B	BH-A1									
Percent Finer By Weight	CLAY 100 90 80 70 60 50 40 30 20 10 0.001 DEPTH:	02	0.01	0.075 0.1	IE SAND II II II II II II II II II	1	SAND	2/10 17.50 m	GR	ARSE AVEL >	100	
—	23.50 m	——26.50 m	29.	50 m →	← 32.50 m	 35.50	m –	— 38.50 m				
								<u>, </u>		,		
		T	Grain Size	Distribution % w	t retained		aval	D10	D20	Den	C	Ca
Depth	Clay	Silt		Sand			avel Coarse	D10	D30	D60	Cu	Сс
	Clay 6.00	Silt 48.00	Grain Size Fine 32.00		Coarse 2.00	Gr Fine 2.00	avel Coarse 0.00	D10	D30	D60	Cu 22.25	Cc
Depth 2.50 m 5.50 m	6.00 7.00	48.00 44.00	Fine 32.00 27.00	Sand Medium 10.00 14.00	Coarse 2.00 5.00	Fine 2.00 3.00	0.00 0.00	0.0045 0.0037	0.0258 0.0267	0.0992 0.1310	22.25 35.59	1.50 1.47
Depth 2.50 m 5.50 m 8.50 m	6.00 7.00 7.00	48.00 44.00 45.00	Fine 32.00 27.00 30.00	Sand Medium 10.00 14.00 9.00	Coarse 2.00 5.00 4.00	Fine 2.00 3.00 5.00	0.00 0.00 0.00	0.0045 0.0037 0.0037	0.0258 0.0267 0.0260	0.0992 0.1310 0.1144	22.25 35.59 31.19	1.50 1.47 1.61
Depth 2.50 m 5.50 m 8.50 m 11.50 m	6.00 7.00 7.00 6.00	48.00 44.00 45.00 50.00	Fine 32.00 27.00 30.00 28.00	Sand Medium 10.00 14.00 9.00 5.00	Coarse 2.00 5.00 4.00 3.00	Fine 2.00 3.00 5.00 8.00	0.00 0.00 0.00 0.00 0.00	0.0045 0.0037 0.0037 0.0044	0.0258 0.0267 0.0260 0.0242	0.0992 0.1310 0.1144 0.0903	22.25 35.59 31.19 20.55	1.50 1.47 1.61 1.47
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m	6.00 7.00 7.00 6.00 10.00	48.00 44.00 45.00 50.00 55.00	Fine 32.00 27.00 30.00 28.00 19.00	Sand Medium 10.00 14.00 9.00 5.00 6.00	Coarse 2.00 5.00 4.00 3.00 6.00	5.00 2.00 3.00 5.00 8.00 4.00	0.00 0.00 0.00 0.00 0.00 0.00	0.0045 0.0037 0.0037 0.0044 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153	0.0992 0.1310 0.1144 0.0903 0.0632	22.25 35.59 31.19 20.55 31.61	1.50 1.47 1.61 1.47 1.85
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m	6.00 7.00 7.00 6.00 10.00 12.00	48.00 44.00 45.00 50.00 55.00 60.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00	Sand Medium 10.00 14.00 9.00 5.00 6.00 4.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0045 0.0037 0.0037 0.0044 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502	22.25 35.59 31.19 20.55 31.61	1.50 1.47 1.61 1.47 1.85
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m	6.00 7.00 7.00 6.00 10.00 12.00 11.00	48.00 44.00 45.00 50.00 55.00 60.00 56.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00 16.00	Sand Medium 10.00 14.00 9.00 5.00 6.00 4.00 3.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00 2.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00 11.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00	0.0045 0.0037 0.0037 0.0044 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116 0.0137	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502 0.0589	22.25 35.59 31.19 20.55 31.61	1.50 1.47 1.61 1.47 1.85
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 23.50 m	6.00 7.00 7.00 6.00 10.00 12.00 11.00 12.00	48.00 44.00 45.00 50.00 55.00 60.00 56.00 49.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00 16.00 19.00	Sand Medium 10.00 14.00 9.00 5.00 6.00 4.00 3.00 7.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00 2.00 3.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00 11.00 8.00	Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.00	0.0045 0.0037 0.0037 0.0044 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116 0.0137 0.0149	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502 0.0589 0.0723	22.25 35.59 31.19 20.55 31.61	1.50 1.47 1.61 1.47 1.85
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 23.50 m 26.50 m	6.00 7.00 7.00 6.00 10.00 12.00 11.00 12.00 10.00	48.00 44.00 45.00 50.00 55.00 60.00 56.00 49.00 53.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00 19.00 20.00	Sand Medium 10.00 14.00 9.00 5.00 6.00 4.00 3.00 7.00 3.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00 2.00 3.00 2.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00 11.00 8.00 12.00	Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 2.00 0.00	0.0045 0.0037 0.0037 0.0044 0.0020 - - 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116 0.0137 0.0149 0.0160	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502 0.0589 0.0723 0.0676	22.25 35.59 31.19 20.55 31.61 - - 33.78	1.50 1.47 1.61 1.47 1.85 - - 1.91
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 23.50 m 26.50 m 29.50 m	6.00 7.00 7.00 6.00 10.00 12.00 11.00 12.00 10.00 13.00	48.00 44.00 45.00 50.00 55.00 60.00 56.00 49.00 53.00 52.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00 16.00 19.00 20.00 17.00	Sand Medium 10.00 14.00 9.00 5.00 6.00 4.00 3.00 7.00 3.00 5.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00 2.00 2.00 3.00 3.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00 11.00 8.00 12.00 9.00	Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0045 0.0037 0.0037 0.0044 0.0020 - - - 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116 0.0137 0.0149 0.0160 0.0126	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502 0.0589 0.0723 0.0676 0.0625	22.25 35.59 31.19 20.55 31.61 - - 33.78	1.50 1.47 1.61 1.47 1.85 - - 1.91
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 20.50 m 26.50 m 29.50 m 32.50 m	6.00 7.00 7.00 6.00 10.00 12.00 11.00 10.00 13.00 11.00	48.00 44.00 45.00 50.00 55.00 60.00 56.00 49.00 53.00 52.00 56.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00 16.00 19.00 20.00 17.00 14.00	Sand Medium 10.00 14.00 14.00 5.00 6.00 4.00 3.00 7.00 5.00 7.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00 2.00 3.00 2.00 3.00 1.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00 11.00 8.00 12.00 9.00 11.00	Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0045 0.0037 0.0037 0.0044 0.0020 - - 0.0020 -	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116 0.0137 0.0149 0.0160 0.0126 0.0136	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502 0.0589 0.0723 0.0676 0.0625 0.0588	22.25 35.59 31.19 20.55 31.61 - - 33.78	1.50 1.47 1.61 1.47 1.85 - - 1.91
2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 23.50 m 26.50 m 29.50 m	6.00 7.00 7.00 6.00 10.00 12.00 11.00 12.00 10.00 13.00	48.00 44.00 45.00 50.00 55.00 60.00 56.00 49.00 53.00 52.00	Fine 32.00 27.00 30.00 28.00 19.00 15.00 16.00 19.00 20.00 17.00	Sand Medium 10.00 14.00 9.00 5.00 6.00 4.00 3.00 7.00 3.00 5.00	Coarse 2.00 5.00 4.00 3.00 6.00 3.00 2.00 2.00 3.00 3.00	Fine 2.00 3.00 5.00 8.00 4.00 6.00 11.00 8.00 12.00 9.00	Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.0045 0.0037 0.0037 0.0044 0.0020 - - - 0.0020	0.0258 0.0267 0.0260 0.0242 0.0153 0.0116 0.0137 0.0149 0.0160 0.0126	0.0992 0.1310 0.1144 0.0903 0.0632 0.0502 0.0589 0.0723 0.0676 0.0625 0.0588 0.0834	22.25 35.59 31.19 20.55 31.61 - - 33.78	1.50 1.47 1.61 1.47 1.85 - - 1.91

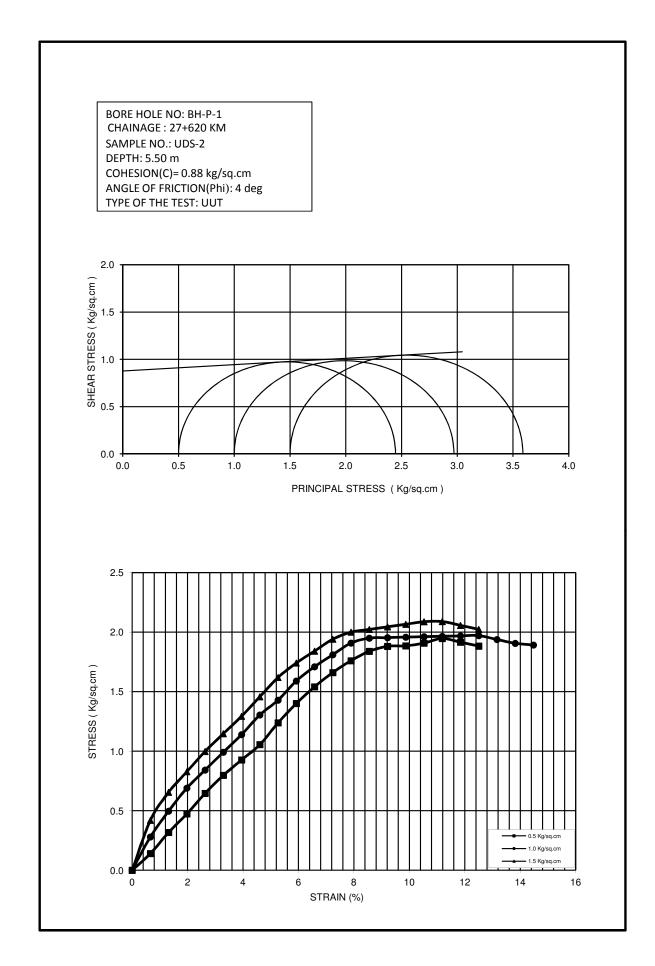
	Project Name	Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.
B.H. No. BH-P1	Location/Chainage	28+900 Major Bridge
	B.H. No.	BH-P1

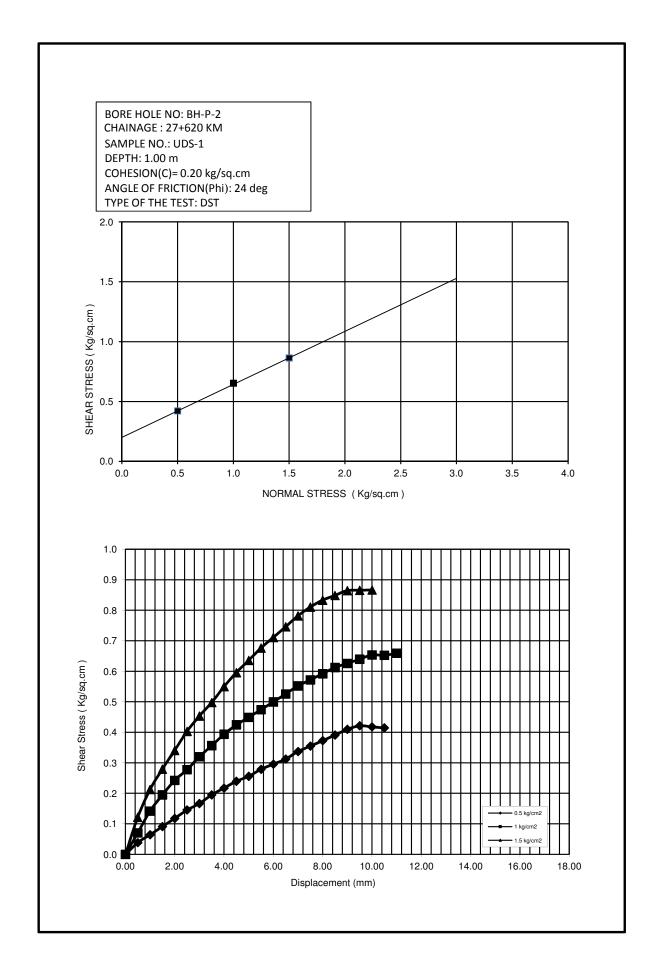
			Grain Size	Distribution %	wt retained							
Depth	Clav	Silt		Sand		Gra	avel	D10	D30	D60	Cu	Cc
	Ciay	Siit	Fine	Medium	Coarse	Fine	Coarse					
1.00 m	7.00	54.00	26.00	6.00	3.00	4.00	0.00	0.0035	0.0202	0.0726	20.58	1.60
4.00 m	12.00	55.00	20.00	4.00	3.00	5.00	1.00	-	0.0130	0.0588	-	-
7.00 m	11.00	55.00	17.00	8.00	2.00	7.00	0.00	-	0.0140	0.0609	-	-
10.00 m	11.00	50.00	23.00	4.00	3.00	9.00	0.00	-	0.0160	0.0724	-	-
13.00 m	7.00	46.00	27.00	8.00	2.00	10.00	0.00	0.0036	0.0250	0.1115	30.62	1.54
16.00 m	8.00	45.00	28.00	3.00	4.00	12.00	0.00	0.0030	0.0240	0.1089	36.72	1.78
20.50 m	7.00	47.00	30.00	2.00	3.00	9.00	2.00	0.0036	0.0245	0.0999	27.49	1.65
23.50 m	11.00	49.00	20.00	6.00	3.00	9.00	2.00	-	0.0163	0.0750	-	-
26.50 m	12.00	48.00	18.00	9.00	1.00	12.00	0.00	-	0.0153	0.0750	-	-
29.50 m	13.00	48.00	21.00	3.00	4.00	11.00	0.00	-	0.0141	0.0722	-	-
32.50 m	12.00	51.00	18.00	5.00	3.00	7.00	4.00	-	0.0142	0.0672	-	-
35.50 m	11.00	46.00	22.00	4.00	5.00	12.00	0.00	-	0.0179	0.0884	-	-
38.50 m	7.00	48.00	30.00	2.00	1.00	12.00	0.00	0.0036	0.0238	0.0943	26.08	1.66
41.50 m	6.00	48.00	29.00	4.00	2.00	10.00	1.00	0.0044	0.0256	0.1009	22.68	1.46
43.00 m	11.00	54.00	22.00	5.00	1.00	7.00	0.00	-	0.0145	0.0631	-	-
46.00 m	11.00	55.00	17.00	4.00	3.00	9.00	1.00	-	0.0140	0.0609	-	-
49.00 m	12.00	48.00	15.00	8.00	4.00	13.00	0.00	-	0.0152	0.0750	-	-

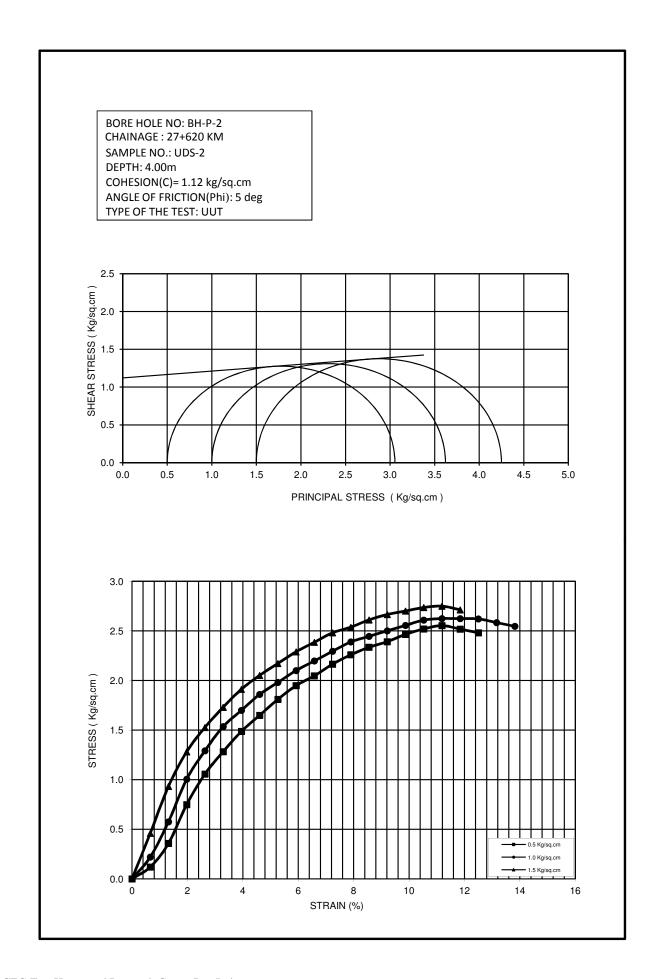


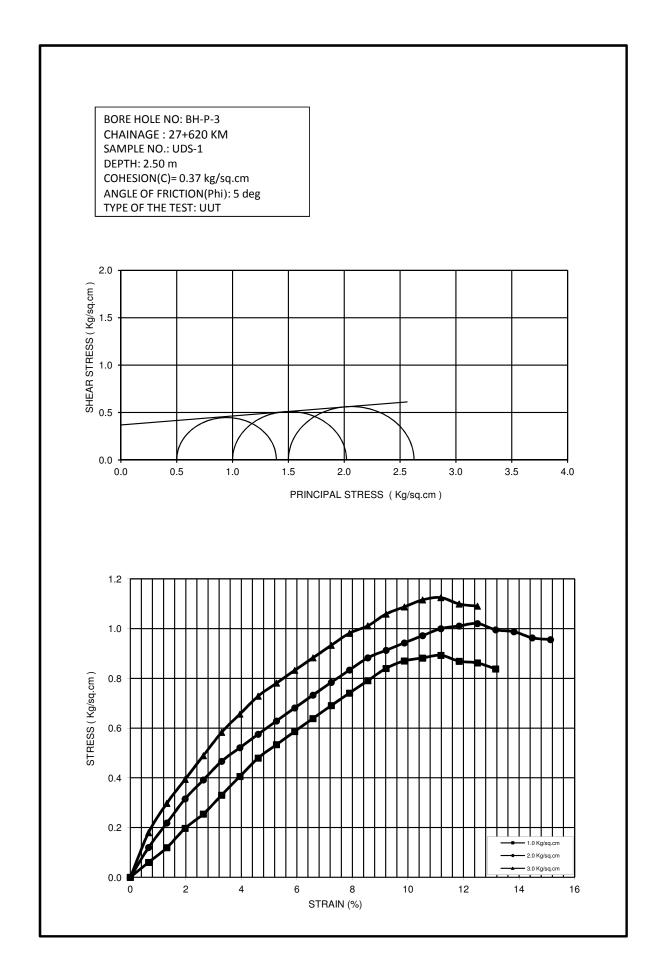

			GRA	AIN SIZE DISTR	BUTIO	N CURVES						
	Project Name		connection with o	echnical investigation, propositive of Haryana kisting IR network in the	Orbital Rail	l Corridor (HOR						
L	ocation/Chainag	ze	28+900 Major Bridge									
	B.H. No.	-	BH-P2									
Percent Finer By Weight	CLAY 100 90 80 70 60 50 40 10 0 0,000		SILT	FINE SAI	NID ME	EDIUM SAND	SAND	FINE GRAVEL	GR	ARSE AVEL >		
 2	0.001 DEPTH:	— 5.50 m — 29.50 m	● 8.50 m 32.50 m Grain Size	0.1 Grain S ——11.50 m ——35.50 m Distribution % wt reta		1 eters	=17.50 m =41.50 m	—————————————————————————————————————	0 m	23.	100	
	0.001 DEPTH:	 5.50 m 29.50 m	→ 8.50 m → 32.50 m Grain Size	Grain S ——11.50 m ——35.50 m Distribution % wt reta	→ 14.5 — 38.5	50 m	=17.50 m =41.50 m	± 20.50	0 m	23.	100	Cc
——2 Depth	0.001 DEPTH: 2.50 m Clay	—5.50 m —29.50 m	→ 8.50 m → 32.50 m Grain Size	Grain S ——11.50 m ——35.50 m Distribution % wt reta Sand Medium C	——14.5	1 eters 50 m	=17.50 m =41.50 m avel Coarse	——————————————————————————————————————	0 m	——————————————————————————————————————	50 m	
2 Depth 2.50 m	0.001 DEPTH: 2.50 m Clay 6.00	= 5.50 m = 29.50 m Silt 46.00		Grain S ——11.50 m ——35.50 m Distribution % wt reta Sand Medium C 13.00	38.5 ined	50 m	=17.50 m =41.50 m avel Coarse 0.00	——————————————————————————————————————	0 m 0 m 0 a 0 c	——————————————————————————————————————	.50 m .50 m .50 m	1.52
2 Depth 2.50 m 5.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00	→ 5.50 m → 29.50 m Silt 46.00 48.00		Grain S ——11.50 m ——35.50 m Distribution % wt reta Sand Medium C 13.00 10.00	38.5 ined oarse 1.00 2.00	50 m	= 17.50 m = 41.50 m avel Coarse 0.00 0.00	→ 20.50 → 44.50 D10 0.0045 0.0036	0 m D30 0.0274 0.0237	——————————————————————————————————————	.50 m Cu 24.22 26.76	1.5
Depth 2.50 m 5.50 m 8.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00	→ 5.50 m → 29.50 m Silt 46.00 48.00 47.00		### Open Control of Co	38.5 ined oarse 1.00 2.00 2.00	1 50 m 50 m Gr Fine 0.00 5.00 4.00	=17.50 m =41.50 m avel Coarse 0.00	——————————————————————————————————————	0 m D30 0.0274 0.0237 0.0227	→ 23. → 47. D60 0.1096 0.0967 0.0949	50 m Cu 24.22 26.76 32.16	1.5
2 Depth 2.50 m 5.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00	→ 5.50 m → 29.50 m Silt 46.00 48.00		### Til.50 m 11.50 m	38.5 ined oarse 1.00 2.00	50 m	=17.50 m =41.50 m avel Coarse 0.00 0.00 3.00	→ 20.50 → 44.50 D10 0.0045 0.0036 0.0030	0 m D30 0.0274 0.0237	——————————————————————————————————————	.50 m Cu 24.22 26.76	1.5 1.6 1.8
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00	Silt 46.00 48.00 47.00 53.00 46.00 57.00	→ 32.50 m Grain Size Fine 34.00 28.00 30.00 26.00 30.00 13.00	### Table 10 Grain S	38.5 ined oarse 1.00 2.00 2.00 5.00	50 m	= 17.50 m = 41.50 m avel	→ 20.50 → 44.50 D10 0.0045 0.0036 0.0030 0.0035	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0207 0.0272 0.0122	→ 23. → 47. → 60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0549	.50 m Cu 24.22 26.76 32.16 21.20 25.16 -	1.5 1.6 1.8 1.6
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00	= 5.50 m Silt 46.00 48.00 47.00 53.00 46.00 57.00 53.00	→ 32.50 m Grain Size Fine 34.00 28.00 30.00 26.00 30.00 13.00 16.00	Grain S Grain S	38.5 ined oarse 1.00 2.00 2.00 5.00 4.00 1.00 1.00	1 seters 50 m Gr Fine 0.00 5.00 4.00 6.00 7.00 7.00 12.00	=17.50 m =41.50 m -41.50 m -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00	—————————————————————————————————————	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0207 0.0272 0.0122 0.0123	→ 23. D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0549 0.0603	50 m Cu 24.22 26.76 32.16 21.20 25.16 -	1.5 1.6 1.8 1.6 1.4
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 23.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00 10.00	= 5.50 m Silt 46.00 48.00 47.00 53.00 46.00 57.00 53.00 51.00	Grain Size Fine 34.00 28.00 30.00 26.00 30.00 16.00 18.00	Distribution % wt reta Sand Medium C 13.00 10.00 6.00 .3.00 6.00 .10.00 5.00 8.00	38.3 ined oarse 1.00 2.00 2.00 4.00 1.00 1.00 2.00	1 seters 50 m Gr Fine 0.00 5.00 4.00 6.00 7.00 7.00 12.00 10.00	= 17.50 m = 41.50 m Coarse 0.00	—————————————————————————————————————	0 m D30 0.0274 0.0237 0.0227 0.0207 0.0123 0.0123 0.0168	D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0549 0.0603 0.0724	50 m Cu 24.22 26.76 32.16 21.20 25.16 - 36.18	1.5 1.6 1.8 1.6 1.4
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 20.50 m 26.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00 10.00 11.00	→ 5.50 m Silt 46.00 48.00 47.00 53.00 46.00 57.00 51.00 41.00	Grain Size Fine 34.00 28.00 30.00 26.00 30.00 13.00 16.00 18.00 21.00	Carain S Carain S	38.5 ined 0arse 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00	50 m 50 m 60 Fine 0.00 5.00 4.00 6.00 7.00 7.00 12.00 10.00 11.00	=17.50 m =41.50 m Avel Coarse 0.00 0.00 3.00 0.00 1.00 0.00 0.00 1.00 0.00 0	—————————————————————————————————————	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0122 0.0123 0.0168 0.0211	D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0549 0.0603 0.0724 0.1422	50 m Cu 24.22 26.76 32.16 21.20 25.16 - 36.18 -	1.5 1.6 1.8 1.6 1.4 -
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 17.50 m 20.50 m 23.50 m 26.50 m 29.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00 11.00 11.00 12.00	Silt 46.00 48.00 47.00 53.00 53.00 51.00 41.00 50.00	Grain Size Fine 34.00 28.00 30.00 26.00 30.00 13.00 16.00 18.00 21.00 23.00	Company Comp	38.sined oarse 1.00 2.00 2.00 1.00 1.00 1.00 1.00 5.00 1.00 1.00 1	50 m 50 m 60 Fine 0.00 5.00 4.00 6.00 7.00 7.00 12.00 10.00 11.00 9.00	=17.50 m =41.50 m -41.50 m -41.50 m -40.00 0.00 0.00 0.00 0.00 0.00 0.00 0	—————————————————————————————————————	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0202 0.0122 0.0123 0.0168 0.0211 0.0147	→ 23. → 47. D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0549 0.0603 0.0724 0.1422 0.0698	50 m Cu 24.22 26.76 32.16 21.20 25.16 - 36.18 -	1.5 1.6 1.8 1.6 1.4 - - 1.9
Depth 2.50 m 5.50 m 8.50 m 11.50 m 11.50 m 20.50 m 20.50 m 23.50 m 26.50 m 29.50 m 32.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00 10.00 11.00 12.00 13.00 13.00	Silt 46.00 48.00 47.00 53.00 51.00 41.00 50.00 50.00	Grain Size Fine 34.00 28.00 30.00 13.00 16.00 18.00 21.00 23.00 20.00	Table Grain S	38.5 ined oarse 1.00 2.00 2.00 1.00 1.00 1.00 1.00 2.00 1.00 2.00	50 m 50 m 50 m 6r Fine 0.00 5.00 4.00 7.00 7.00 10.00 11.00 9.00 10.00	=17.50 m =41.50 m -41.50 m -41.50 m -40.00 -	20.50	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0122 0.0123 0.0168 0.0211 0.0147 0.0134	→ 23. → 47. → 10.096 0.0967 0.0949 0.0750 0.1135 0.0549 0.0603 0.0724 0.1422 0.0698 0.0671	.50 m Cu 24.22 26.76 32.16 21.20 25.16 36.18	1.5 1.6 1.8 1.4 - - 1.9
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 20.50 m 20.50 m 23.50 m 26.50 m 29.50 m 32.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00 11.00 11.00 11.00 11.00 11.00 11.00	Silt 46.00 48.00 47.00 53.00 51.00 41.00 50.00 53.00 53.00	→ 8.50 m Grain Size Fine 34.00 28.00 30.00 13.00 16.00 18.00 21.00 23.00 20.00 17.00	Carin S Cari	38.5 ined oarse 1.00 2.00 2.00 1.00 1.00 1.00 1.00 2.00 3.00 3.00	1 eters 50 m 50 m Fine 0.00 5.00 4.00 7.00 7.00 12.00 11.00 11.00 9.00 14.00 14.00	=17.50 m =41.50 m -41.50 m -41.50 m -40.00 -0.00	■ 20.50 ■ 44.50 ■ D10 ■ 0.0045 ■ 0.0036 ■ 0.0035 ■ 0.0045 ■ - □ ■ 0.0020 ■ - □ ■ - □	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0272 0.0122 0.0123 0.0168 0.0211 0.0147	→ 23. → 47. D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0603 0.0724 0.1422 0.0698 0.0697 0.0651	50 m Cu 24.22 26.76 32.16 21.20 25.16 36.18	1.5 1.6 1.8 1.6 1.4 - - 1.9
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 20.50 m 20.50 m 23.50 m 26.50 m 29.50 m 33.50 m 38.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 6.00 12.00 13.00 10.00 11.00 12.00 13.00 13.00	= 5.50 m Silt 46.00 48.00 47.00 53.00 53.00 51.00 41.00 50.00 53.00 50.00 50.00 50.00	Grain Size Fine 34.00 28.00 30.00 26.00 30.00 16.00 18.00 21.00 23.00 20.00 17.00 16.00	Distribution % wt reta	38.5 ined oarse 1.00 2.00 2.00 5.00 4.00 1.00 2.00 5.00 1.00 2.00 3.00 4.00 4.00	1 seters 50 m Gr Fine 0.00 5.00 4.00 6.00 7.00 12.00 10.00 11.00 9.00 14.00 11.00 11.00	=17.50 m =41.50 m -41.50 m -41.50 m -40.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00	20.50	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0122 0.0123 0.0168 0.0211 0.0147 0.0134 0.0146 0.0144	D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0549 0.0603 0.0724 0.1422 0.0698 0.0671 0.0651 0.0696	50 m Cu 24.22 26.76 32.16 21.20 25.16 36.18	1.5 1.6 1.8 1.4
Depth 2.50 m 5.50 m 8.50 m 11.50 m 14.50 m 20.50 m 20.50 m 23.50 m 26.50 m 29.50 m 32.50 m	0.001 DEPTH: 2.50 m Clay 6.00 7.00 8.00 7.00 12.00 13.00 11.00 12.00 11.00 12.00 11.00 12.00 11.00	Silt 46.00 48.00 47.00 53.00 51.00 41.00 50.00 53.00 53.00	→ 8.50 m Grain Size Fine 34.00 28.00 30.00 13.00 16.00 18.00 21.00 23.00 20.00 17.00	Distribution % wt reta Sand Medium C	38.5 ined oarse 1.00 2.00 2.00 1.00 1.00 1.00 1.00 2.00 3.00 3.00	1 eters 50 m 50 m Fine 0.00 5.00 4.00 7.00 7.00 12.00 11.00 11.00 9.00 14.00 14.00	=17.50 m =41.50 m -41.50 m -41.50 m -40.00 -0.00	—————————————————————————————————————	0 m D30 0.0274 0.0237 0.0227 0.0227 0.0272 0.0122 0.0123 0.0168 0.0211 0.0147	→ 23. → 47. D60 0.1096 0.0967 0.0949 0.0750 0.1135 0.0603 0.0724 0.1422 0.0698 0.0697 0.0651	50 m Cu 24.22 26.76 32.16 21.20 25.16 36.18	1.5 1.6 1.6 1.4

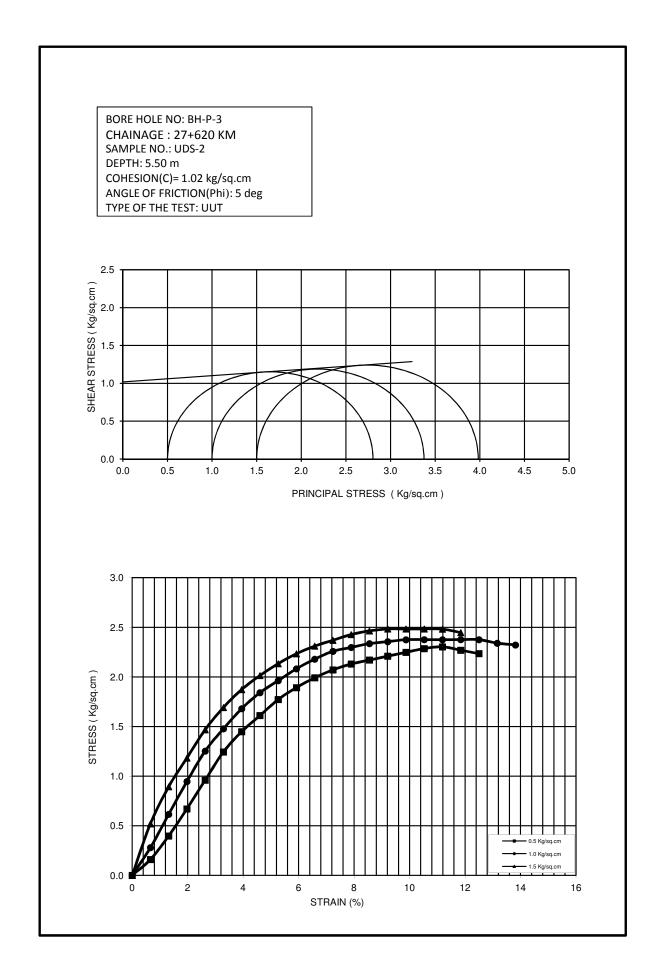


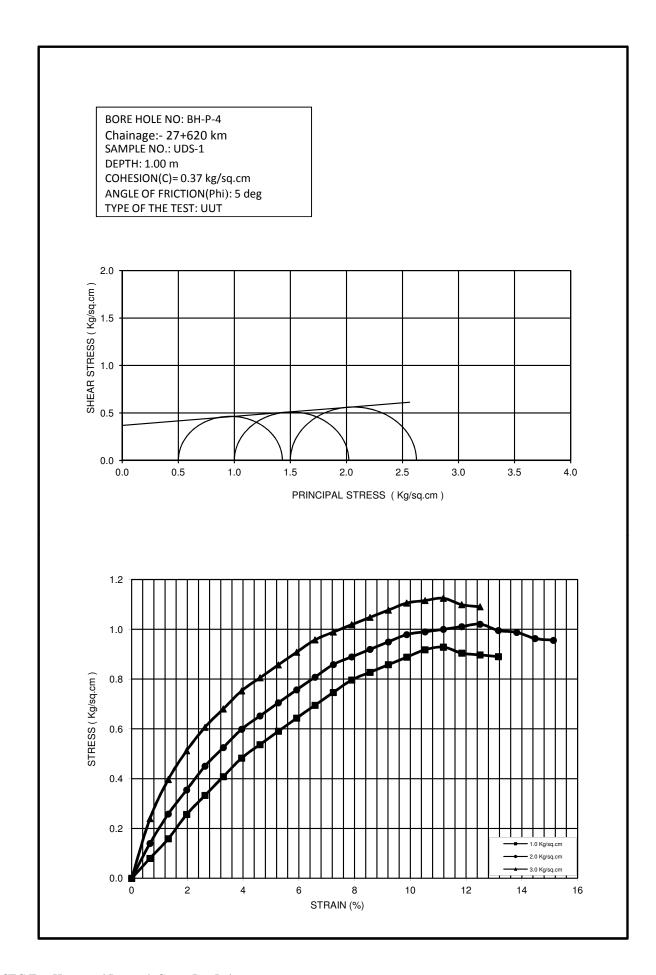

			GRA	AIN SIZE DI	ISTRIBUTI	ON CURVES	S					
Project Name		Conducting geotechnical investigation, preparation of geotechnical report for designing of bridges and for embankment in connection with construction of Haryana Orbital Rail Corridor (HORC) project from Palwal to Harsana Kalan including connectivity to existing IR network in the state of Haryana.										
Location/Chainage			28+900 Major Bridge									
_	B.H. No.		BH-A2	nage								
Percent Finer By Weight	CLAY 100 90 80 70 60 40 30 20 10 0.001 DEPTH:	02	0.01	0.075	INE SAND	1	COARSE FINISAND	E GRAVEL	GRA	ARSE AVEL >	100	
	-1.00 m	─ 4.00 m	─ 7.0	00 m -	→ 10.00 m	13.00) m	16.00 m	-	×- 19.00	0 m	
-	=22.00 m	——4.00 m ——25.00 m	→ 28.	.00 m –	<u>→</u> 31.00 m	——13.00 ——34.00		16.00 m 37.00 m	_	19.00	0 m	
	=22.00 m	——25.00 m	→ 28.		<u>→</u> 31.00 m				D30	→ 19.00 D60	O m	Ce
Depth			→ 28.	.00 m —	<u>→</u> 31.00 m) m 😛	37.00 m	D30			Ce
Depth	-22.00 m Clay 10.00	——25.00 m Silt 58.00	Grain Size Fine 16.00	Distribution % Sand Medium 11.00	wt retained Coarse 2.00	——————————————————————————————————————	om +	37.00 m D10 0.0020	0.0143	D60 0.0574	Cu 28.70	Cc
Depth 1.00 m 4.00 m	-22.00 m Clay 10.00 7.00	——25.00 m Silt 58.00 51.00	Grain Size Fine 16.00 28.00	.00 m - Distribution % Sand Medium 11.00 6.00	**-31.00 m wt retained Coarse 2.00 3.00	——————————————————————————————————————	Coarse	37.00 m D10 0.0020 0.0036	0.0143 0.0218	D60 0.0574 0.0814	Cu 28.70 22.81	1.77
Depth 1.00 m 4.00 m 7.00 m	-22.00 m Clay 10.00 7.00 11.00	Silt 58.00 51.00 57.00	Fine 16.00 28.00 21.00	.00 m - Distribution % Sand Medium 11.00 6.00 4.00	**-31.00 m wt retained Coarse 2.00 3.00 3.00	G Fine 3.00 5.00 4.00	Coarse 0.00 0.00 0.00	37.00 m D10 0.0020 0.0036 -	0.0143 0.0218 0.0136	D60 0.0574 0.0814 0.0573	Cu 28.70 22.81 -	1.77
Depth 1.00 m 4.00 m 7.00 m 10.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00	25.00 m Silt 58.00 51.00 57.00 58.00	Grain Size Fine 16.00 28.00 21.00 20.00	.00 m - Sand Medium 11.00 6.00 4.00 2.00	*** 31.00 m **wt retained** **Coarse**	——————————————————————————————————————	ravel Coarse 0.00 0.00 0.00 1.00	37.00 m D10 0.0020 0.0036 -	0.0143 0.0218 0.0136 0.0122	D60 0.0574 0.0814 0.0573 0.0536	Cu 28.70 22.81	1.77 1.64 -
Depth 1.00 m 4.00 m 7.00 m 10.00 m 13.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 13.00	25.00 m Silt 58.00 51.00 57.00 58.00 58.00	Fine 16.00 28.00 21.00 20.00 17.00	.00 m - Sand Medium 11.00 6.00 4.00 2.00 3.00	*** 31.00 m **wt retained** Coarse	G Fine 3.00 5.00 4.00 5.00 8.00	Coarse	37.00 m D10 0.0020 0.0036	0.0143 0.0218 0.0136 0.0122 0.0111	D60 0.0574 0.0814 0.0573 0.0536 0.0514	Cu 28.70 22.81 - -	1.77
Depth 1.00 m 4.00 m 7.00 m 10.00 m 11.00 m 16.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 13.00 12.00	——25.00 m Silt 58.00 51.00 57.00 58.00 58.00 53.00	Fine 16.00 28.00 21.00 20.00 17.00 20.00	Distribution % Sand Medium 11.00 6.00 4.00 2.00 3.00 6.00	→ 31.00 m wt retained Coarse 2.00 3.00 3.00 2.00 1.00 4.00	G Fine 3.00 5.00 4.00 5.00 8.00 5.00	ravel Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	37.00 m D10 0.0020 0.0036	0.0143 0.0218 0.0136 0.0122 0.0111 0.0136	D60 0.0574 0.0814 0.0573 0.0536 0.0514 0.0628	Cu 28.70 22.81 - -	1.77 1.64 - -
Depth 1.00 m 4.00 m 7.00 m 10.00 m 13.00 m 15.00 m 19.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 12.00 7.00		Fine 16.00 28.00 21.00 20.00 17.00 20.00 24.00	Distribution % Sand Medium 11.00 6.00 4.00 2.00 3.00 6.00 10.00	*** 31.00 m wt retained Coarse 2.00 3.00 3.00 2.00 1.00 4.00 1.00	# 34.00 Fine 3.00 5.00 4.00 5.00 8.00 5.00 12.00	Coarse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	37.00 m D10 0.0020 0.0036 0.0036	0.0143 0.0218 0.0136 0.0122 0.0111 0.0136 0.0248	D60 0.0574 0.0814 0.0573 0.0536 0.0514 0.0628 0.1184	Cu 28.70 22.81 - - - 32.56	1.77 1.64 - - - 1.43
Depth 1.00 m 4.00 m 7.00 m 10.00 m 13.00 m 16.00 m 19.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 13.00 12.00 7.00 6.00	——25.00 m Silt 58.00 51.00 57.00 58.00 58.00 58.00 46.00 46.00	Fine 16.00 28.00 21.00 20.00 20.00 24.00 29.00	Distribution % Sand Medium 11.00 6.00 4.00 2.00 3.00 6.00 10.00 6.00	**31.00 m wt retained Coarse 2.00 3.00 2.00 1.00 4.00 1.00 2.00	G Fine 3.00 5.00 4.00 5.00 8.00 5.00 12.00 9.00	Coarse 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0	37.00 m D10 0.0020 0.0036 0.0036 0.0045	0.0143 0.0218 0.0136 0.0122 0.0111 0.0136 0.0248 0.0271	D60 0.0574 0.0814 0.0573 0.0536 0.0518 0.0628 0.1184 0.1151	Cu 28.70 22.81 - - - 32.56 25.54	1.77 1.64 - - - 1.43 1.42
Depth 1.00 m 4.00 m 7.00 m 10.00 m 13.00 m 16.00 m 19.00 m 22.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 13.00 12.00 7.00 6.00 10.00	Silt 58.00 51.00 57.00 58.00 58.00 58.00 58.00 46.00 46.00 57.00	Grain Size Fine 16.00 28.00 21.00 20.00 17.00 20.00 24.00 29.00 20.00	Distribution % Sand Medium 11.00 6.00 4.00 2.00 3.00 6.00 10.00 6.00 4.00	wt retained Coarse 2.00 3.00 2.00 1.00 4.00 1.00 2.00 1.00	#-34.00 Fine 3.00 5.00 4.00 5.00 8.00 5.00 12.00 9.00 8.00	Coarse 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0	37.00 m D10 0.0020 0.0036 0.0036 0.0045 0.0045	0.0143 0.0218 0.0136 0.0122 0.0111 0.0136 0.0248 0.0271 0.0147	D60 0.0574 0.0814 0.0573 0.0536 0.0514 0.0628 0.1184 0.1151 0.0594	Cu 28.70 22.81 - - 32.56 25.54 29.69	1.77 1.64 - - - 1.43 1.42 1.82
Depth 1.00 m 4.00 m 7.00 m 10.00 m 13.00 m 16.00 m 19.00 m 22.00 m 25.00 m 28.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 13.00 12.00 7.00 6.00 10.00 13.00	Silt \$8.00 \$1.00 \$51.00 \$58.00 \$8.00 \$58.00 \$46.00 \$46.00 \$57.00 \$54.00	Fine 16.00 28.00 21.00 20.00 17.00 20.00 24.00 29.00 29.00 19.00	Distribution % Sand Medium 11.00 6.00 4.00 2.00 3.00 6.00 10.00 6.00 4.00 2.00	wt retained Coarse 2.00 3.00 2.00 1.00 4.00 1.00 1.00 1.00 1.00	G Fine 3.00 5.00 4.00 5.00 8.00 5.00 12.00 9.00 8.00 11.00	Coarse 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0	37.00 m D10 0.0020 0.0036 0.0036 0.0045	0.0143 0.0218 0.0136 0.0122 0.0111 0.0136 0.0248 0.0271 0.0147 0.0121	D60 0.0574 0.0814 0.0573 0.0536 0.0514 0.0628 0.1151 0.0594 0.0594	Cu 28.70 22.81 - - - 32.56 25.54	1.77 1.64 - - - 1.43 1.42
Depth 1.00 m 4.00 m 7.00 m 10.00 m 13.00 m 16.00 m 19.00 m 22.00 m	-22.00 m Clay 10.00 7.00 11.00 12.00 13.00 12.00 7.00 6.00 10.00	Silt 58.00 51.00 57.00 58.00 58.00 58.00 58.00 46.00 46.00 57.00	Grain Size Fine 16.00 28.00 21.00 20.00 17.00 20.00 24.00 29.00 20.00	Distribution % Sand Medium 11.00 6.00 4.00 2.00 3.00 6.00 10.00 6.00 4.00	wt retained Coarse 2.00 3.00 2.00 1.00 4.00 1.00 2.00 1.00	#-34.00 Fine 3.00 5.00 4.00 5.00 8.00 5.00 12.00 9.00 8.00	Coarse 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.0	37.00 m D10 0.0020 0.0036 0.0036 0.0045 0.00420 -	0.0143 0.0218 0.0136 0.0122 0.0111 0.0136 0.0248 0.0271 0.0147	D60 0.0574 0.0814 0.0573 0.0536 0.0514 0.0628 0.1184 0.1151 0.0594	Cu 28.70 22.81 32.56 25.54 29.69	1.77 1.64 - - - 1.43 1.42 1.82

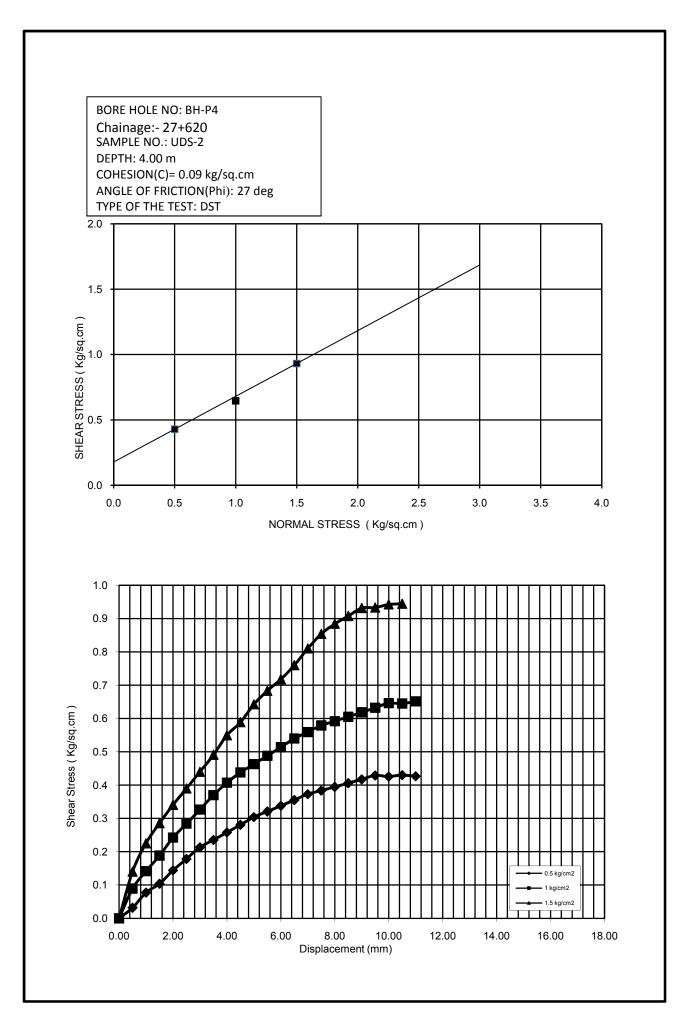


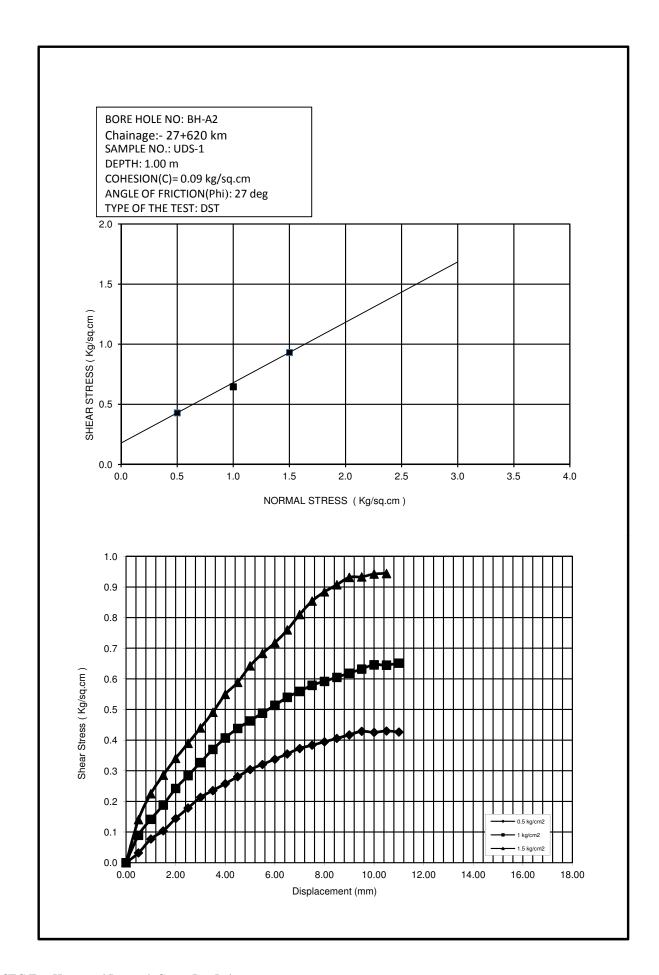


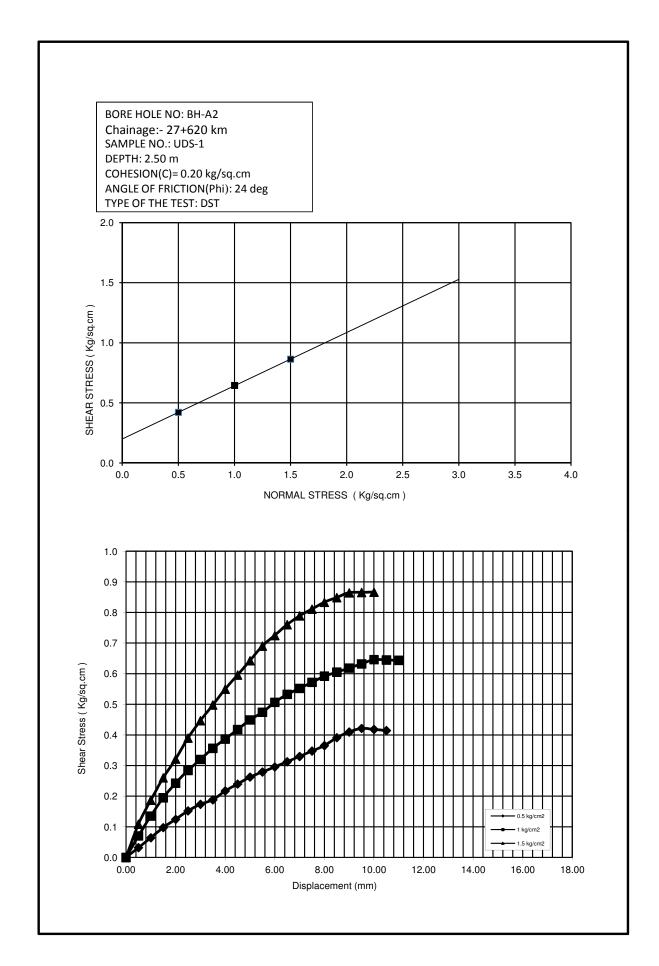


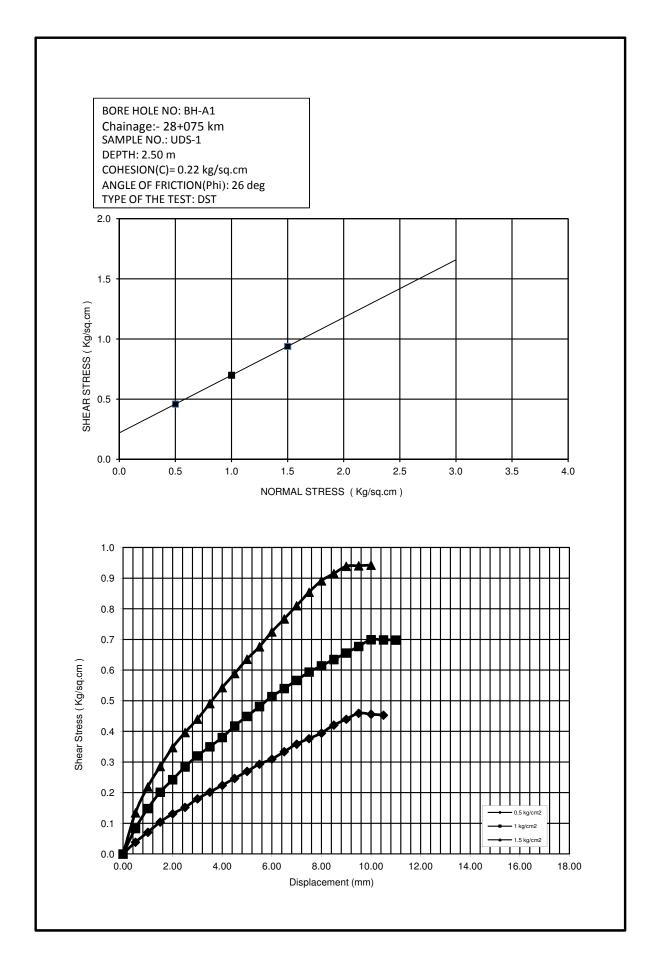




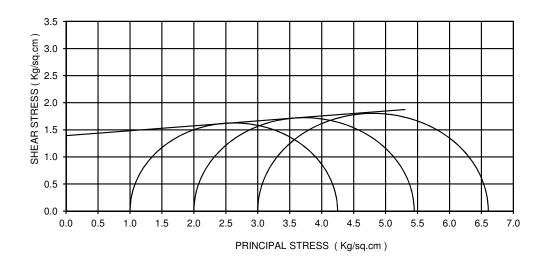


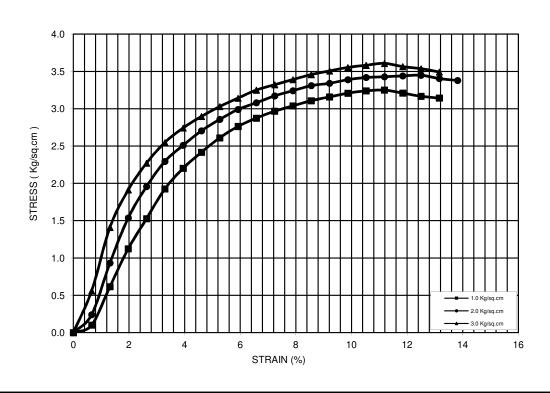


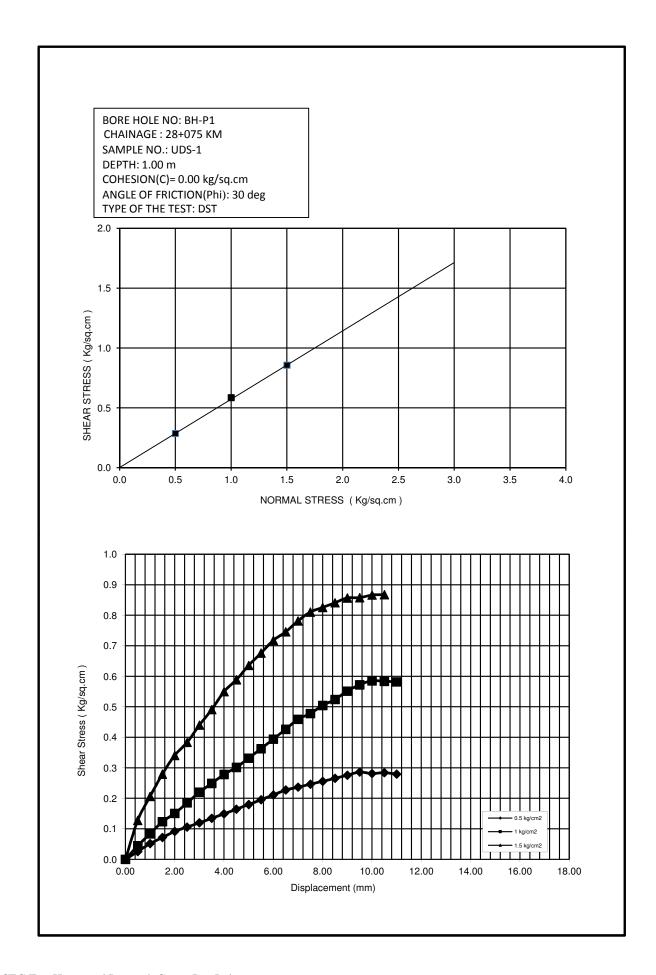


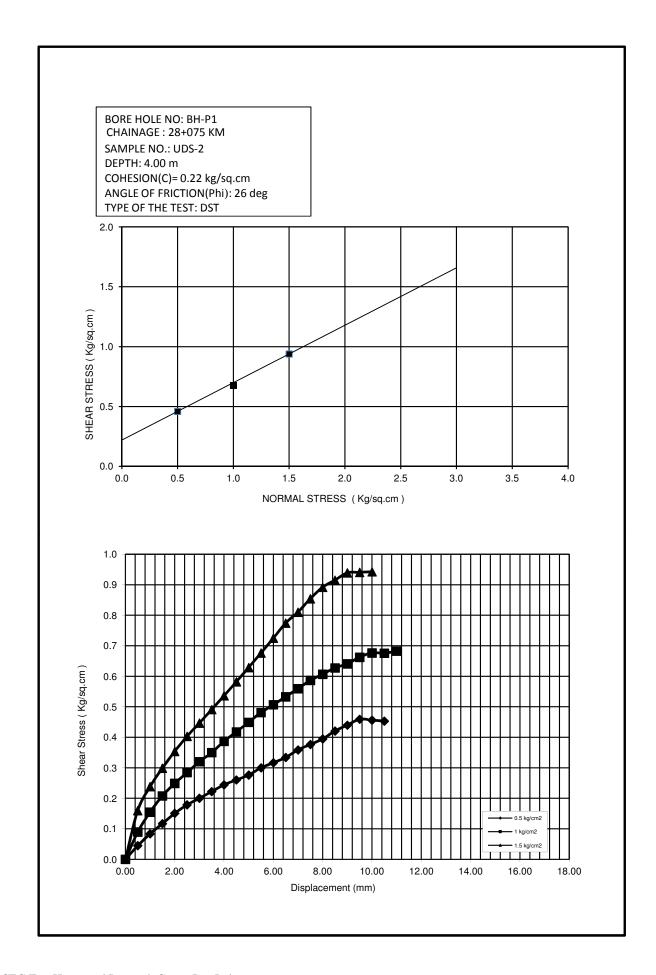


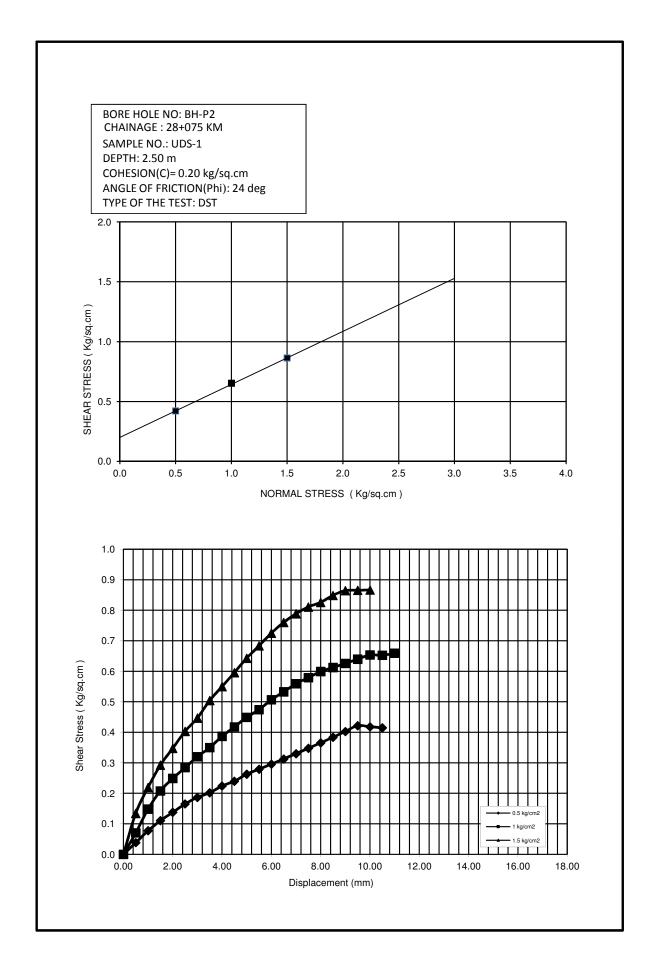
CEG Test House and Research Centre Pvt. Ltd.

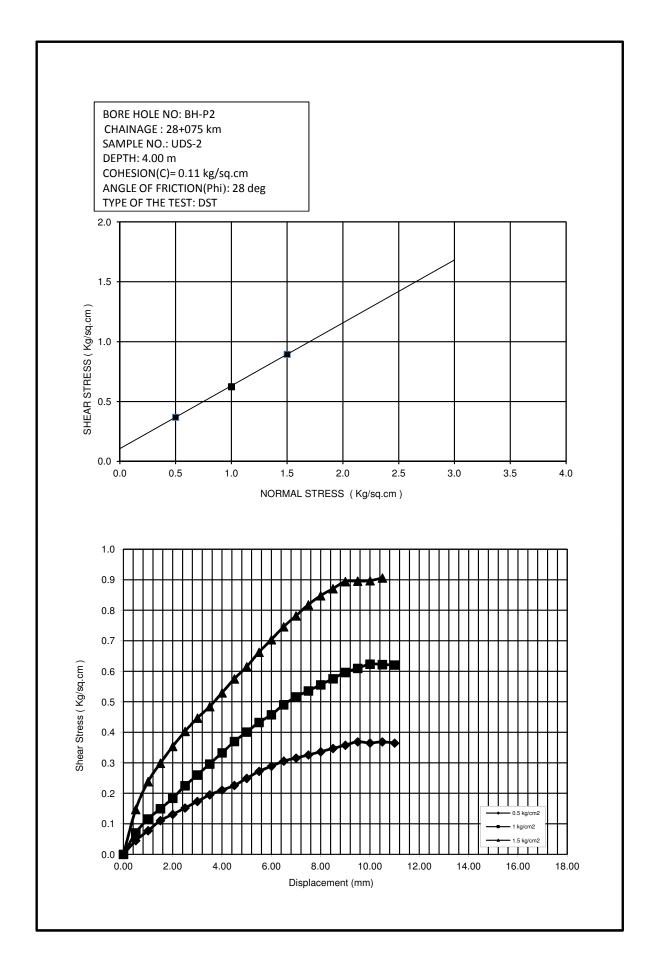


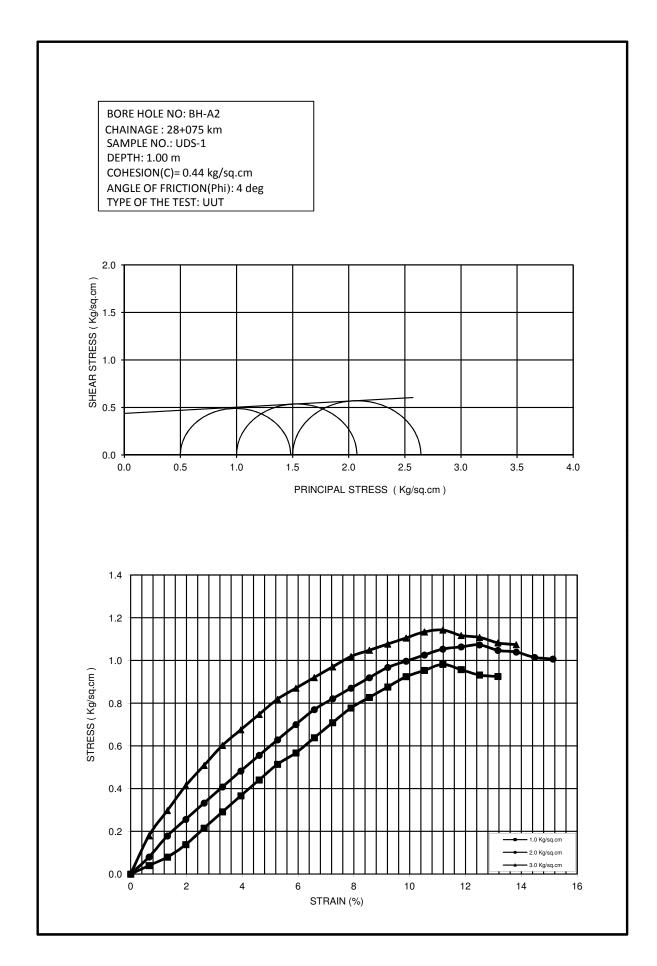


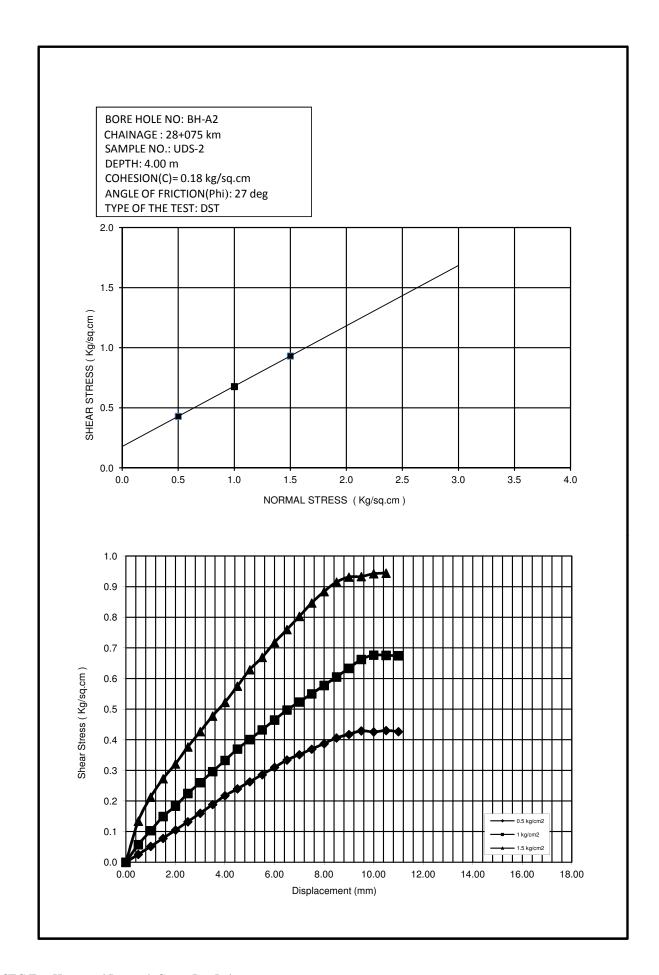

BORE HOLE NO: BH-A1 Chainage:- 28+075 km SAMPLE NO.: UDS-5 DEPTH: 14.50m

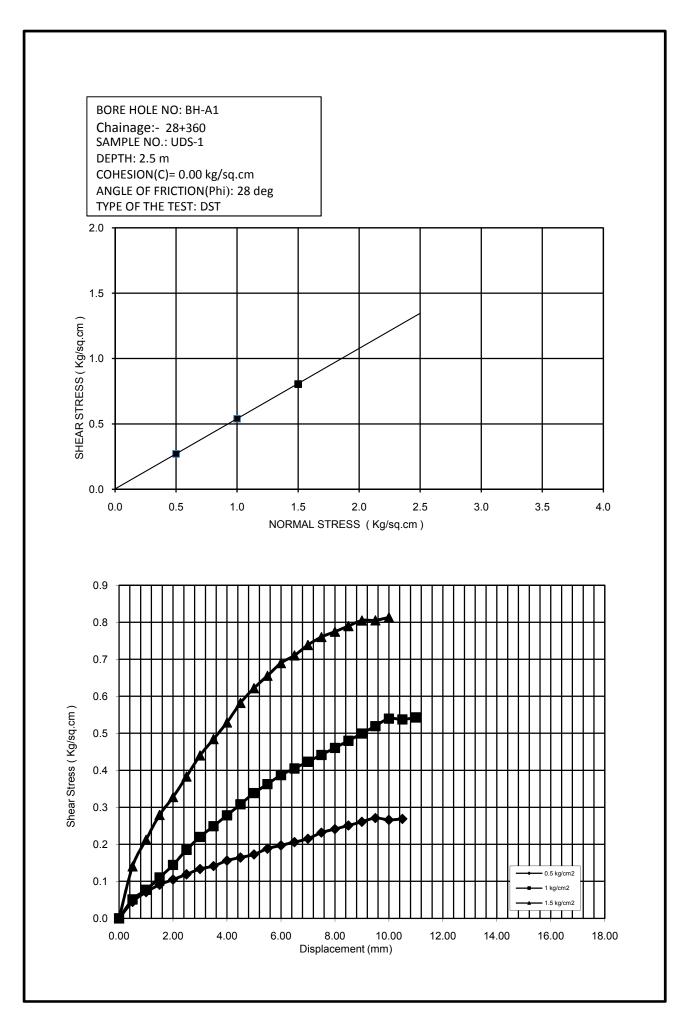

COHESION(C)= 1.39 kg/sq.cm ANGLE OF FRICTION(Phi): 5 deg

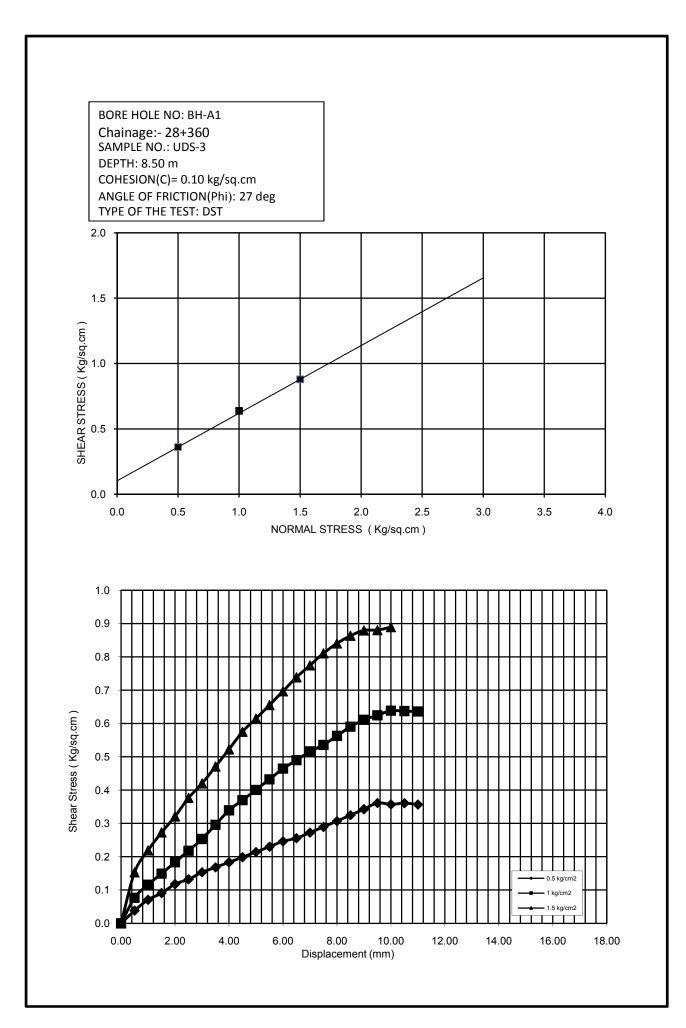

TYPE OF THE TEST: UUT

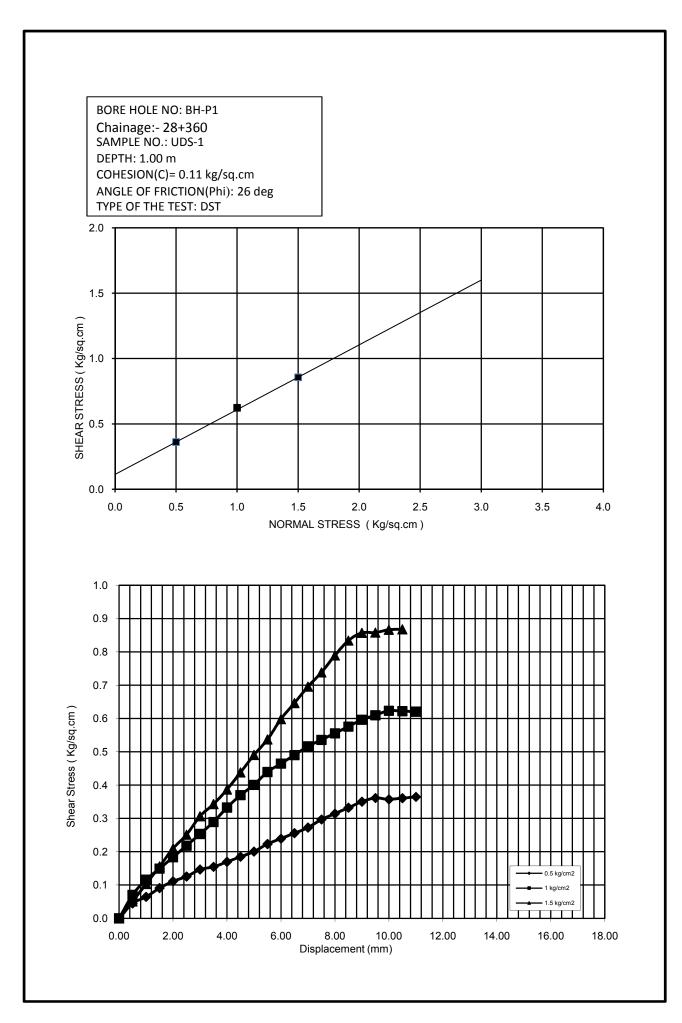


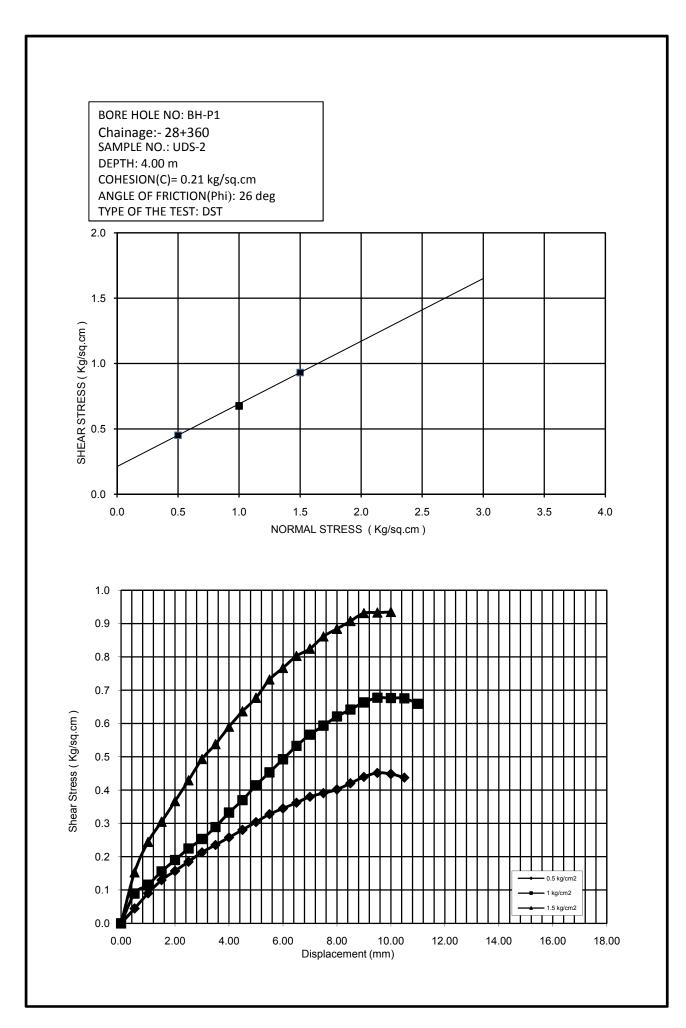


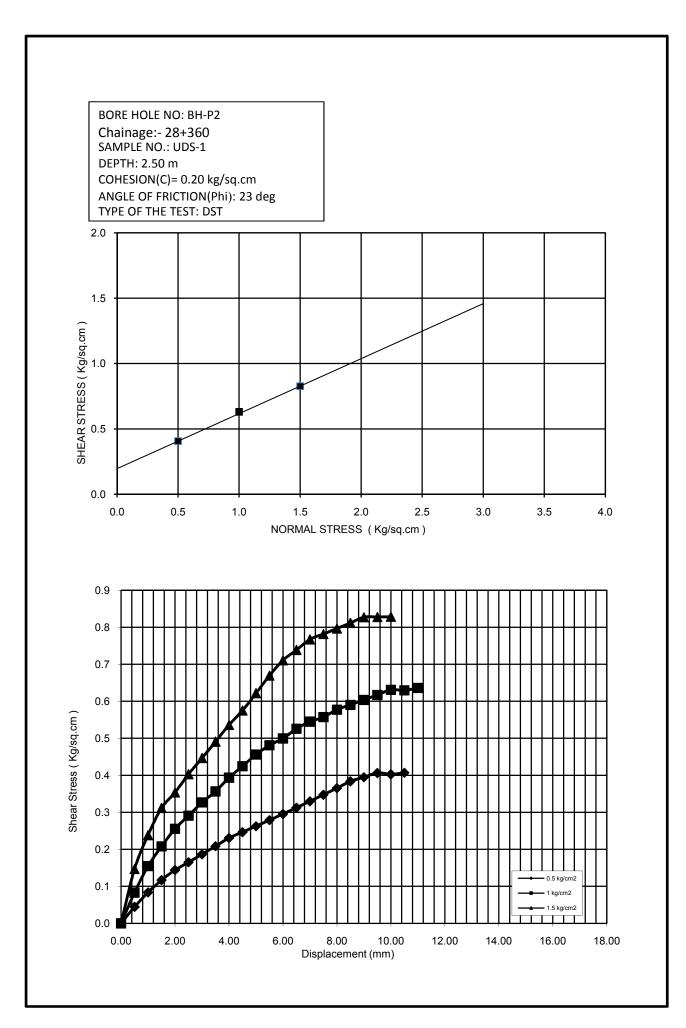


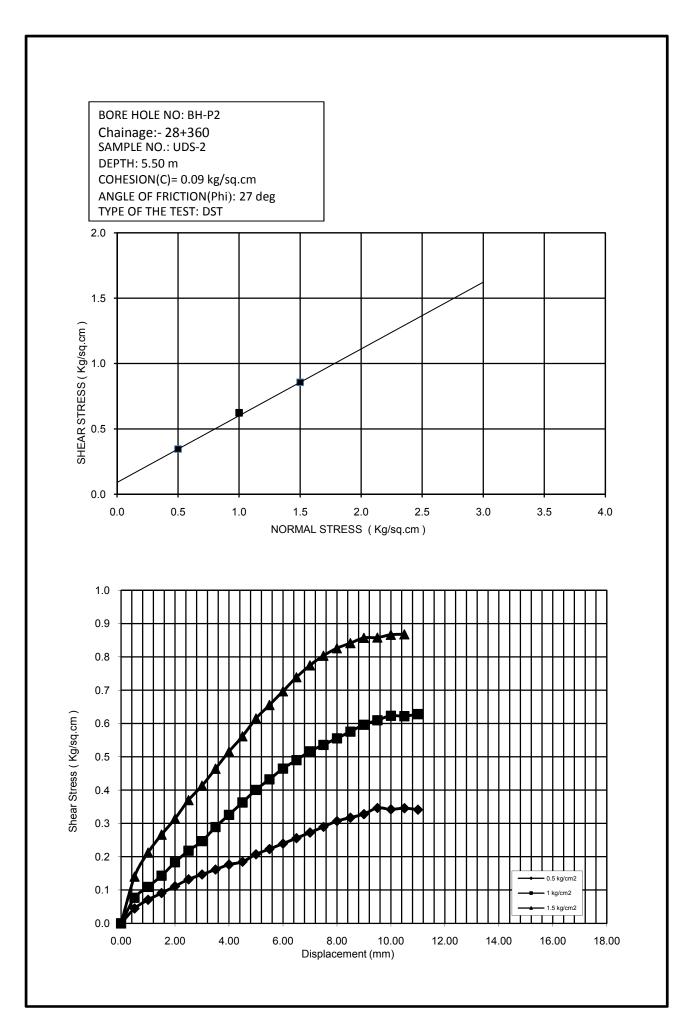


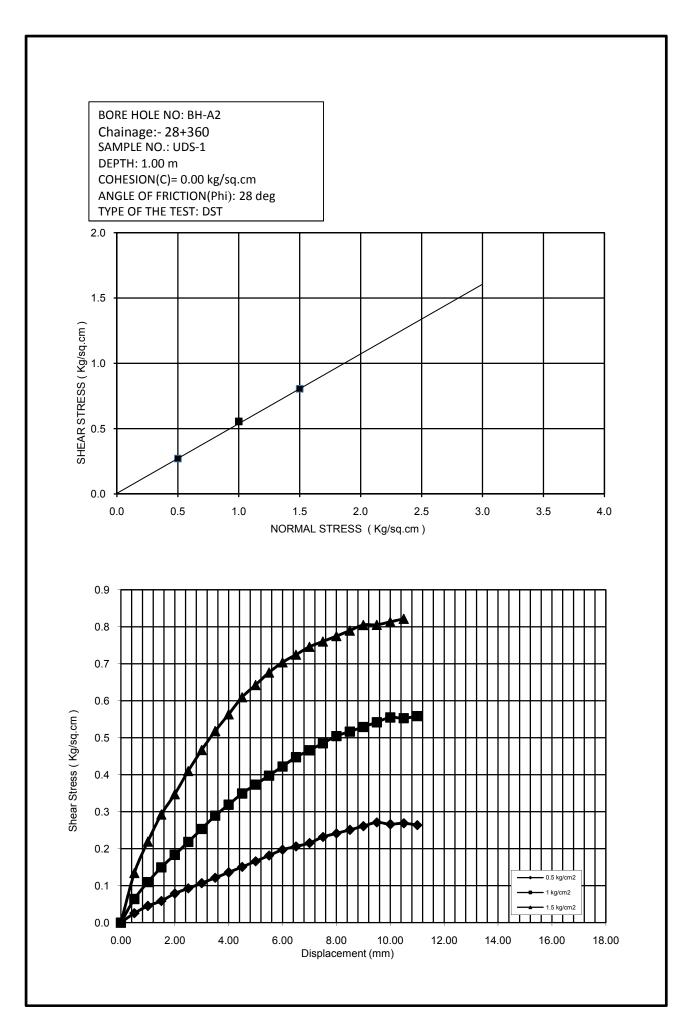


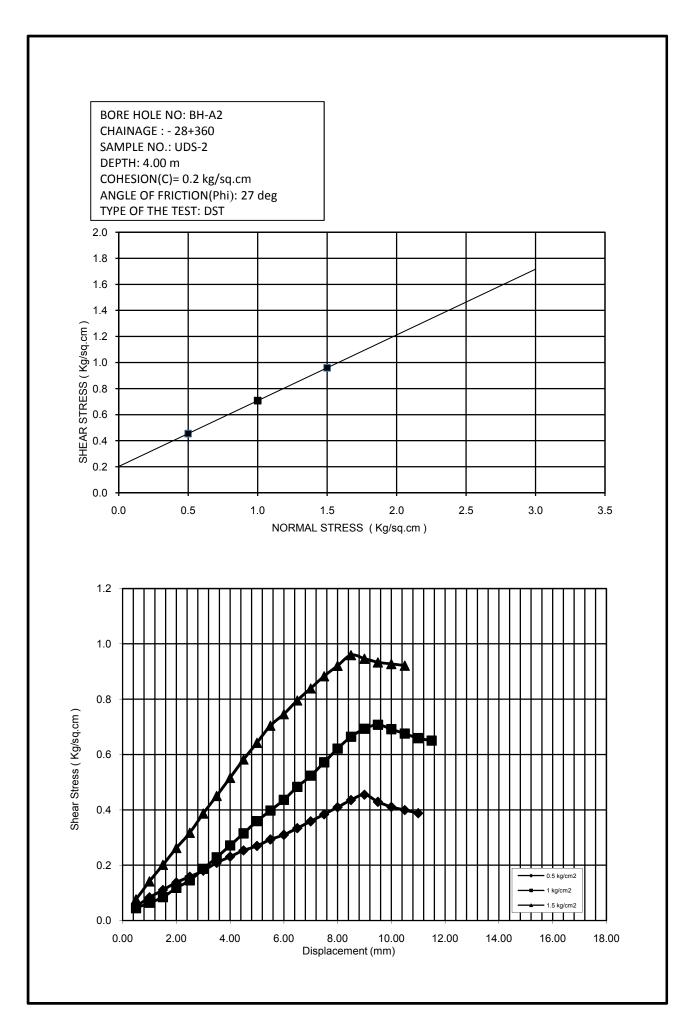


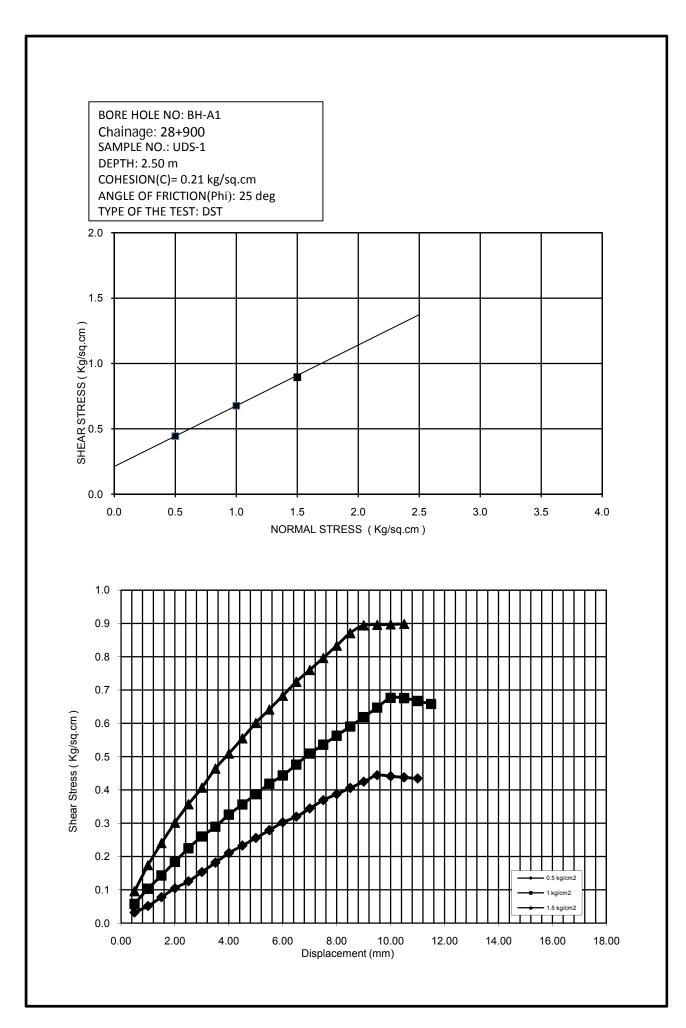

CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.

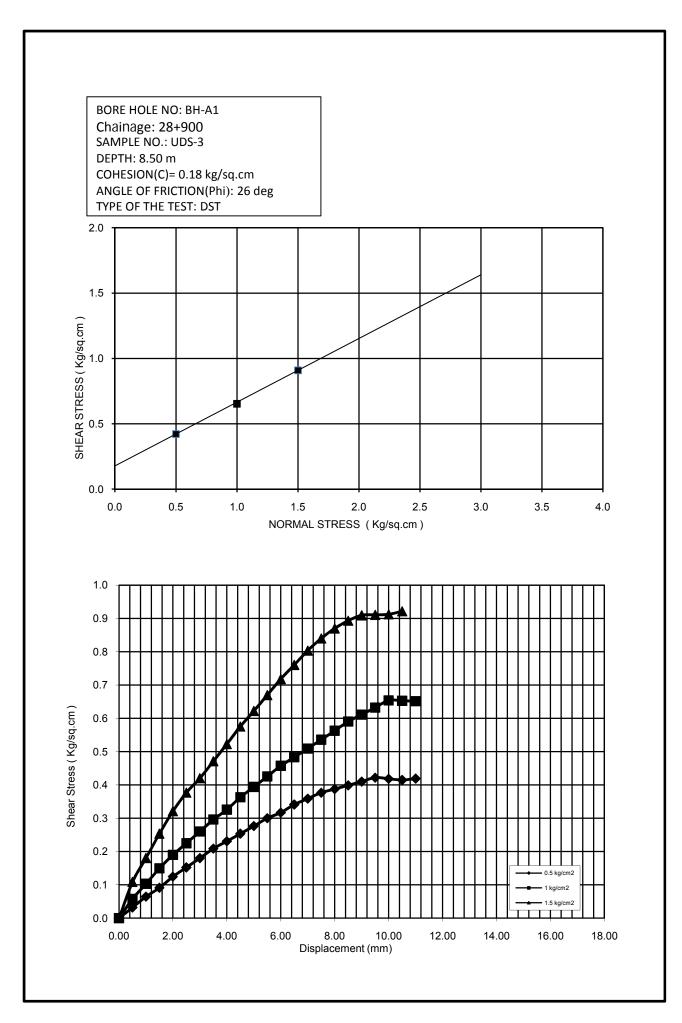

CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.

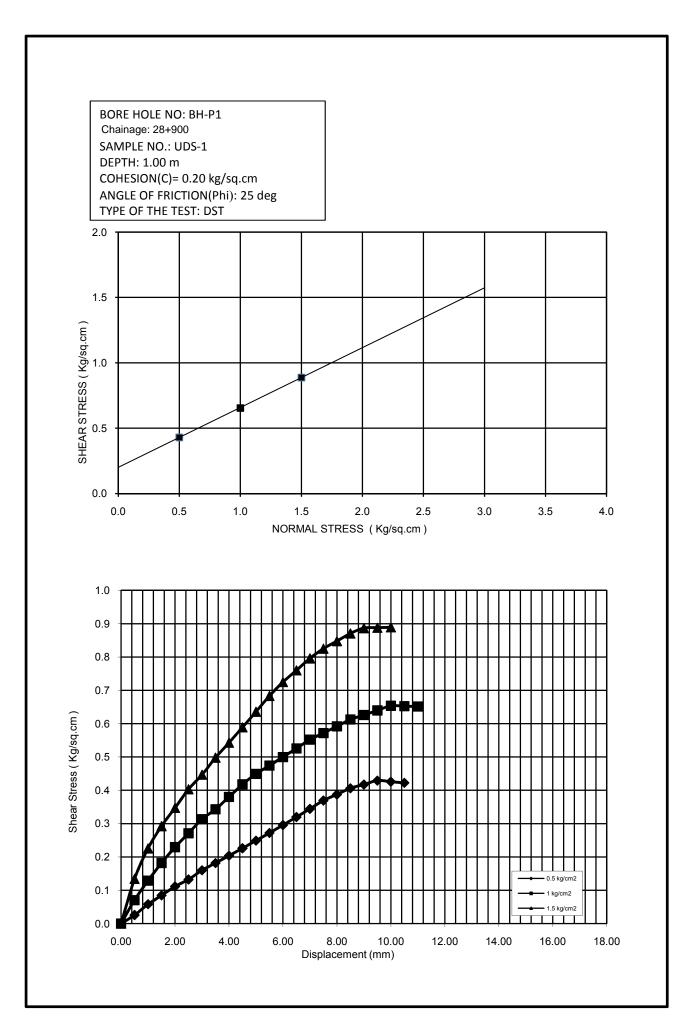

CEG Test House and Research Centre Pvt. Ltd.

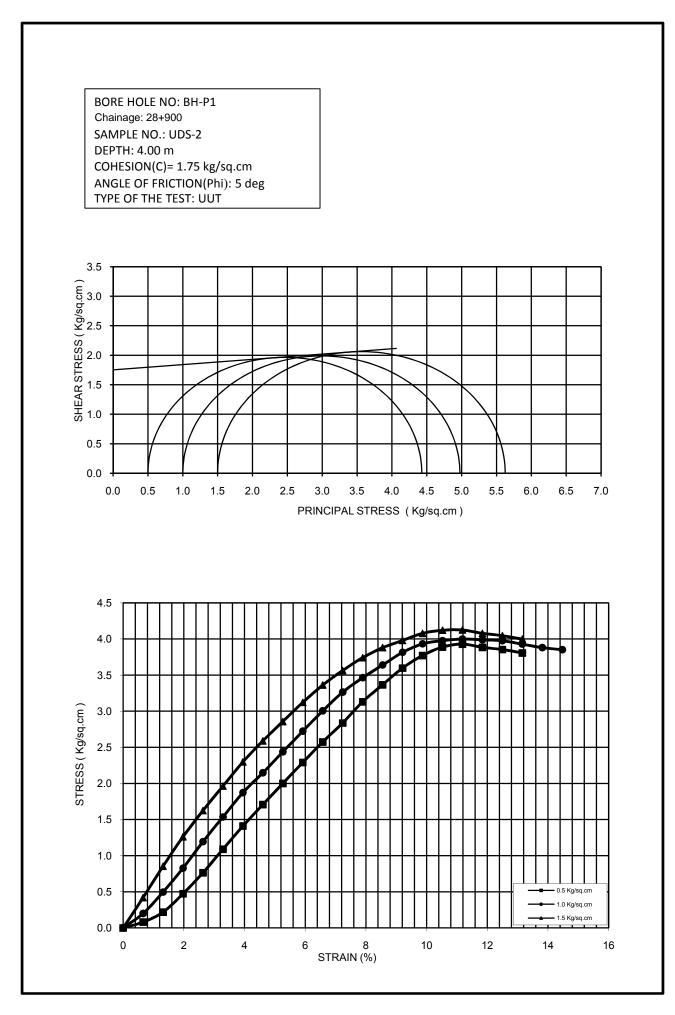


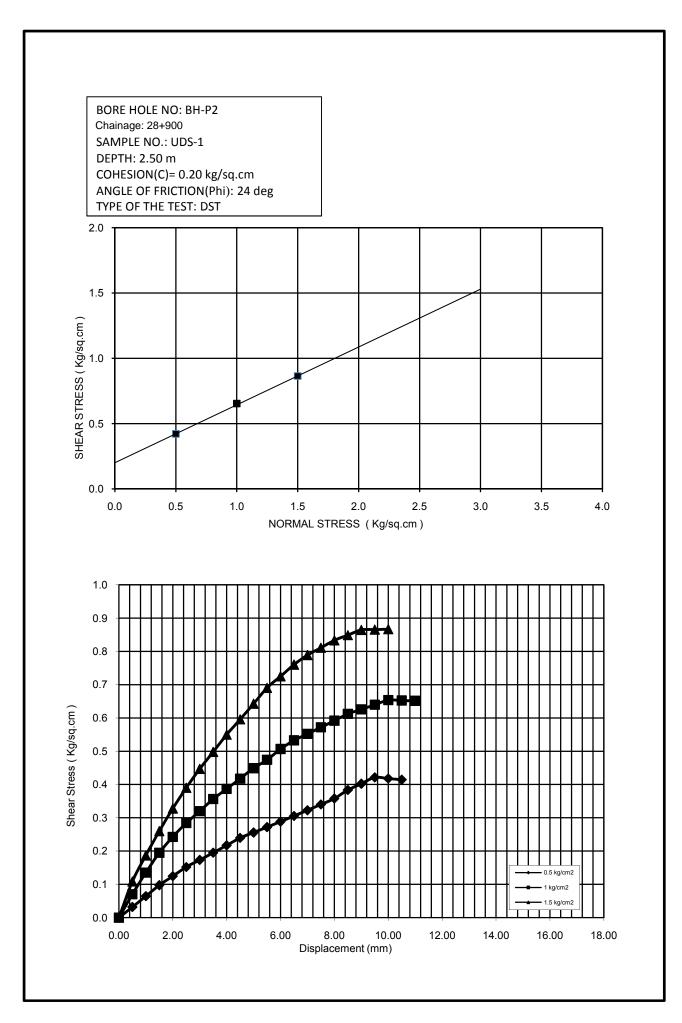
CEG Test House and Research Centre Pvt. Ltd.

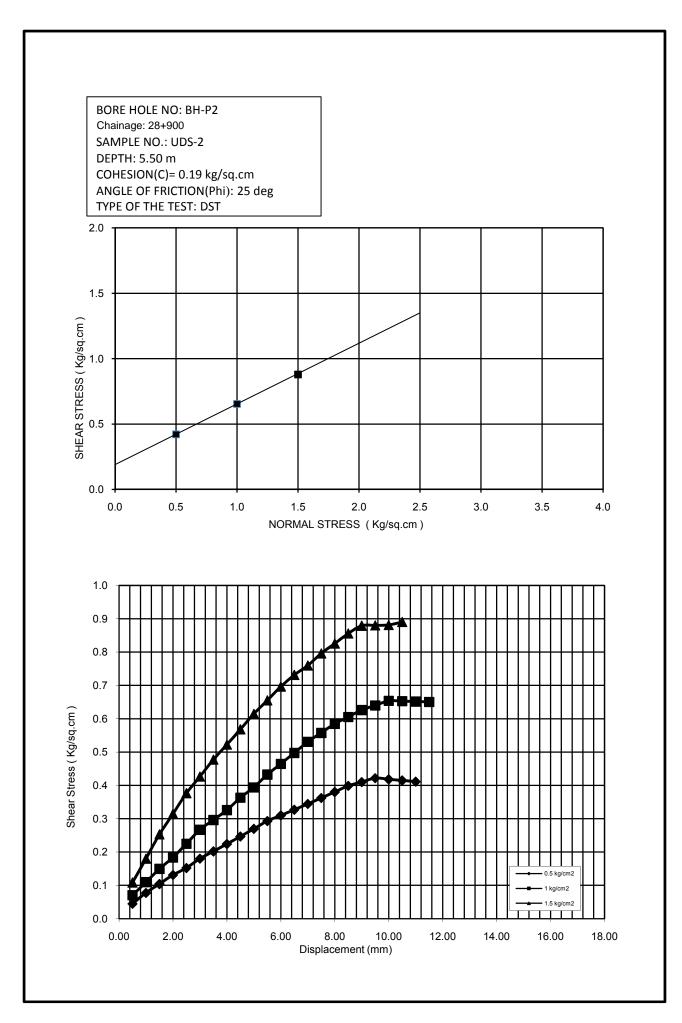


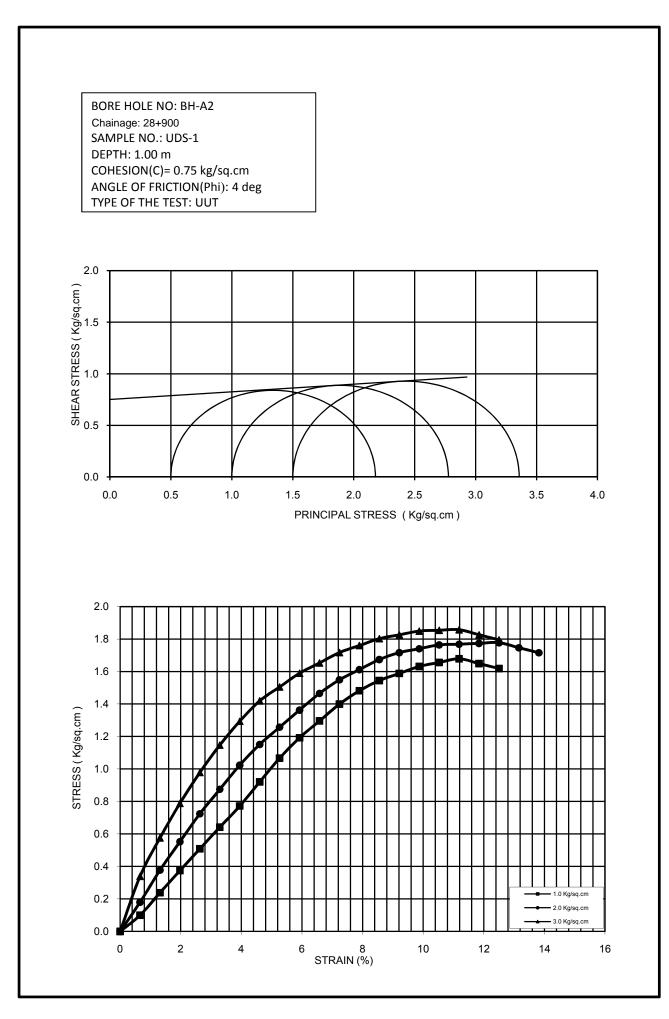
CEG Test House and Research Centre Pvt. Ltd.

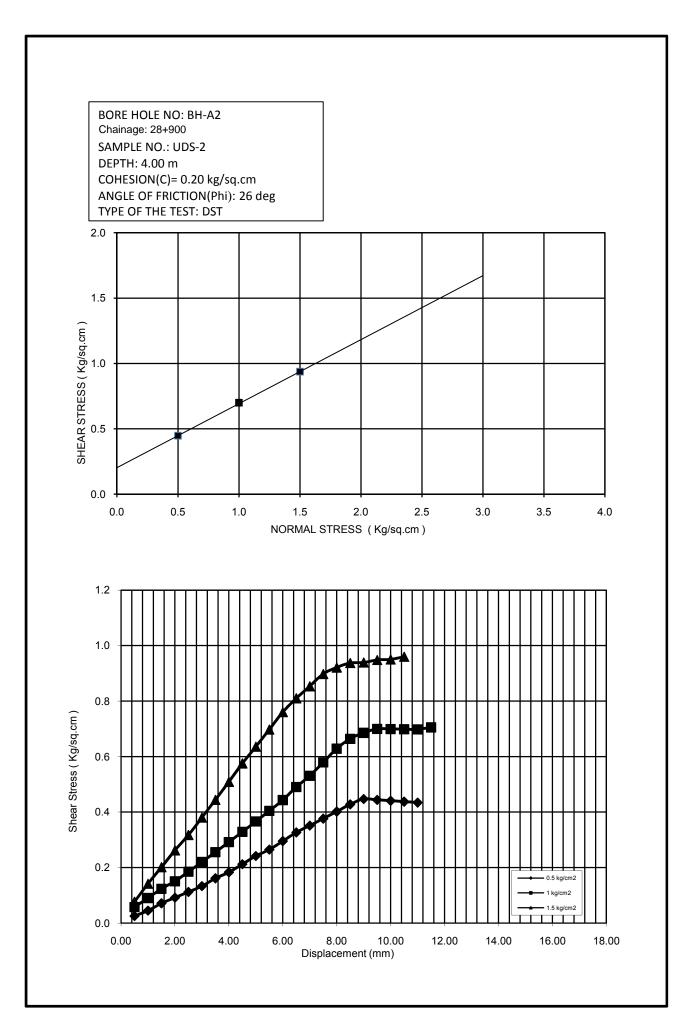


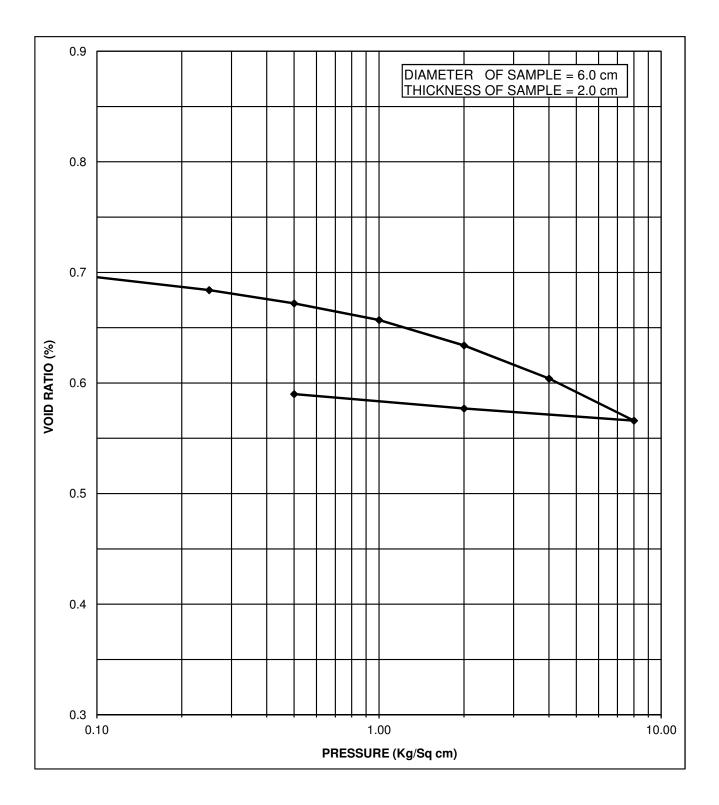

CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.


CEG Test House and Research Centre Pvt. Ltd.

CEG Test House and Research Centre Pvt. Ltd.

CEG Test House and Research Centre Pvt. Ltd.

CHAINAGE: 27+620 INITIAL WATER CONTENT = 13.46 %

BORE HOLE NO. = BH-P1 DRY DENSITY = 1.58 gm/cm³

SAMPLE NO. = UDS-2 VOID RATIO $(e_0) = 0.695$

DEPTH = 5.50 M COMPRESSION INDEX (C_c) = 0.126

TYPE OF SOIL = CL

FIGURE NO. PRESSURE Vs VOID RATIO CURVE (e-log p)

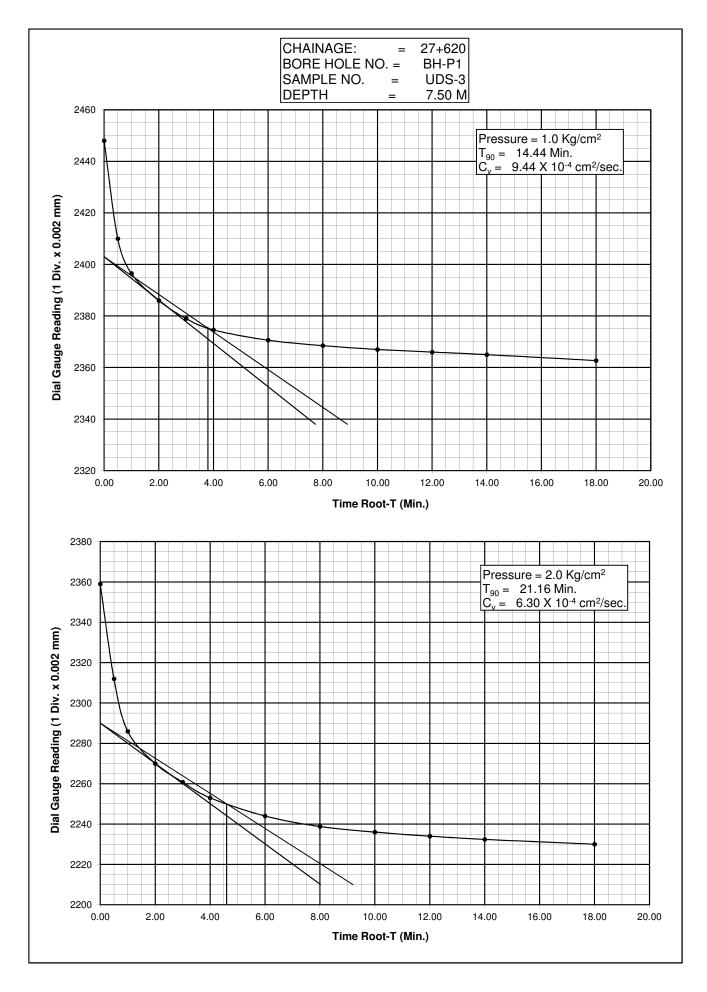


Figure No. -

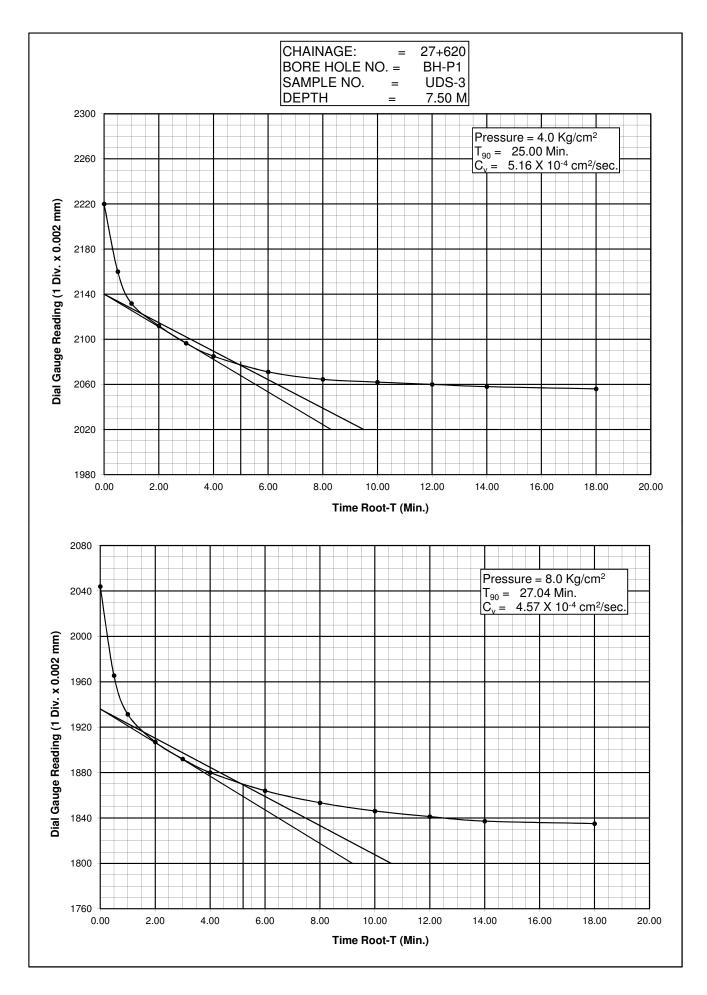
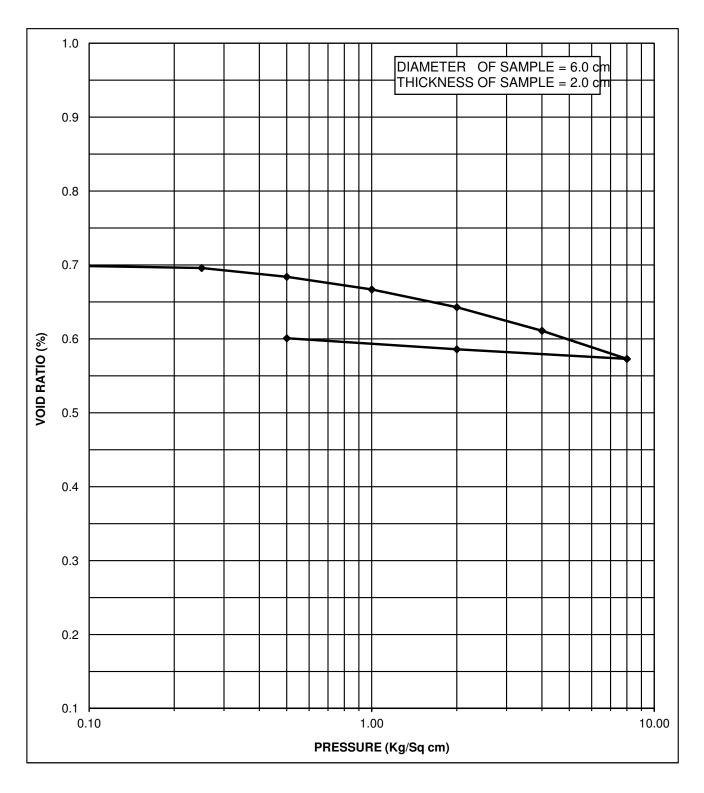



Figure No. -

CHAINAGE = 28+075

BORE HOLE NO. = BH-P1

SAMPLE NO. = UDS-3

DEPTH = 7.00 M

TYPE OF SOIL = CL

INITIAL WATER CONTENT = 14.30 %

DRY DENSITY = 1.57 gm/cm^3

VOID RATIO $(e_0) = 0.705$

COMPRESSION INDEX $(C_c) = 0.126$

FIGURE NO. PRESSURE Vs VOID RATIO CURVE (e-log p)



Figure No. -

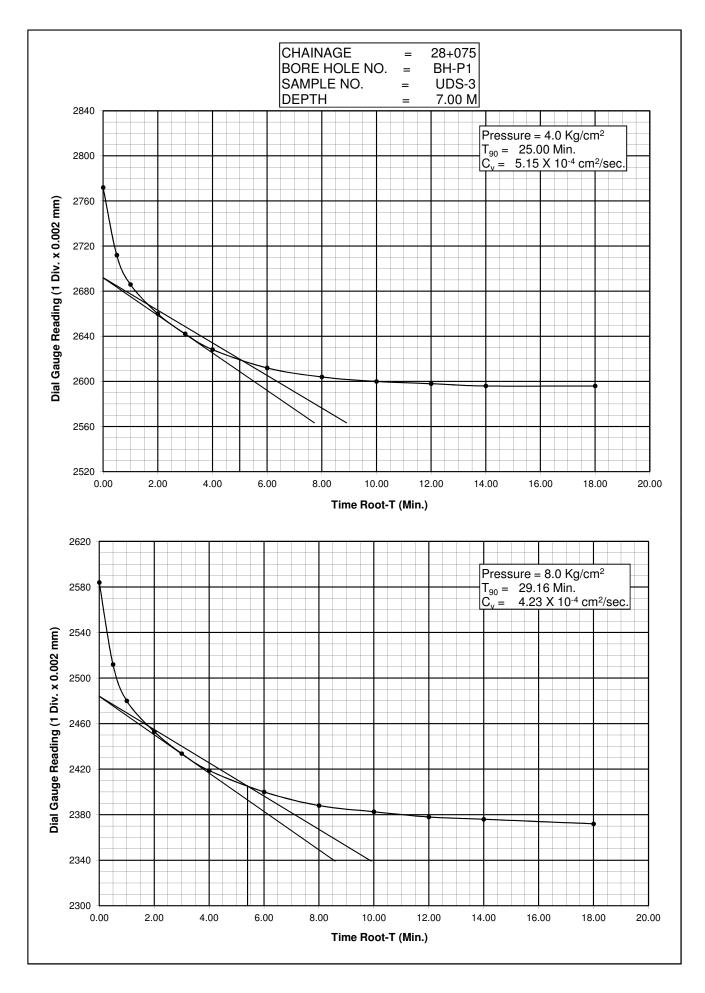
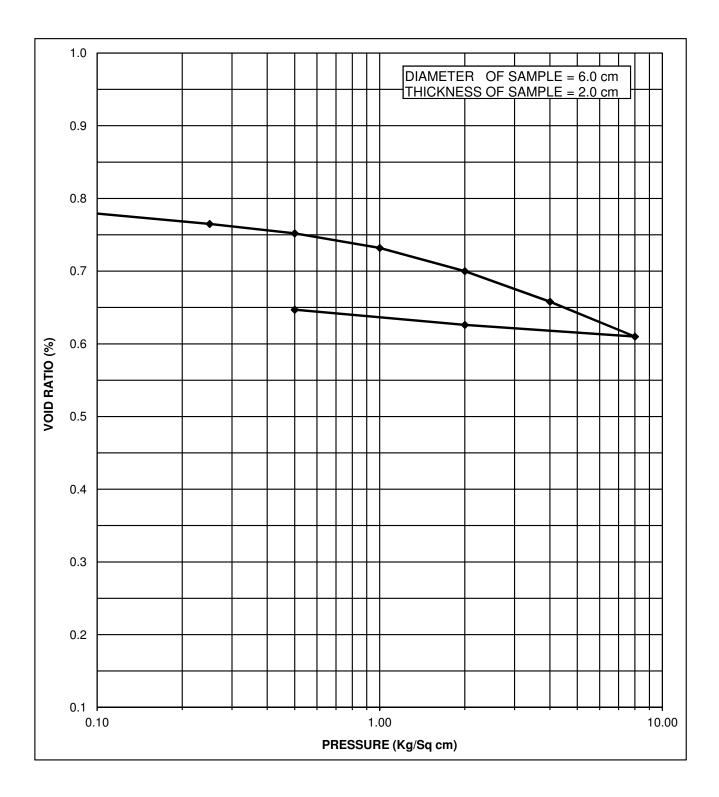



Figure No. -

CHAINAGE = 28+075

INITIAL WATER CONTENT = 12.64 %

BORE HOLE NO. = BH-A2

DRY DENSITY = 1.50 gm/cm³

SAMPLE NO. = UDS-1

VOID RATIO $(e_0) = 0.780$

DEPTH = 1.00 M

COMPRESSION INDEX $(C_c) = 0.159$

TYPE OF SOIL = CL

FIGURE NO. PRESSURE Vs VOID RATIO CURVE (e-log p)

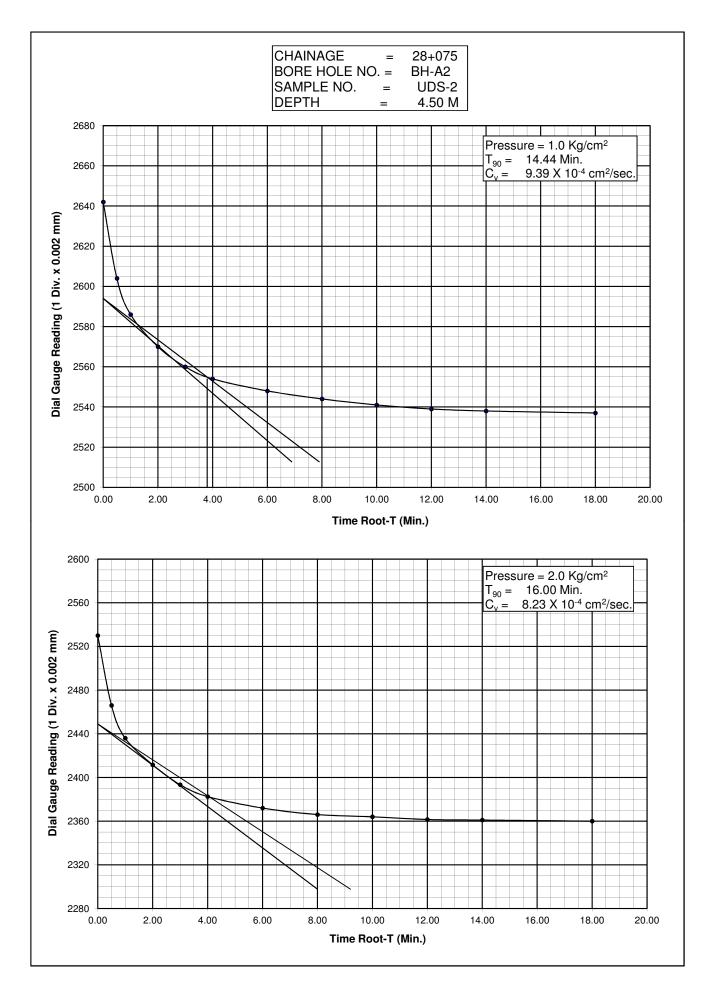


Figure No. -215 of 222

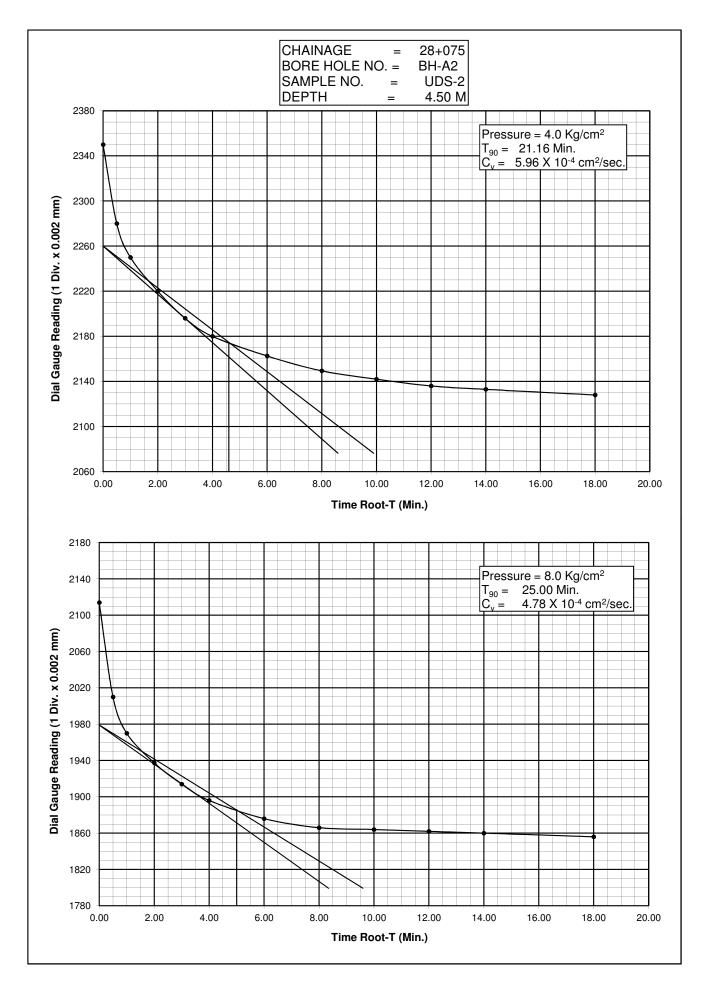
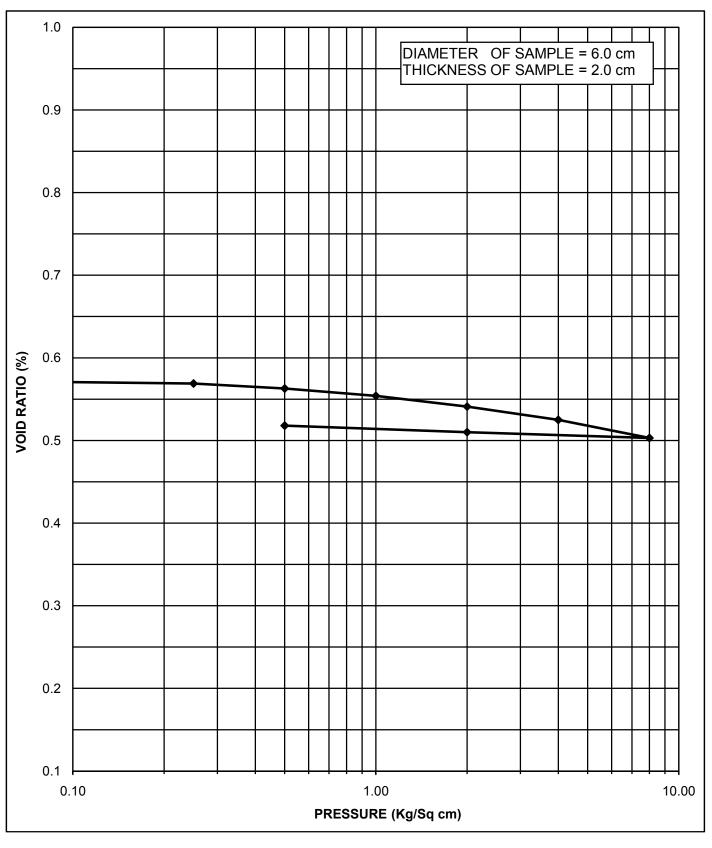



Figure No. -

BORE HOLE NO. = BH-P2

INITIAL WATER CONTENT = 17.20 %

SAMPLE NO. = UDS-7

DRY DENSITY = 1.70 gm/cm³

DEPTH = 20.50 M

VOID RATIO $(e_0) = 0.575$

TYPY OF SOIL = CL

COMPRESIVE INDEX (C_c) = 0.073

FIGURE NO. PRESSURE Vs VOID RATIO CURVE (e-log p)

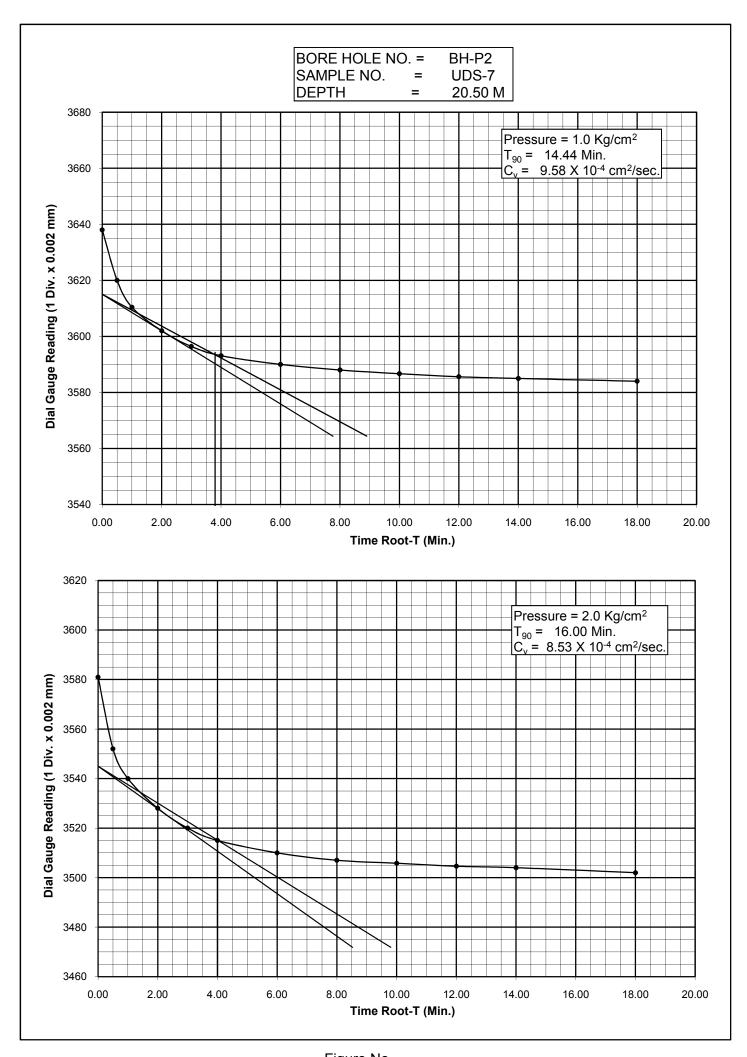


Figure No. -218 of 222

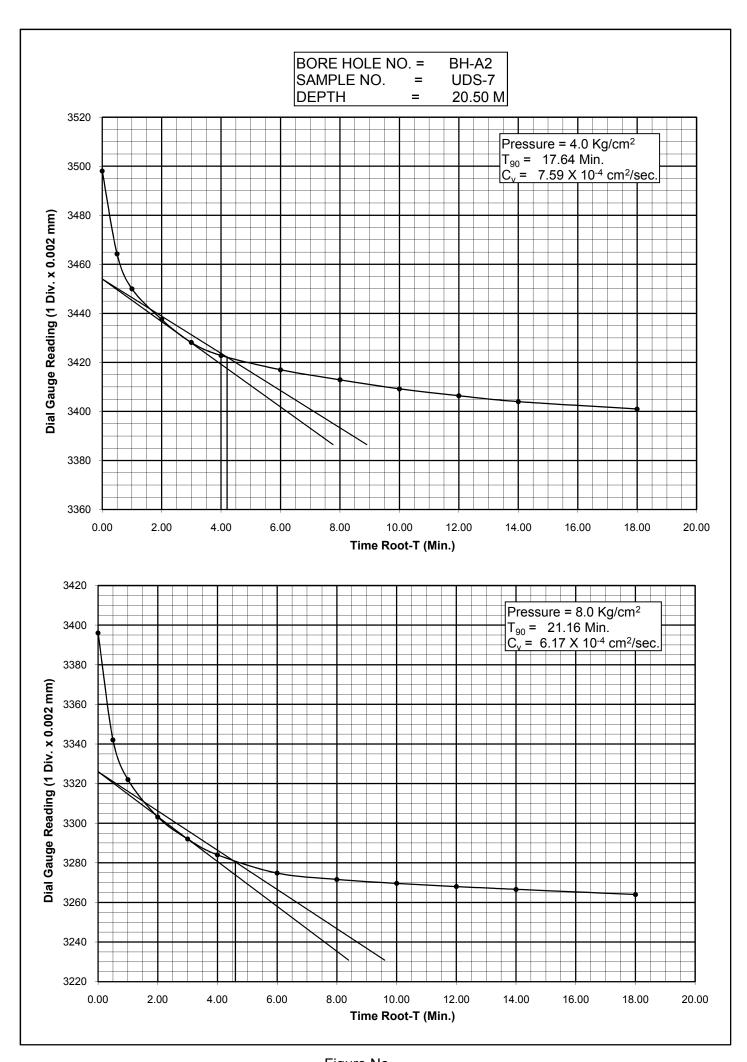
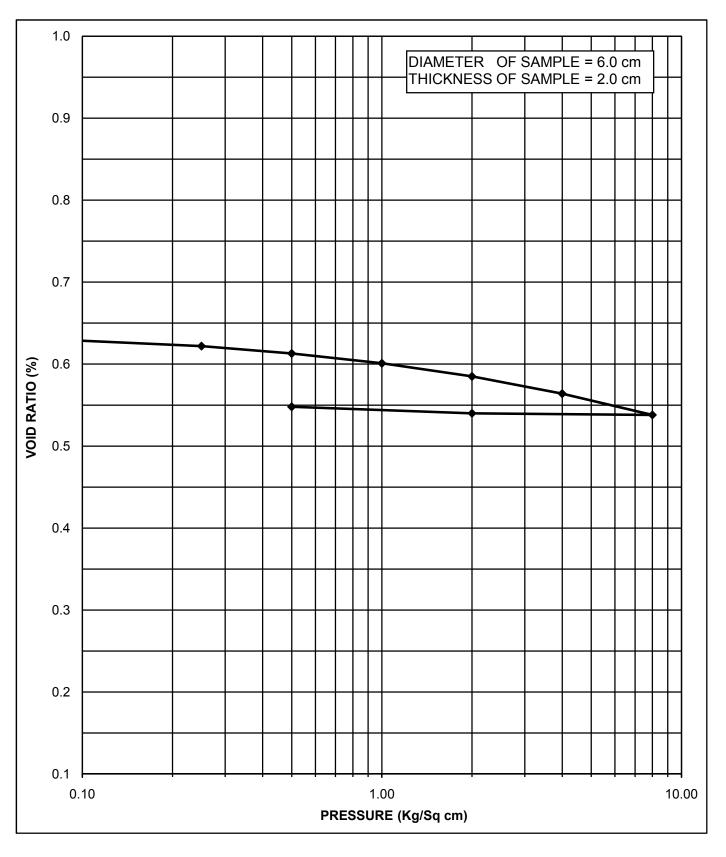



Figure No. -219 of 222

BORE HOLE NO. = BH-A2 INITIAL WATER CONTENT = 15.90 %

SAMPLE NO. = UDS-5 DRY DENSITY = 1.64 gm/cm³

DEPTH = 13.00 M VOID RATIO (e_0) = 0.630

TYPE OF SOIL = CL COMPRESSION INDEX (C_c) = 0.093

FIGURE NO. PRESSURE Vs VOID RATIO CURVE (e-log p)

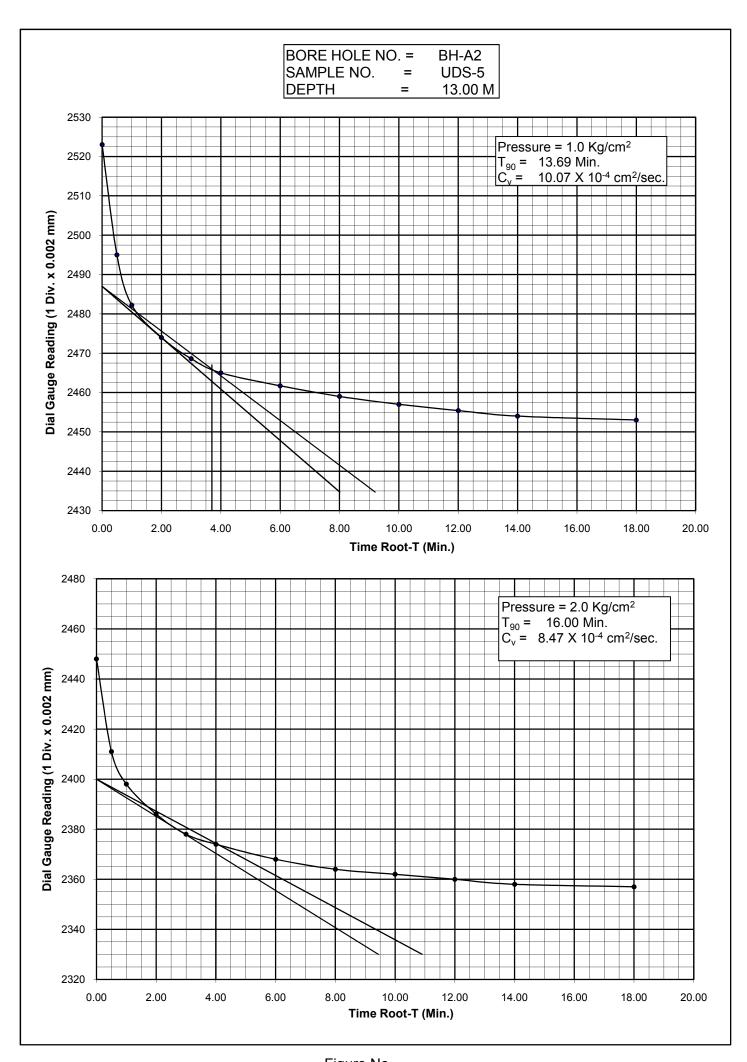


Figure No. - 221 of 222

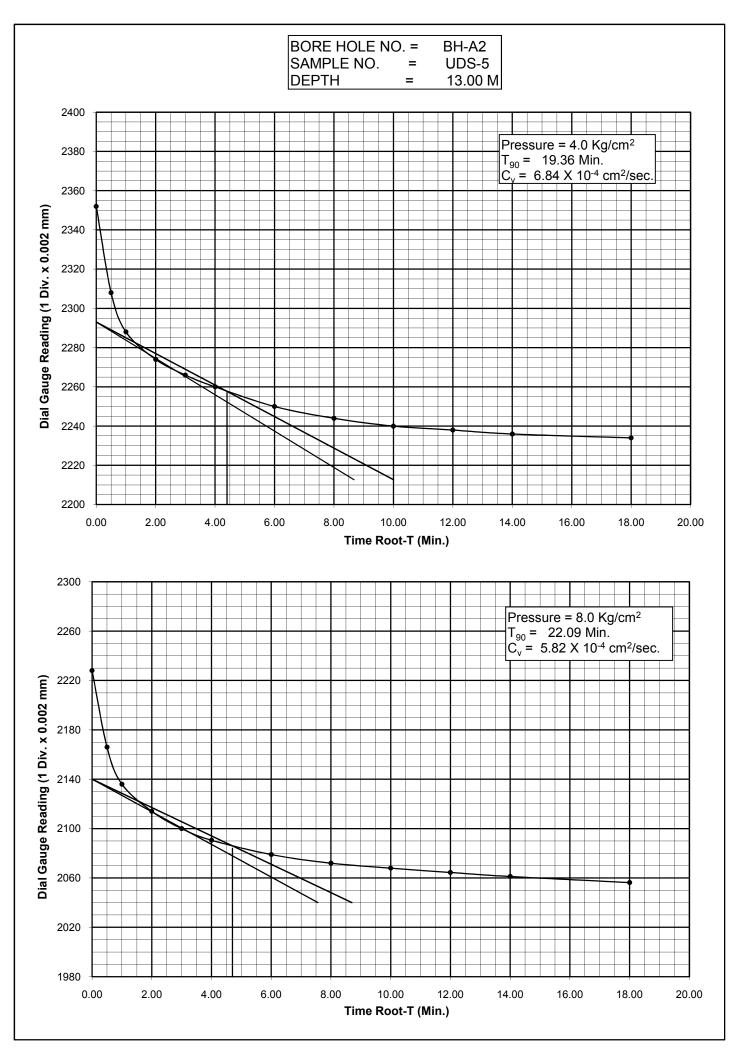


Figure No. -

Section 7 General Conditions of Contract

Table of Contents

GENE	RAL CONDITIONS OF CONTRACT (GCC)	4
1.	Definitions	4
2.	Interpretation	6
3.	Obligations of the Third Party Consultant	6
3.1	Scope of Work/Services to be performed	6
3.2	Performance Security	7
3.3	Consultant's Design Warranty	8
4.	Change in Constitution	9
5.	Information	10
6.	Decisions	10
7.	Assistance	10
8.	Mobilisation of Personnel	10
9.	Consultant's Representatives	10
10.	Changes in Personnel	10
11.	Liability of Consultant to the Employer	11
12.	Agreement Effective Date	11
13.	Commencement and Completion	11
14.	Deleted	11
15.	Delays	11
15.1	Liquidated damages	11
16.	Exceptional Circumstances	12
16.1	Force Majeure	12
16.2	Delays not on Account of the Consultant	12
17.	Abandonment, Suspension or Termination by Notice of the Employer	13
18.	Rights and Liabilities of the Parties	13
19.	Payment to the Consultant	13
20.	Time for Payment	14
21.	Currency of Payment	14
22.	Disputed Invoices	14
23.	Languages and Law	14
24.	Copyright	15
25.	Titles to Documents	15

26.	Confidentiality	15
27.	Patents	16
28.	Conflict of Interest during the term of this Contract	16
29.	Communication	16
30.	Publication	16
31.	Claims for Loss or Damage	16
32.	Taxes and Duties	17
33.	CLAIMS, DISPUTES AND ARBITRATION	17
33.1	Procedure for Claims	17
33.2	Amicable Settlement	18
33.3	Arbitration	18
33.4	DELETED	22
33.5	Jurisdiction of Courts	22
33.6	Suspension of Work on Account of Arbitration	22
34.	Clarification;	22
35.	Relations between the Parties	23
36.	Amendment to Agreement	23
37.	Standard of Performance	23
38.	Indemnifications:	23
39.	Service of Notices	24
39.1	Notices to Consultant	24
39.2	Notice to Employer and Engineer	24
39.3	Change of Address	24
40.	Professional Indemnity Insurance)	24

Bid No: HORC/HRIDC/TPC-01/2023

GENERAL CONDITIONS OF CONTRACT (GCC)

1. Definitions

The following words and expressions shall have the meanings assigned to them except where the context otherwise requires:

- "Agreement" means a legally binding written agreement signed between the Employer and the Consultant and includes the Conditions of Contract (General Conditions of Contract and Special Conditions of Contract) together with Employer's Requirements, Bid Drawings, Documents, Schedules, Contract Forms, Instruction to Consultants, Specifications, and Letter of Acceptance;
- (ii) "Applicable Law" means the laws and any other instruments having the force of law in India, as they may be issued and in force from time to time;
- (iii) "Approved/approval" means the approval in writing.
- (iv) "Contract" means the Contract signed by the Parties, to which these General Conditions of Contract are attached, together with all the documents listed in Contract Agreement;
- (v) "Consultant/Bidder/Third Party Consultant" means any entity or person that may provide or provides the Services to the Employer under the Contract.
- (vi) "Consultant's Representative" means the person referred to in the Contract or appointed from time to time by the Consultant, and communicated by Notice to the Employer to be its authorised representative for the administration of the Agreement.
- (vii) "Contractor" means entity who has been awarded the EPC Contract for Tunnelling Works of HORC Project and named in SCC.
- (viii) "Day" means the period between any one midnight and the next.
- (ix) "Third Party Consultant/Consultant" means the Consultant named in the Agreement, who has been awarded the contract & entered into agreement, and which expression shall include his/their legal successors and permitted assigns.
- (x) "Employer" means the Haryana Orbital Rail Corporation Limited (also referred to as HORCL) which expression shall also include their legal

- successors and permitted assigns.
- (xi) "Employer's Representative" means the person/Entity employed by HORCL to undertake duties in connection with the Haryana Orbital Rail Corridor (HORC) Project and notified as such, or any of its officers nominated by HORCL and notified from time to time, to Third Party consultant.
- (xii) "Engineer" shall mean RITES Limited in Consortium with SMEC International Pty Ltd.
- (xiii) "Effective Date" means the date on which this Contract comes into force.
- (xiv) "Foreign Personnel" means such persons who at the time of being so hired had their domicile outside India.
- (xv) "GCC" means General Conditions of Contract.
- (xvi) "HORCL" means Haryana Orbital Rail Corporation Limited
- (xvii) "HRIDC" means Haryana Rail Infrastructure Development Corporation Limited
- (xviii) "Key Personnel" means persons specified in Clause 6 of Section 5, Employer's Requirements of Bidding Document.
- (xix) "Local Personnel" means such persons who at the time of being so hired had their domicile inside India.
- (xx) Deleted.
- (xxi) Deleted.
- (xxii) "Month" means a period of one month according to the Gregorian calendar commencing with any day of the month.
- (xxiii) "Party" means HORCL or Third Party Consultant as the case may be and "parties" means both of them.
- (xxiv) "Project" means the project named in Special Conditions of Contract.
- (xxv) "Personnel " means persons hired by the Consultants as employees and assigned to the performance of the Services or any part thereof;
- (xxvi) 'Proposal/Package/Bid' means the Technical Proposal/Technical Part/ Packages/Bid and the Price Proposal/Financial Part /packages/Bid as the context so required.
- (xxvii) "Rupees" means the currency of India and shall be the currency used for Section 7 General Conditions of Contract (GCC)

 Page 5 of 25

the Project.

(xxviii) "SCC" means Special Conditions of Contract.

- (xxix) "Services" means the work to be performed by the Consultants pursuant to this Contract for the purposes of the Project, as described in Bid document hereto;
- (xxx) "Third Party" means any person or entity other than the Government, the Employer or the Consultants.

2. Interpretation

- (i) The headings shall not limit, alter or affect the meaning of this Contract and in the Agreement shall not be used in its interpretation.
- (ii) The singular includes the plural, the masculine includes the feminine, and vice-versa where the context requires.
- (iii) If there is a conflict between provisions of the Agreement, the priority of documents shall be as specified below:
 - (a) The Contract Agreement;
 - (b) The Letter of Acceptance;
 - (c) Letters of Clarifications, if any;
 - (d) Addenda/Corrigenda to the Bid Document, if any;
 - (e) The Financial Bid;
 - (f) The Special Conditions of Contract including Schedules, if any;
 - (g) The General Conditions of Contract;
 - (h) The Work's Requirements;
 - (i) Instructions to Consultants; and
 - (j) Any other document forming part of the Contract

3. Obligations of the Third Party Consultant

3.1 Scope of Work/Services to be performed

- (i) Third Party Consultant shall perform Services relating to the Project. The Scope of the Work/Services is stated in **Section 5: Employer's Requirements**.
- (ii) Third Party Consultant shall exercise reasonable skill, care and diligence in the performance of his obligations under the Agreement.
- (iii) Where the Services include the co-ordination between the Third Party Section 7 General Conditions of Contract (GCC) Page 6 of 25

consultant and design consultant of the Contractor on the Project, the Third Party Consultant shall provide such co-ordination. The Third Party consultant shall obtain, co-ordinate and submit to the Engineer's Representative for his information and approval, all details, drawings, quantities, specifications arising from such co-ordination with others. Such co-ordination will take place throughout the period of the Services.

3.2 Performance Security

- 3.2.1 The Consultant shall, within 28 days of the date of issuing the Letter of Acceptance, provide to the Employer, the Performance Security in a sum equal to the amount specified in the Contract Data, for the due observance and performance by the Consultant of the Contract. In the event the Consultant fails to provide the Performance Security within 28 days from the date of issue of the LOA, it may seek an extension of time for providing the performance security for a period not exceeding a further 7 days on payment of damages for such extended period in a sum calculated at the rate of 0.005% of the Accepted Contract Amount for each day until the Performance Guarantee is provided. The Contractor shall maintain the said Performance Guarantee at its own expense, so that it shall remain in full force and effect until the issue of Performance Certificate. In the event of a revision of the Contract Price, the value of the Performance Guarantee shall be increased proportionately by the Contractor, if required by the Employer. The cost of obtaining the Performance Guarantee shall be at the expense of the Contractor. The Contractor shall submit the Performance Guarantee in any of the following forms:
 - (a) Unconditional and irrevocable Bank Guarantee from a scheduled bank (excluding co-operative banks) in India, in the form appearing in Section 9 [Contract Forms]; or
 - (b) Banker's Cheque or Demand Draft drawn on a scheduled bank (excluding co-operative banks).

The scheduled bank issuing the bank guarantee shall be on "Structure Financial Messaging System (SFMS)" platform. A separate advice of the bank guarantee shall invariably be sent by the issuing bank to Employer's Bank through SFMS and only of the same by the Employer's Bank, the bank guarantee shall become operative and acceptable to the Employer. Further, the bank guarantees in original form along with a copy of "MT760COV (in case of bank guarantee message)/ MT767COV (in case of bank guarantee amendment message) Report" sent by the concerned issuing bank sealed in an envelope shall be submitted to the Employer.

The Issuing Bank shall send the SFMS to:

Beneficiary: Haryana Orbital Rail Corporation Limited

Bid No: HORC/HRIDC/TPC-01/2023

Bank Name:

Account No.

IFSC Code:

Note: All the instruments mentioned in (a) & (b) above should be in favour of:

Haryana Orbital Rail Corporation Limited, Plot No 143, 5th Floor, Railtel Tower, Sector-44, Gurugram.

- **3.2.2** The Consultant shall ensure that the Performance Security is valid and enforceable until the Consultant has executed and completed the Works and remedied defects, if any. If, (a) the Consultant does not complete the Works for any reasons whatsoever, and (b) the Consultant has not become entitled to receive the Performance Certificate by 28 days prior to the expiry date of the Performance Security, the Consultant shall be bound to extend the validity of the Performance Security until the Works have been completed and the defects have been remedied. If the Performance Security is or becomes invalid or unenforceable for any reason whatsoever, or if such security is withdrawn or expires, the Consultant must immediately notify the Employer and obtain within 3 days a replacement guarantee in the form appearing in Section 9 [Contract Forms] and which is acceptable to the Employer in its absolute discretion.
- **3.2.3** The provision, maintenance and renewal by the Consultant of the Performance Security in accordance with this Sub-Clause 3.2 [Performance Security] shall be a condition precedent to any payment by the Employer to the Consultant under the Contract.
- **3.2.4** If the Consultant fails to provide, maintain and renew the Performance Security in accordance with the Contract, the Employer shall, without prejudice to any other rights and remedies to which it may be entitled, shall have the right to invoke the Performance Security for the value equal to the damages to the Employer as a result of the Consultant's failure and/or by written notice terminate the Contract in accordance with Clause 17.

3.3 Consultant's Design Warranty

- **3.3.1** The Consultant shall be fully responsible for the suitability, adequacy, integrity, durability and practicality of the design and drawings checked by the Consultant.
- 3.3.2 The Consultant warrants that the design checked by them meets the Works Requirements and are fit for purpose thereof. Where there is any inadequacy, insufficiency, impracticality or unsuitability in or of the Works Requirements or any part thereof, the modified/amended design shall take into account, address

or rectify such inadequacy, insufficiency, impracticality or unsuitability at Consultant's own cost.

- **3.3.3** The Consultant warrants that the Works have been or will be designed to the highest standards available using proven up-to-date good practice.
- **3.3.4** The Consultant shall be responsible for the safety of the design checked by him.
- **3.3.5** The Consultant shall indemnify the Employer against any damage, expense, liability, loss or claim which the Employer might incur, sustain or be subject to arising from any breach of the Consultant's checking responsibility and/or warranty set out in this Clause.
- **3.3.6** The consultant further is deemed to have checked and accepted full responsibility for design checked by them and warrants absolutely that the same meets the Works Requirements:
 - (a) Notwithstanding that such design may be or have been prepared, developed or issued by the Employer, any of Consultant's consultants, and/ or his qualified personnel/ persons or cause to be prepared developed or issued by others.
 - (b) Notwithstanding any warranties, guaranties and/or indemnities that may be or may have been submitted by any other person.
 - (c) Notwithstanding that the same have been accepted by the Employer/Engineer.
- **3.3.7** All design documents, drawings, plans, calculations and reports produced by the Third Party consultant shall be accompanied by a `Design Checking Certificate', when the final design is submitted to the Engineer.

4. Change in Constitution

The Consultant shall promptly notify to the Employer of any changes in the constitution of the consultant. Employer reserves the right to terminate the Agreement upon death, retirement, insanity or insolvency of any person being the proprietor/partner in the consultant, or on the addition or introduction of a new partner managing the Project for the consultant without the previous approval in writing of the Employer. But in absence of and until its termination by the Employer as aforesaid, this Agreement shall be in full force and effect, notwithstanding any changes in the constitution of the firm bydeath, retirement, insanity or insolvency of any of its proprietors/partners or addition or introduction of any new partners. In case of death or retirement, the surviving or remaining partners of the firm shall be jointly and severally liable for the due and satisfactory performance of all terms and conditions of the Agreement, and likewise on the addition of a new partner, the latter will also become jointly and severally liable.

Bid No: HORC/HRIDC/TPC-01/2023

5. Information

EPC tunnel Contractor shall within a reasonable time give to the Consultant, free of cost, all required information pertaining to the Services.

6. Decisions

On all matters referred to it in writing by the Consultant, the Engineer shall give a decision in writing within a reasonable time.

7. Assistance

The Employer shall assist the Consultant in:

- (i) providing unobstructed access wherever it is required for providing the Services as per the Scope of Work.
- (ii) Providing access to other organisations/Institutions for collection of information.

8. Mobilisation of Personnel

The qualifications and experience of the Consultant's Representative and Key Personnel who shall be mobilised by the Consultant to work on the project shall have to be got approved from the Engineer.

9. Consultant's Representatives

For the administration of the Agreement, the Consultant shall designate the official or individual to be his representative and who shall be responsible to the Engineer/Employer for various deliverables as per Section:5, Employer's Requirements

The Consultant shall notify the Employer of the extent of powers and authority delegated to the Consultant's Representative.

10. Changes in Personnel

- (a) Except as the Employer may otherwise agree, no changes shall be made in the Key Personnel as stipulated in Clause 6 of Section 5 for the initial one year from the date of commencement of consultancy services. If, for any reason beyond the reasonable control of the Consultants, it becomes necessary to replace any of the Personnel, the Consultant shall forthwith, provide as a replacement a person of equivalent or better qualifications with the approval of the Engineer.
 - (b) If the Engineer

Bid No: HORC/HRIDC/TPC-01/2023

(i) finds that any of the Personnel has committed serious misconduct or has been charged with having committed a criminal action or

(ii) has reasonable cause to be dissatisfied with the performance of any of the Personnel, then the Consultant shall, at the Engineer's written request specifying the grounds therefore, forthwith, provide as a replacement a person with qualifications and experience acceptable to the Engineer.

11. Liability of Consultant to the Employer

Consultant shall be liable to pay compensation to the Employer arising out of or in connection with the Agreement, if a breach of Contract is established against him. Such compensation shall be limited to the amount of reasonably foreseeable loss and damage suffered as a result of such breach.

12. Agreement Effective Date

This Contract shall come into force and effect on the date notified in LoA by the Employer. This LOA shall be treated as agreement between the Employer and the Consultant till formal agreement is executed.

13. Commencement and Completion

The Services shall be commenced and completed at the times or within the periods stated in Special Conditions of Contract subject to extensions in accordance with the Agreement.

Completion of the services of Part-A shall be certified upon final submission of all the documents, designs, drawings covered in the scope of this Contract. If all the documents have been satisfactorily submitted, the Employer shall issue the Completion Certificate for Part-A.

Completion Certificate for Part-B of the Contract shall be issued after satisfactory completion of the services in accordance with the Contract.

14. Deleted

15. Delays

15.1 Liquidated damages

It shall be the bounden duty of the Consultant to strictly adhere to the time for performance of various services indicated in the Contract. In case of any delays, the Consultant shall be liable to pay liquidated damages as specified in Section 8 Special Condition of Contract Part A Contract Data.

16. Exceptional Circumstances

16.1 Force Majeure

If, at any time during the currency of the Contract, the performance in whole or in part by either party of any obligation under this Contract shall be prevented or delayed by reasons of any war, hostilities, invasion, acts of public or foreign enemies, rebellion, revolution, insurrection, civil commotion, sabotage, large scale arson, floods, earthquake, large scale epidemics, nuclear accidents, any other catastrophic unforeseeable circumstances, quarantine restrictions, any statutory rules, regulations, proclamation, orders for requisitions issued by a Government department or competent authority or acts of God (hereinafter referred to as "event") or any other cause whether of similar or dissimilar nature beyond the reasonable control of the party affected then, provided notice of the happening of such an event as given by either party to the other within 21 days of the occurrence thereof:-

- a) Neither party shall by reason of such event, be entitled to terminate the Contract or have claim for damages against the other in respect of such non-performance or delay in performance.
- b) The obligation under the Contract shall be resumed as soon as practicable after the event has come to an end or ceased to exist.
- c) If the performance in whole or part of any obligation under the Contract is prevented or delayed by reason of the event beyond a period mutually agreed to, if any, or 90 days, whichever is more, either party may at its option terminate the Contract.
- d) In case of doubt or dispute, whether a particular occurrence should be considered an "event" as defined under this clause, the decision of the Engineer shall be final and binding.
- e) If the Contract is terminated under this Clause, the Consultant shall be paid fully for the work done under the Contract up to date of termination of contract.
- f) If neither party issues notice regarding the event within 21 days of its occurrence, the said event shall be deemed not have occurred and the Contract will continue to have effect as such.

16.2 Delays not on Account of the Consultant

If circumstances arise for which the Consultant is not responsible and which make it impossible for him to perform in whole or in part the Services in accordance with the Contract including force majeure, the Consultant shall promptly notify to the Engineer. In these circumstances, including force majeure, if certain Services have to be suspended, the time for their completion shall be extended until circumstances no longer exist plus a reasonable period not

exceeding 7 days for resumption of them.

17. Abandonment, Suspension or Termination by Notice of the Employer

- (i) The Employer on recommendation by the Engineer may suspend all or part of the Works or terminate the Agreement by noticeof at least 30 days to consultant who shall immediately make arrangements to stop the Services and minimize expenditure.
- (ii) If the Employer considers that Consultant is not discharging its obligations, the Employer can inform the Consultant by written notice sent as per this clause stating grounds therein. If a satisfactory reply is not received within 7 days of receipt of the notice from the consultant, the Employer can by further notice terminate the Agreement provided that such further notice is given within 30 days of the Employer's former notice.
- (iii) If Consultant is adjudged a bankrupt, or if he makes a general assignment for the benefit of his creditors, or if a receiver is appointed on account of his insolvency, or persistently disregards laws, ordinances, rules, regulations or orders of any public authority having jurisdiction, or otherwise is guilty of a breach of the Agreement, then the Employer may terminate the Services of the Consultant as per the procedure given in the contract document.

The Employer may complete the project by whatever method may be deemed expedient and the Consultant shall not be entitled to receive any additional payment. Also, Clause 11 of GCC shall be applied in cases of (ii) and (iii) above.

18. Rights and Liabilities of the Parties

Termination of the Agreement shall not prejudice or affect the accrued rights or claims and liabilities of either party.

19. Payment to the Consultant

19.1. The Employer shall pay the Lump Sum Price (which shall cover the sum total of all costs quoted by the Consultant in Section 4, Financial Bid) as Contract Price to the Consultant.

The Consultant shall raise invoices on completion of Milestones for interim payment for the performance of services.

- 19.2. The payment shall be based on stage payment schedules as described in Section 4 (Financial Bid) of Bid documents.
- 19.3. Deduction towards Income Tax, and any other tax, may be made at source from each payment made by the Employer, as may be directed by Income Tax Department and other statutory bodies or as provided in statute, relevant acts, rules, circulars and directions issued there under.

- 19.4. No advance payment shall be made to the Consultant.
- 19.5. The accepted contract value shall be adjusted to take into account any increase or decrease in cost after the date of submission of proposal from:
 - a. a change in the Laws of India including introduction of new laws and repeal or modification of existing laws; or
 - b. in the judicial or official governmental interpretation of such laws of India; or
 - c. the commencement of any Indian law which has not entered into effect until the date of submission of proposal; or
 - d. any change in the rates of any of the Indian taxes that have direct effect on the contract If as a result of change in law, interpretation or rates of taxes defined above, Consultant benefits from any reduction in cost for the execution of the Contract, save and except as expressly provided for in this clause or in accordance with the provisions of the Contract, Consultant shall within 28 days from the date he becomes reasonably aware of such reduction in cost, notify Employer of such reduction in cost.
- 19.6. The accepted contract value shall be increased at the rate of 5 % at the end of every 12 month from Effective Date. In case Extension of time is granted to Consultant for the reasons not attributable to Consultant, the price adjustment shall be made as mentioned above for the extended period of time. No price adjustment shall be made if the extension of time is granted to the Consultant due to reasons attributable to the Consultant.

20. Time for Payment

Amounts due to the Consultant shall be paid as specified in the Part-A Contract Data, Section 8, SCC and after deducting any amount to be withheld as due to the Employer, or has been awarded by an adjudicator or an arbitrator to the Employer pursuant to a referral under Sub-Clause 33.3[Arbitration] under Clause 22 [Disputed Invoices]. The Employer shall not be bound by any sum previously considered by him to be due to the Consultant. The Employer may withhold payments until he receives the Performance Security under Sub-Clause 3.2 of General Conditions of Contract, (if any)

21. Currency of Payment

All payments shall be made in Indian Rupees (INR) only.

22. Disputed Invoices

If any item or part of an item in an invoice submitted by the Consultant is contested by the Engineer/Employer then the Engineer shall within twenty-one (21) days of the date of issue of the Consultant's invoice give prompt notice in writing with reasons and shall not delay payment of the balance of the invoice.

23. Languages and Law

This Contract shall be executed in the English language, which shall be binding and

controlling language for all matters relating to the meaning or interpretation of this contract. This Contract, its meaning and interpretation, and the relation between the Parties shall be governed by the Applicable Law in India. The Consultants shall perform the Services in accordance with the Applicable Law and shall take all practicable steps to ensure that any Personnel of the Consultant comply with the Applicable Law.

24. Copyright

The copyright of all documents and drawings checked by the Consultant in performance of the Services under the Agreement shall be vested in the Employer.

25. Titles to Documents

Titles to all technical data including, but not limited to specifications, drawings, flow diagrams, layout details and the contents thereof, furnished by the Company or the Authorised Representative to the Consultant shall remain with the Company or the Authorised Representative as the case may be. The Consultant shall not use or divulge the data to others except to the extent necessary in connection with the performance by the Consultant. The Consultant shall take all steps of use his best efforts to prevent any disclosure of such data to others by the consultant's personnel and shall take all reasonable steps necessary to prevent such disclosures. Upon the completion of the work or partial completion or partial termination, as the case may be, the Consultant shall return all specifications, drawings or technical data furnished.

26. Confidentiality

The Consultant shall during the tenure of the contract and at any time thereafter maintain strict confidence for all information relating to the work and shall not, unless so authorized in writing by the Employer, divulge or grant access to any information about the workor its results and shall prevent anyone becoming acquainted with either through managers or its personnel. The Consultant shall not, either during the term or after the expiration of this Contract, disclose any proprietary or confidential information relating to the Project, the Services, this Contract or the Employer's business or operations without the prior written consent of the Employer. The Consultant shall also return all reports, notes and technical data relating to the operational matters to the Employer.

The Consultant shall keep secret and confidential and shall not disclose to any third party does not use any unauthorized manner any confidential information regarding the present processing technology and the business affairs of the Employer which the Consultant may have acquired through the negotiations, discussions, examination of drawings, designs, process layout, use of infrastructures, etc., leading to the conclusions of this Contract. The parties further agree not use such information for any purpose whatsoever except in the manner expressly provided for in this Contract. The obligations hereunder shall survive any termination or cancellation of this Contract.

The documents, all original field records, reports, spread sheets or other materials developed by the Consultant under this Contract shall be delivered to the Employer

and shall become the property of the Employer, to be used by the Employer in any manner required for the implementation of the project.

27. Patents

The Consultant shall at all times indemnify the Employer against all claims which may be made in respect of the items for infringement of any right protected by patent, registration of design or trade mark.

28. Conflict of Interest during the term of this Contract

The remuneration of the consultant shall constitute the consultant's sole remuneration in connection with this Contract or the Services and, the Consultant shall not accept for their own benefit any trade commission, discount or similar payment in connection with activities pursuant to this Contract or to the Services or in the discharge of their obligations hereunder, and the Consultant shall use their best efforts to ensure that any Personnel either of them, similarly shall not receive any such additional remuneration.

Neither the Consultant nor the Personnel of either of them shall engage, either directly or indirectly, during the term of this Contract, in any business or professional activities in India which would conflict with the activities assigned to them under this Contract.

Consultant' shall not combine itself with those of a Construction Contractor (RVNL) and designer of construction Contractor and shall furnish an undertaking to the effect that the 'Third Party Consultant' agrees to limit its role to that of a consultant and to disassociate itself, its associates/affiliates from work in any other capacity (including Biding relating to any goods or services for any part of the work) on this work other than that of consultant.

29. Communication

Any notice, request or consent required or permitted to be given or made pursuant to this Contract shall be in writing. Any such notice, request or consent shall be deemed to have been given or made when delivered in person to an authorised representative of the party to whom the communication is addressed, or when sent by registered mail and email to such Party at the address given in the proposal document for issue of proposal document.

30. Publication

Unless otherwise specified in Condition of Contract, the consultant alone or jointly with others can not publish material relating to the Services. Publication shall be subject to prior approval by the Employer.

31. Claims for Loss or Damage

Subject to Clause 11, any claim for loss or damage arising out of breach or termination of the Agreement shall be agreed between the Employer and the Consultant, failing which the same shall be referred to arbitration in accordance with Clause 34.

32. Taxes and Duties

The Contract Price pertaining to provision of consultancy services, shall cover all costs incurred by the Consultant for performing the stipulated Services. This shall not only include salaries, overheads and non-salary expenses, all allowance for contingencies, fees and profits, but all other costs and expenses incurred in carrying out the requirements of the Services, and the taxes including Goods and Services Tax (GST), duties, fees and other impositions under the Applicable Laws including any Withholding taxes etc. These costs shall include all costs for Sub-Consultants, and any other professional fees or services incurred by the Consultant. The Contract Price shall also include all costs, office expenses, travel charges, expenses and allowance paid to or on behalf of International staff working in their own country or in India.

Consultant and their personnel shall pay all taxes including Goods and Services Taxes (GST), cess, duties, fees and other impositions as may be levied under the Applicable Laws in India. In addition, they shall pay all taxes, fees and other impositions as may be applicable in their country of origin, as per their laws and regulations. All payments to the Consultant, will be subject to deduction of tax at source in accordance with the provisions of the Indian Income tax Act and any other applicable law. The Consultant shall take necessary clearance/exemption and registration certificate for Income Tax/ other Taxes/ GST, as applicable.

If rates of existing GST or cess on GST for Consultancy Contract is increased or any new tax /cess on Consultancy Contract is imposed by Statute after the Base Date (i.e. 28 days prior to the deadline for submission of bids) but within the original date of completion/date of completion extended under clause 13 of Conditions of Contract, the Consultant thereupon properly pays such taxes/cess, The Consultant shall be reimbursed the amount so paid.

Further, if rates of existing GST or cess on GST for Consultancy Contract is decreased or any tax/cess on Consultancy Contract is decreased / removed by Statute after the Base date (i.e. 28 days prior to the deadline for submission of bids), the reduction in tax amount shall be recovered from Consultant's payments /Bid Security or any other dues of the Consultant with the Government of India.

GST levied on the invoices raised by the Consultant will be temporarily withheld at the time of making payment for the invoice. GST withheld will be released by HORCL/ HRIDC on submission of proof, i.e. copy of Form GSTR-1 (reflecting the particular invoice) after due verification from the GST portal by the Employer.

33. CLAIMS, DISPUTES AND ARBITRATION

33.1 Procedure for Claims

If the Consultant considers himself to be entitled to any extension of the Time for Completion and/or any additional payment, under any Clause of these Conditions or otherwise in connection with the Contract, the Consultant shall give notice to the Engineer, describing the event or circumstance giving rise to

the claim. The notice shall be given as soon as practicable, and not later than 28 days after the Consultant became aware, or should have become aware, of the event or circumstance.

If the Consultant fails to give notice of a claim within such period of 28 days, the Time for Completion shall not be extended, the Consultant shall not be entitled to additional payment, and the Employer shall be discharged from all liability in connection with the claim.

The Consultant shall also submit any other notices which are required by the Contract, and supporting particulars for the claim, all as relevant to such event or circumstance.

The Consultant shall keep such contemporary records as may be necessary to substantiate any claim at location acceptable to the Engineer. Without admitting the Employer's liability, the Engineer may, after receiving any notice under this Sub-Clause, monitor the record-keeping and/or instruct the Consultant to keep further contemporary records. The Consultant shall permit the Engineer to inspect all these records, and shall (if instructed) submit copies to the Engineer.

Within 42 days after the Consultant became aware (or should have become aware) of the event or circumstance giving rise to the claim, or within such other period as may be proposed by the Consultant and approved by the Engineer, the Consultant shall send to the Engineer a fully detailed claim which includes full supporting particulars of the basis of the claim and of the extension of time and/or additional payment claimed.

33.2 Amicable Settlement

In case any dispute between the Engineer and the Consultant remains unresolved, the Consultant shall, then, give notice of dissatisfaction and intention to commence arbitration to the Employer within 28 days after the occurrence of such event of dissatisfaction. The Parties shall make attempts to settle the dispute amicably before the commencement of arbitration.

33.3 Arbitration

- 33.3.1 If the efforts to resolve all or any of the disputes through amicable settlement fails, then such disputes or differences, whatsoever arising between the parties, arising out of touching or relating to effect of the Contract or the breach thereof shall be referred to Arbitration in accordance with the following provisions:
 - a) The Arbitration proceedings shall be assumed to have commenced from the

day, a written and valid demand for arbitration is received by Managing Director of the Employer (MD/HRIDC).

b) The disputes so referred to arbitration shall be settled in accordance with the Indian Arbitration & Conciliation Act, 1996 and amended by the Arbitration and Conciliation (Amendment) act, 2015 and any statutory modification or reenactment thereof; Further, it is agreed between the parties as under:

Number of Arbitrators-The Arbitral tribunal shall consist of:

- (i) Sole Arbitrator (or)
- (ii) 3 (three) arbitrators

1. Procedure for Appointment of Arbitrators

The arbitrators shall be appointed as per following procedure;

(i) In case of Sole Arbitrator:

Within 30 days from the day when a written and valid demand for Arbitration is received by MD/HRIDC, the Employer will forward a panel of 03 names to the Consultant. The Consultant shall have to choose one Arbitrator from the panel of three, to be appointed as Sole Arbitrator within 30 days of dispatch of the request by the Employer. In case the Consultant fails to choose one Arbitrator within 30 days of dispatch of the request by the Employer, then MD/HRIDC shall appoint any one Arbitrator from the panel of Arbitrators as sole Arbitrator.

(ii) In case of 03 Arbitrators:

- (a) Within 30 days from the day when a written and valid demand for Arbitration is received by MD/HRIDC, the Employer will forward a panel of not fewer than 5 nominees to the Consultant. The Consultant will then give his consent for any one name out of the panel to be appointed as one of the arbitrators within 30 days of dispatch of the request by the Employer.
- (b) The Employer will decide the second Arbitrator. MD/HRIDC shall appoint the two Arbitrators, including the name of one Arbitrator for whom consent was given by the Consultant, within 30 days from the receipt of the consent for one name of the Arbitrator from the Consultant. In case the Consultant fails to give his consent within 30 days of the request of the Employer then MD/HRIDC shall nominate both the

Arbitrators from the panel. The third Arbitrator shall be chosen by the two Arbitrators so appointed by the parties out of the panel of Arbitrators provided to Consultant or from the larger panel of Arbitrators to be provided to them by Employer at the request of two appointed Arbitrators (if so desired by them) and who shall act as presiding Arbitrator. In case of failure of the two appointed Arbitrators to reach upon consensus within a period of 30 days from their appointment, then, upon the request of either or both parties, the presiding Arbitrator shall be appointed by the MD/HRIDC within 14 days of receipt of request from either party or both parties.

- (c) If one or more of the Arbitrators appointed as above refuses to act as Arbitrator, withdraws from his office as Arbitrator, or vacates his/their office/offices or is/are unable or unwilling to perform his functions as Arbitrator for any reason whatsoever or dies or in the opinion of the MD/HRIDC fails to act without undue delay, the MD/HRIDC shall appoint new Arbitrator/Arbitrators to act in his/their place except in case of new presiding Arbitrator who shall be chosen following the same procedure as mentioned in para ii(b) above. Such reconstituted Tribunal may, at its discretion, proceed with the reference from the stage at which it was left by the previous Arbitrator(s).
- (d) The Employer at the time of offering the panel of Arbitrator(s) to be appointed as Arbitrator shall also supply the information with regard to the qualifications of the said Arbitrators nominated in the panel along with their professional experience, phone nos. and addresses to the Consultant. The minimum qualification and experience of the arbitrators which may be appointed by the Parties in accordance with the contract is set out below:
 - (i) A working/retired officer (not below E-8 grade in a central public sector undertaking in India, with which the Employer has no direct business relationship), of engineering or accounts/finance discipline, having experience in management of construction contracts; or
 - (ii) A retired officer (not below the SAG level in Indian Railways) of any Engineering Services of Indian Railways or Indian Railway Accounts Service, having experience in management of construction

contracts;

2. Miscellaneous: In any arbitration proceeding hereunder:

- (a) The language of arbitration shall be English. This arbitration shall be governed in accordance with the laws of India.
- (b) The venue of the arbitration shall be Gurugram, India. The cost of Arbitration including the fees of the Arbitrator shall be borne equally by both the parties.
- (c) The decision of the sole arbitrator or of a majority of the arbitrators (or of the third arbitrator if there is no such majority) shall be final and binding and shall be enforceable in the court at Gurugram, and the Parties hereby waive any objections to or claims of immunity in respect of such enforcement.
- 33.3.2 In the event that the Consultant wishes to refer a dispute to arbitration in accordance with this Sub-Clause, it shall be required to serve a notice in this regard to the Managing Director, of the Employer for commencement of arbitration.
- 33.3.3 Pending the submission of and/or decision on a dispute and until the arbitral award is published, the Parties shall continue to perform their respective obligations under the contract without prejudice to a final adjustment in accordance with such award.
- 33.3.4 The arbitrators shall have full power to open up, review and revise any certificate, determination, instruction, opinion or valuation of the Engineer relevant to the dispute. Nothing shall disqualify representatives of the Parties and the Engineer from being called as a witness and giving evidence before the arbitrators on any matter whatsoever relevant to the dispute. However, Conciliator cannot be present as a witness by either party in the arbitral proceedings.
- 33.3.5 Neither party shall be limited in the proceedings before such arbitrators to the evidence or arguments put before the Engineer to obtain his decision. No decision given by the Engineer in accordance with the contract shall disqualify him from being called as a witness and giving evidence before the arbitrators on any matter, whatsoever, relevant to dispute referred to arbitration.
- 33.3.6 Arbitration may be commenced prior to or after completion of the Works. The

obligations of the Parties and the Engineer shall not be altered by reason of any arbitration being conducted during the progress of the Works.

33.4 DELETED

33.5 Jurisdiction of Courts

Where recourse to a Court is to be made in respect of any matter related to the Contract, the court mentioned in the Contract Data shall have the exclusive jurisdiction to try all disputes between the parties

33.6 Suspension of Work on Account of Arbitration

The reference to Conciliation / Arbitration shall proceed not withstanding that the Works shall not then be or be alleged to be complete, provided always that the obligations of the Employer, Engineer and the Consultant shall not be altered by reasons of arbitration being conducted during the progress of the Works. Neither party shall be entitled to suspend the work or part of the work to which the dispute relates on account of arbitration and payments to the Consultant shall continue to be made in terms of the Contract

34. Clarification:

- (i) If the work to be done is not sufficiently detailed or explained in the Contract Document, the consultant shall apply to the authorities in writing for further written clarification and shall conform to the clarification provided. The Consultant shall within the period stated in Part A, Contract Data notify the authority of all errors, omissions, inconsistencies, or other defects (including inaccuracies and inconsistencies) which it discovers in the contract Documents and shall obtain from authorities specific instructions in writing regarding any such error, omission, or defect before proceeding with the design work affected thereby.
- (ii) The Consultant is fully responsible for checking of all the designs of the work. The Consultant is responsible for correcting any errors, omissions and defects in such design through the design consultant of the tunnel Contractor, and shall not be entitled to an increase in the Lump Sum fixed price or extension of the contract time in connection with such correction.

35. Relations between the Parties

Nothing contained herein shall be construed as establishing a relation of master and servant or of agent and principal as between the Employer and the Consultant. The Consultant subject to this contract, have complete charge of Personnel performing the Services and shall be fully responsible for the services performed by them or on their behalf hereunder.

36. Amendment to Agreement

Modification of the terms and conditions of this Contract, including any modification of the scope of the Services, may only be made by written agreement between the Parties.

37. Standard of Performance

The Consultant shall perform the Services and carry out their obligations hereunder with all due diligence, efficiency and economy, in accordance with generally accepted professional techniques and practices, and shall observe sound management practices, and employ appropriate advanced technology and safe and effective equipment, machinery, materials and methods. The Consultant shall always act, in respect of any matter relating to this Contract or to the Services, as faithful advisers to the Employer, and shall at all times support and safeguard the Employer's legitimate interest in any dealings with subconsultants.

38. Indemnifications: -

The Consultant shall indemnify, protect and defend at the their own expense, the Employer, the Engineer and employees from and against any and all actions, claims, losses or damages arising out of any violation by the consultant or in the course of the services of any legal provisions, or any rights or third parties, in respect of literary property rights, copyrights, or patents. Prior approval of the Employer shall be obtained in writing for actions require so.

Some of the actions are listed below but not limited to:

- (a) Appointing such members of the Personnel which are not listed in proposed Key personnel.
- (b) Documents Prepared by the Consultant to be the Property of the Employer. All plans, drawings, specifications, designs, reports correspondence and other documents prepared by the Consultant in performing the Services shall become

and remain the property of the Employer, and the Consultant shall, not later than upon termination or expiration of this Contract, deliver all such documents to the Employer, together with a detailed inventory thereof. The Consultant shall not use these documents for purposes unrelated to this Contract without the prior written approval of the Employer.

39. Service of Notices

39.1 Notices to Consultant

- (i) All notices to the Consultant shall be served by email or by post or by hand to the Consultant or his authorized representatives. In case of notices delivered by post, they will be deemed to have been delivered after 7 days of dispatch.
- (ii) The Consultant shall, on award of the Contract, furnish to the Engineer, the name, designation, address and telephone numbers and telefax numbers and e-mail address of his representative.

39.2 Notice to Employer and Engineer

All notices to the Employer or Engineer shall be signed by authorised representative only and served by email or by post or by hand to the address nominated for the purpose.

39.3 Change of Address

Parties to the Contract may change the nominated address with a notice to all concerned

40. Professional Indemnity Insurance)

The Consultant shall effect and maintain Professional Indemnity Insurance (PII) for the amount in Indian Rupees stipulated in Part A-Contract Data, Section 8, SCC in respect of any design of the Works to be checked by the Consultant. This insurance shall ensure the Consultant's liability by reason of professional negligence and errors in the checking of design and drawings.

This insurance shall be valid from the date of commencement of Works until 5 years after the date of issue of Performance Certificate. Alternatively, the Consultant shall redeem the insurance before the expiry of the Yearly Insurance

in such a way that the entire validity period is covered.

The Engineer will not issue Final Payment Certificate until the Consultant has produced evidence that coverage of the PII has been provided for the aforesaid period.

SECTION 8

Special Conditions of Contract (SCC)

Part A: Contract Data (CD)

Special Conditions of Contract (SCC)

Part A - Contract Data

The following Special Conditions of Contract (SCC) shall supplement the General Conditions of Contract (GCC). Whenever there is a conflict, the provisions herein shall prevail over those in the GCC.

Sr. No.	Conditions	Reference to GCC	Data
1.	Contractor	1 (vii)	Rail Vikas Nigam Limited (RVNL)
2.	Employer's name and address	1 (x)	Haryana Orbital Rail Corporation Limited (HORCL) Plot No 143, 5th Floor, Railtel Tower, Sector-44, Gurugram, Haryana-122003 E-mail: gminfrahridc@gmail.com
3.	Employer's Representative	1(xi)	Chief Project Manager/West, Haryana Rail Infrastructure Development Corporation Limited, Plot No 143, 5th Floor, Railtel Tower, Sector-44, Gurugram, Haryana-122003 E-mail: gminfrahridc@gmail.com
4.	Engineer's name and address	1(xii)	RITES Limited in Consortium with SMEC International Pty Ltd, 4th Floor, Plot No.144, RITES Limited, Sector-44, Gurugram, Haryana-122003
5.	Project Name	1(xxiv)	Haryana Orbital Rail Corridor (HORC) Project
6.	Performance Security	3.2	5% (Five percent) of the Accepted Contract Amount in the form of an unconditional Bank Guarantee for the stated amounts in two parts as mentioned below: (i) Bank Guarantee for the first part of Performance Security shall be

Sr. No.	Conditions	Reference to GCC	Data
			equal to seventy percent (70%) of required Performance Security. (ii) Bank Guarantee for the second part of Performance Security shall be equal to thirty percent (30%) of required Performance Security.
			Bank Guarantee for the first part of Performance Security shall be valid for a period of 28 days beyond the date of issue of completion certificate for Part-A of Scope of work as stated in Section 3, Works Requirements. Bank Guarantee for the second part of the Performance Security shall be valid for a period of 28 days beyond the date of issue of Performance Certificate.
7.	Completion period	13	Completion period: 48 Months
8.	Date of commencement of Works	13	Date Notified in LOA.
9.	Liquidated Damages	15.1	0.05% of the Accepted Contract Amount for each week or part thereof for delayed services for each Milestone of Cost centre 'P' given under Sub-Clause 1.1.1 of Section 4: Bidding Forms (BDF). The maximum limit of Liquidated Damages shall be 5% of the accepted Contract Price.
10.	Time for Payment	20	Within thirty days (30) days from the submission of invoice to the Engineer.
11.	Communication	29	By email/Speed Post/Courier/receipt in GC office
12.	Place of Arbitration	33.3	Gurugram
13.	Jurisdiction of Courts	33.5	Gurugram

Sr. No.	Conditions	Reference to GCC	Data
14.	Period of notification of all errors, omissions, inconsistencies, or other defects (including inaccuracies and inconsistencies) in the Contract Documents	34 (i)	28 days calculated from the issue of Letter of Acceptance
15.	Notice to Employer and Engineer	39.2	Haryana Rail Infrastructure Development Corporation (HRIDC) Plot No 143, 5th Floor, Railtel Tower, Sector-44, Gurugram, Haryana- 122003 E-mail: gminfrahridc@gmail.com And GC/HORC RITES Limited in Consortium with SMEC International Pty Ltd, 4th Floor, Plot No.144, RITES Limited, Sector-44, Gurugram, Haryana-122003
16.	Insurance for Design (Professional Indemnity Insurance)	40.0	Equal to the Accepted Contract Amount.

Section 9 Contract Forms (COF)

Section 9 - Contract Forms (COF)

This Section contains forms which, once completed, will form part of the Contract. The forms for Performance Security when required, shall only be completed by the successful Bidder after contract award.

Table of Forms

Form No.	Forms- Description	Page No.
COF/1	Letter of Acceptance	3
COF/2	Contract Agreement	5
COF/3	Form of Performance Security	7
COF/4	Consultant's Design Checking Certificate	9

FORM No. COF/1

Letter of Acceptance

[on letterhead paper of the Employer]

	(Name & Address of the Consul	tant)
De	ar Sir,	
	Kind Attention: Mr.	
Su	b: BID NoFOR	THE WORK OF
Re	f: a. Your Bid dated	_
	b. Your letter No	dated
	c. Your letter No	dated
1.	This is to notify you that your Bid dated	d identification number] for the Accepted [Insert amount in numbers corrected and modified in accordance
2.	The Works/Services are to be completed of date of issue of "Letter of Acceptance Acceptance" will be treated as "Effective I commencement of the Works/Services.	e". The date of issue of this "Letter of
3.	You are requested to furnish the Perform date of issue of Letter of Acceptance for the in accordance with the Conditions of Control included in the Bidding Document.	he amount stated in the Bid documents
4.	You shall furnish the Bonds, Guarante stipulated in the Bid Documents as per th	
5.	You shall ensure full compliance with tax	aws of India with regard to this Contract

and shall be solely responsible for the same. You shall submit copies of acknowledgements evidencing filing of returns every year and shall keep the Employer fully indemnified against your liability of tax, interest, penalty etc. in

6. You shall also undertake not to use information gained in the performing of the works for any purpose without obtaining the prior approval of HRIDC and shall not make any public announcement or divulge any material relating to the project

7. Until a formal agreement is signed, this Letter of Acceptance will constitute a

either in India or overseas withoutthe prior written consent of HRIDC.

respect thereof, which may arise.

binding contract between you and HORCL.

To

8. This Letter of Acceptance is sent to you in duplicate. You are required to return one copy duly signed and stamped on all pages including your unconditional acceptance thereof so as to reachthe undersigned within four days of issuance of this letter, as a token of your acknowledgement.

Yours faithfully,
Signature of Authorized Signatory
Name and Title of Signatory

Attachment: Contract Agreement

FORM No. COF/2

Contract Agreement

of wo	ork]	rement (hereinafter called the "Contract") is made at
	_(he	reinafter called "the Consultant") of the other part:
<u>Servi</u> a bid	ices] by t	the Employer is desirous that the <u>[Name of the</u> hereinafter called "the Services") should be executed and has accepted the Consultant for the execution and completion of such services and the g of any defects therein.
The I	Empl	loyer and the Consultant agree as follows:
1)	are	his Agreement words and expression shall have the same meanings as respectively assigned to them in the Contract Documents hereinafter erred to.
2)	The following documents shall be deemed to form and be read and construct as part of this Agreement. This Agreement shall prevail over all other Contract documents.	
	a)	The Contract Agreement
	b)	The Letter of Acceptance
	c)	Letters of Clarifications, if any
	d)	Addenda/Corrigenda to the Bid Document, if any
	e)	The Financial Bid
	f)	The Special Conditions of Contract including Schedules, if any
	g)	The General Conditions of Contract
	h)	The Work's Requirements
	i)	Instructions to Consultants
	j)	The Bid Documents including all the Sections
	k)	The Technical Bid
	l)	Any other document forming part of the Contract

- 3) In consideration of the payments to be made by the Employer to the Consultant as hereinafter mentioned, the Consultant hereby covenants with the Employer to complete the Services as stipulated in Bid Document issued by the Employer and to remedy any defects therein in conformity in all respects with the provisions of the Contract.
- 4) The Employer hereby covenants to pay the Consultant in consideration of the completion of the services and the remedying of defects therein, the Contract

Price being the sum stated in the Letter of Acceptance subject to such additions there to or deductions there from as may be made under the provisions of the Contract at the times and in the manner prescribed by the Contract.

OBLIGATION OF THE CONSULTANT 5)

The Consultant shall ensure full compliance with tax laws of India with regard to this Contract and shall be solely responsible for the same. The Consultant shall submit copies of acknowledgements evidencing filing of returns every year and shall keep the Employer fully indemnified against liability of tax, interest, penalty etc., of the PC in respect thereof, which may arise.

6) **GOVERNING LAW**

This Contract is enforceable and construed under the laws of the Republic of India.

7) JURISDICTION OF COURT

The Courts at Gurugram shall have the exclusive jurisdiction to try all disputes arising out of this agreement between the parties.

IN WITNESS WHEREOF the parties here to have caused this Agreement to be executed in accordance with the laws of the Republic of India. on the day, month and year specified above.

For and on behalf of the Employer
Signature of the authorized official
Name of the official
Stamp/Seal of the Employer
in the presence of:
Sign of Witness
Name
Address

FORM No. COF/3

FORM OF PERFORMANCE SECURITY

(Demand Guarantee)

[Guarantor letterhead or SWIFT identifier code]

Form: -			
[Name and Address of the Bank]			
Beneficiary: Chief Project Manager, Haryana Rail Infrastructure Development Corporation Limited, 5 th Floor, Plot No. 143, Rail Tel Tower, Sector 44, Gurugram, Haryana: 122003			
Date: [Insert date of issue]			
PERFORMANCE GUARANTEE No.:			
Guarantor: [Insert name and address of place of issue, unless indicated in the letterhead]			
We have been informed that (hereinafter called "the Applicant") has entered into Contract No dated with the Beneficiary, for the performance of Services for "Third Party Consultancy for checking of Detailed Design and Drawings of Twin NATM and Cut & Cover Tunnels from Km 24.850 to Km 29.580 including associated structures and Third Party Consultant's association during construction of NATM and Cut & Cover Tunnels for Haryana Orbital Rail Corridor (HORC) Project in the State of Haryana." (hereinafter called "the Contract").			
Furthermore, we understand that, according to the conditions of the Contract, a Performance Guarantee is required.			
At the request of the Applicant, we as Guarantor, hereby irrevocably undertake to pay the Beneficiary any sum or sums not exceeding in total an amount of (),¹ such sum being payable in the currency in which the Contract Price is payable, upon receipt by us of the Beneficiary's complying demand supported by the Beneficiary's			

The Guarantor shall insert an amount representing the percentage of the Accepted Contract Amount specified in the Letter of Acceptance, less provisional sums, if any, to the Beneficiary.

statement, whether in the demand itself or in a separate signed document accompanying or identifying the demand, stating that the Applicant is in breach of its obligation(s) under the Contract, without the Beneficiary needing to prove or to show grounds for your demand or the sum specified therein.

This guarantee shall expire, no later than the Day of, 2...², and any demand for payment under it must be received by us at this office indicated above on or before that date.

This guarantee is subject to the Uniform Rules for Demand Guarantees (URDG) 2010 Revision, ICC Publication No. 758, except that the supporting statement under Article 15(a) is hereby excluded.

[signature(s)]

Note: All italicized text (including footnotes) is for use in preparing this form and shall be deleted from the final product.

_

Insert the date twenty-eight days after the expected completion date as described in GC Clause 13. The Employer should note that in the event of an extension of this date for completion of the Contract, the Employer would need to request an extension of this guarantee from the Guarantor. Such request must be in writing and must be made prior to the expiration date established in the guarantee. In preparing this guarantee, the Employer might consider adding the following text to the form, at the end of the penultimate paragraph. "The Guarantor agrees to a one-time extension of this guarantee for a period not to exceed [six months] [one year], in response to the Beneficiary's written request for such extension, such request to be presented to the Guarantor before the expiry of the guarantee."

FORM No. COF/4

CONSULTANT'S DESIGN CHECKING CERTIFICATE

This Design checking Certificate refers to Submission No. which comprises:

[*Design No./the Final Detailed Design Submission/Good For Construction Drawings Submission No./Technical Submission No.] in respect of:[description of the Permanent Works to which the submission refers]

The contents of this submission are scheduled in Section A below.

The documents scheduled in Section A below, has been checked by us, and meets the requirements of the Contract.

CONSULTANT'S STATEMENT

We certify that:

- (a) the design of the Permanent Works, as illustrated and described in the documents scheduled in Section A below, complies with the Section 3, Works Requirements, local regulations and standards;
- (b) a detailed review and design check has been undertaken and completed to confirm the completeness, adequacy and validity of the design of the Permanent Works as illustrated and described in the documents scheduled in Section A below:
- (c) all necessary and required approvals relating to the design of the Permanent Works, as illustrated and described in the documents scheduled in Section A below, have been obtained by the tunnel contractor and copies of such approvals are annexed in Section B below;

AND (in the case of a submission covering a part of the Permanent Works only):

all effects of the design comprising the submission on the design of adjacent or other parts of the Works have been fully taken into account in the design of those parts.

Signed by Authorised Representative (For Consultant)

Name Position / Designation

Date

Section A

Submission no. comprises the following: Drawings: (*Title, drawing number and revision*) Documents: (*Title, reference number and revision*)

Others:

Section B

[Consultant to attach copies of necessary and required approvals from statutory bodies, etc.]